Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 414
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(1-2): 198-212.e15, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30503211

RESUMEN

Understanding transcription factor navigation through the nucleus remains critical for developing targeted therapeutics. The GLI1 transcription factor must maintain maximal Hedgehog pathway output in basal cell carcinomas (BCCs), and we have previously shown that resistant BCCs increase GLI1 deacetylation through atypical protein kinase Cι/λ (aPKC) and HDAC1. Here we identify a lamina-associated polypeptide 2 (LAP2) isoform-dependent nuclear chaperoning system that regulates GLI1 movement between the nuclear lamina and nucleoplasm to achieve maximal activation. LAP2ß forms a two-site interaction with the GLI1 zinc-finger domain and acetylation site, stabilizing an acetylation-dependent reserve on the inner nuclear membrane (INM). By contrast, the nucleoplasmic LAP2α competes with LAP2ß for GLI1 while scaffolding HDAC1 to deacetylate the secondary binding site. aPKC functions to promote GLI1 association with LAP2α, promoting egress off the INM. GLI1 intranuclear trafficking by LAP2 isoforms represents a powerful signal amplifier in BCCs with implications for zinc finger-based signal transduction and therapeutics.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Células 3T3 , Animales , Carcinoma Basocelular/metabolismo , Línea Celular , Cromatina , Proteínas de Unión al ADN/fisiología , Células HEK293 , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/fisiología , Histona Desacetilasa 1/metabolismo , Humanos , Proteínas de la Membrana/fisiología , Ratones , Chaperonas Moleculares/metabolismo , Lámina Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteína con Dedos de Zinc GLI1/fisiología , Dedos de Zinc
2.
Cell ; 171(3): 573-587.e14, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29033129

RESUMEN

Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery.


Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Lámina Nuclear/metabolismo , Células Madre/citología , Animales , Genoma , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Células Madre/metabolismo
3.
Cell ; 171(1): 103-119.e18, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28938112

RESUMEN

It is now established that Bcl11b specifies T cell fate. Here, we show that in developing T cells, the Bcl11b enhancer repositioned from the lamina to the nuclear interior. Our search for factors that relocalized the Bcl11b enhancer identified a non-coding RNA named ThymoD (thymocyte differentiation factor). ThymoD-deficient mice displayed a block at the onset of T cell development and developed lymphoid malignancies. We found that ThymoD transcription promoted demethylation at CTCF bound sites and activated cohesin-dependent looping to reposition the Bcl11b enhancer from the lamina to the nuclear interior and to juxtapose the Bcl11b enhancer and promoter into a single-loop domain. These large-scale changes in nuclear architecture were associated with the deposition of activating epigenetic marks across the loop domain, plausibly facilitating phase separation. These data indicate how, during developmental progression and tumor suppression, non-coding transcription orchestrates chromatin folding and compartmentalization to direct with high precision enhancer-promoter communication.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , ARN no Traducido/genética , Proteínas Represoras/genética , Linfocitos T/citología , Proteínas Supresoras de Tumor/genética , Animales , Factor de Unión a CCCTC , Cromatina/metabolismo , Leucemia/genética , Región de Control de Posición , Linfoma/genética , Ratones , Lámina Nuclear/metabolismo , Proteínas Represoras/metabolismo , Linfocitos T/metabolismo , Timo/citología , Timo/metabolismo , Transcripción Genética
4.
Cell ; 165(5): 1160-1170, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27203112

RESUMEN

Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling.


Asunto(s)
Ácido Araquidónico/metabolismo , Núcleo Celular/metabolismo , Inflamación/metabolismo , Mecanotransducción Celular , Actinas/metabolismo , Animales , Araquidonato 5-Lipooxigenasa/metabolismo , Calcio/metabolismo , Activación Enzimática , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Leucocitos/metabolismo , Lámina Nuclear/metabolismo , Fosfolipasas A2 Citosólicas/metabolismo , Pez Cebra
5.
Cell ; 163(1): 134-47, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26365489

RESUMEN

Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large lamina-associated domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture consisting of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, the consistency of NL contacts is inversely linked to gene activity in single cells and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single-cell chromatin organization. VIDEO ABSTRACT.


Asunto(s)
Cromatina/metabolismo , Lámina Nuclear/metabolismo , Análisis de la Célula Individual/métodos , Línea Celular Tumoral , Cromatina/química , Cromosomas/química , Cromosomas/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Hibridación Fluorescente in Situ , Interfase
6.
Cell ; 152(6): 1213-7, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23498930

RESUMEN

Spatiotemporal changes in nuclear lamina composition underlie cell-type-specific chromatin organization and cell fate, suggesting that the lamina forms a dynamic framework critical for genome function, cellular identity, and developmental potential.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Lámina Nuclear/metabolismo , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Laminas/metabolismo , Células Madre/metabolismo
7.
Cell ; 152(6): 1270-84, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23498936

RESUMEN

The architecture of interphase chromosomes is important for the regulation of gene expression and genome maintenance. Chromosomes are linearly segmented into hundreds of domains with different protein compositions. Furthermore, the spatial organization of chromosomes is nonrandom and is characterized by many local and long-range contacts among genes and other sequence elements. A variety of genome-wide mapping techniques have made it possible to chart these properties at high resolution. Combined with microscopy and computational modeling, the results begin to yield a more coherent picture that integrates linear and three-dimensional (3D) views of chromosome organization in relation to gene regulation and other nuclear functions.


Asunto(s)
Núcleo Celular/genética , Cromosomas/química , Interfase , Animales , Nucléolo Celular/metabolismo , Estructuras Cromosómicas , Cromosomas/metabolismo , Humanos , Lámina Nuclear/metabolismo
8.
Cell ; 153(1): 178-92, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23523135

RESUMEN

The nuclear lamina (NL) interacts with hundreds of large genomic regions termed lamina associated domains (LADs). The dynamics of these interactions and the relation to epigenetic modifications are poorly understood. We visualized the fate of LADs in single cells using a "molecular contact memory" approach. In each nucleus, only ~30% of LADs are positioned at the periphery; these LADs are in intermittent molecular contact with the NL but remain constrained to the periphery. Upon mitosis, LAD positioning is not detectably inherited but instead is stochastically reshuffled. Contact of individual LADs with the NL is linked to transcriptional repression and H3K9 dimethylation in single cells. Furthermore, we identify the H3K9 methyltransferase G9a as a regulator of NL contacts. Collectively, these results highlight principles of the dynamic spatial architecture of chromosomes in relation to gene regulation.


Asunto(s)
Cromosomas/metabolismo , Regulación de la Expresión Génica , Lámina Nuclear/química , Análisis de la Célula Individual/métodos , Adenina/metabolismo , Línea Celular Tumoral , Metilación de ADN , Genoma , Heterocromatina/metabolismo , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Mitosis , Lámina Nuclear/metabolismo
9.
Cell ; 150(5): 948-60, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22939622

RESUMEN

Heterochromatin serves important functions, protecting genome integrity and stabilizing gene expression programs. Although the Suv39h methyltransferases (KMTs) are known to ensure pericentric H3K9me3 methylation, the mechanisms that initiate and maintain mammalian heterochromatin organization remain elusive. We developed a biochemical assay and used in vivo analyses in mouse embryonic fibroblasts to identify Prdm3 and Prdm16 as redundant H3K9me1-specific KMTs that direct cytoplasmic H3K9me1 methylation. The H3K9me1 is converted in the nucleus to H3K9me3 by the Suv39h enzymes to reinforce heterochromatin. Simultaneous depletion of Prdm3 and Prdm16 abrogates H3K9me1 methylation, prevents Suv39h-dependent H3K9me3 trimethylation, and derepresses major satellite transcription. Most strikingly, DNA-FISH and electron microscopy reveal that combined impairment of Prdm3 and Prdm16 results in disintegration of heterochromatic foci and disruption of the nuclear lamina. Our data identify Prdm3 and Prdm16 as H3K9me1 methyltransferases and expose a functional framework in which anchoring to the nuclear periphery helps maintain the integrity of mammalian heterochromatin.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Heterocromatina , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Proteína del Locus del Complejo MDS1 y EV11 , Ratones , Lámina Nuclear/metabolismo , Proto-Oncogenes , Factores de Transcripción/genética
10.
Cell ; 149(7): 1474-87, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22726435

RESUMEN

A large fraction of the mammalian genome is organized into inactive chromosomal domains along the nuclear lamina. The mechanism by which these lamina associated domains (LADs) are established remains to be elucidated. Using genomic repositioning assays, we show that LADs, spanning the developmentally regulated IgH and Cyp3a loci contain discrete DNA regions that associate chromatin with the nuclear lamina and repress gene activity in fibroblasts. Lamina interaction is established during mitosis and likely involves the localized recruitment of Lamin B during late anaphase. Fine-scale mapping of LADs reveals numerous lamina-associating sequences (LASs), which are enriched for a GAGA motif. This repeated motif directs lamina association and is bound by the transcriptional repressor cKrox, in a complex with HDAC3 and Lap2ß. Knockdown of cKrox or HDAC3 results in dissociation of LASs/LADs from the nuclear lamina. These results reveal a mechanism that couples nuclear compartmentalization of chromatin domains with the control of gene activity.


Asunto(s)
Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Mitosis , Lámina Nuclear/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/genética , ADN/química , Drosophila/metabolismo , Histona Desacetilasas/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Ratones , Células 3T3 NIH , Membrana Nuclear/metabolismo , Transcripción Genética
11.
Proc Natl Acad Sci U S A ; 121(27): e2406946121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917015

RESUMEN

Progerin, the protein that causes Hutchinson-Gilford progeria syndrome, triggers nuclear membrane (NM) ruptures and blebs, but the mechanisms are unclear. We suspected that the expression of progerin changes the overall structure of the nuclear lamina. High-resolution microscopy of smooth muscle cells (SMCs) revealed that lamin A and lamin B1 form independent meshworks with uniformly spaced openings (~0.085 µm2). The expression of progerin in SMCs resulted in the formation of an irregular meshwork with clusters of large openings (up to 1.4 µm2). The expression of progerin acted in a dominant-negative fashion to disrupt the morphology of the endogenous lamin B1 meshwork, triggering irregularities and large openings that closely resembled the irregularities and openings in the progerin meshwork. These abnormal meshworks were strongly associated with NM ruptures and blebs. Of note, the progerin meshwork was markedly abnormal in nuclear blebs that were deficient in lamin B1 (~50% of all blebs). That observation suggested that higher levels of lamin B1 expression might normalize the progerin meshwork and prevent NM ruptures and blebs. Indeed, increased lamin B1 expression reversed the morphological abnormalities in the progerin meshwork and markedly reduced the frequency of NM ruptures and blebs. Thus, progerin expression disrupts the overall structure of the nuclear lamina, but that effect-along with NM ruptures and blebs-can be abrogated by increased lamin B1 expression.


Asunto(s)
Lamina Tipo A , Lamina Tipo B , Lámina Nuclear , Lámina Nuclear/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Humanos , Progeria/metabolismo , Progeria/genética , Progeria/patología , Animales , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones
12.
J Cell Sci ; 137(7)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477372

RESUMEN

Biogenesis of inclusion bodies (IBs) facilitates protein quality control (PQC). Canonical aggresomes execute degradation of misfolded proteins while non-degradable amyloids sequester into insoluble protein deposits. Lewy bodies (LBs) are filamentous amyloid inclusions of α-synuclein, but PQC benefits and drawbacks associated with LB-like IBs remain underexplored. Here, we report that crosstalk between filamentous LB-like IBs and aggresome-like IBs of α-synuclein (Syn-aggresomes) buffer the load, aggregation state, and turnover of the amyloidogenic protein in mouse primary neurons and HEK293T cells. Filamentous LB-like IBs possess unorthodox PQC capacities of self-quarantining α-synuclein amyloids and being degradable upon receding fresh amyloidogenesis. Syn-aggresomes equilibrate biogenesis of filamentous LB-like IBs by facilitating spontaneous degradation of α-synuclein and conditional turnover of disintegrated α-synuclein amyloids. Thus, both types of IB primarily contribute to PQC. Incidentally, the overgrown perinuclear LB-like IBs become degenerative once these are misidentified by BICD2, a cargo-adapter for the cytosolic motor-protein dynein. Microscopy indicates that microtubules surrounding the perinuclear filamentous inclusions are also distorted, misbalancing the cytoskeleton-nucleoskeleton tension leading to widespread lamina injuries. Together, nucleocytoplasmic mixing, DNA damage, and deregulated transcription of stress chaperones defeat the proteostatic purposes of the filamentous amyloids of α-synuclein.


Asunto(s)
Lámina Nuclear , alfa-Sinucleína , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Células HEK293 , Cuerpos de Inclusión/metabolismo , Lámina Nuclear/metabolismo , Lámina Nuclear/patología
13.
Dev Biol ; 515: 139-150, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39038593

RESUMEN

Stem cell loss in aging and disease is associated with nuclear deformation. Yet, how nuclear shape influences stem cell homeostasis is poorly understood. We investigated this connection using Drosophila germline stem cells, as survival of these stem cells is compromised by dysfunction of the nuclear lamina, the extensive protein network that lines the inner nuclear membrane and gives shape to the nucleus. To induce nuclear distortion in germline stem cells, we used the GAL4-UAS system to increase expression of the permanently farnesylated nuclear lamina protein, Kugelkern, a rate limiting factor for nuclear growth. We show that elevated Kugelkern levels cause severe nuclear distortion in germline stem cells, including extensive thickening and lobulation of the nuclear envelope and nuclear lamina, as well as alteration of internal nuclear compartments. Despite these changes, germline stem cell number, proliferation, and female fertility are preserved, even as females age. Collectively, these data demonstrate that disruption of nuclear architecture does not cause a failure of germline stem cell survival or homeostasis, revealing that nuclear deformation does not invariably promote stem cell loss.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Células Germinativas , Homeostasis , Lámina Nuclear , Células Madre , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , Células Germinativas/metabolismo , Drosophila melanogaster/metabolismo , Células Madre/metabolismo , Lámina Nuclear/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Drosophila/metabolismo , Membrana Nuclear/metabolismo
14.
Nat Rev Mol Cell Biol ; 14(1): 13-24, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23212477

RESUMEN

The nuclear lamina is an important structural determinant for the nuclear envelope as a whole, attaching chromatin domains to the nuclear periphery and localizing some nuclear envelope proteins. The major components of the lamina are the A-type and B-type lamins, which are members of the intermediate filament protein family. Whereas the expression of A-type lamins is developmentally regulated, B-type lamins, as a class, are found in all cells. The association of B-type lamins with many aspects of nuclear function has led to the view that these are essential proteins, and there is growing evidence suggesting that they regulate cellular senescence. However, B-type lamins are dispensable in certain cell types in vivo, and neither A-type nor B-type lamins may be required in early embryos or embryonic stem cells. The picture that is beginning to emerge is of a complex network of interactions at the nuclear periphery that may be defined by cell- and tissue-specific functions.


Asunto(s)
Senescencia Celular , Lámina Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Envejecimiento Prematuro/genética , Animales , Huesos/anomalías , Núcleo Celular/genética , Núcleo Celular/metabolismo , Senescencia Celular/genética , Cromatina , Células Madre Embrionarias , Regulación del Desarrollo de la Expresión Génica , Humanos , Filamentos Intermedios/genética , Filamentos Intermedios/metabolismo , Ratones , Distrofia Muscular Animal/genética , Mutación , Lámina Nuclear/genética
15.
Nature ; 570(7761): 395-399, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31168090

RESUMEN

The nucleus of mammalian cells displays a distinct spatial segregation of active euchromatic and inactive heterochromatic regions of the genome1,2. In conventional nuclei, microscopy shows that euchromatin is localized in the nuclear interior and heterochromatin at the nuclear periphery1,2. Genome-wide chromosome conformation capture (Hi-C) analyses show this segregation as a plaid pattern of contact enrichment within euchromatin and heterochromatin compartments3, and depletion between them. Many mechanisms for the formation of compartments have been proposed, such as attraction of heterochromatin to the nuclear lamina2,4, preferential attraction of similar chromatin to each other1,4-12, higher levels of chromatin mobility in active chromatin13-15 and transcription-related clustering of euchromatin16,17. However, these hypotheses have remained inconclusive, owing to the difficulty of disentangling intra-chromatin and chromatin-lamina interactions in conventional nuclei18. The marked reorganization of interphase chromosomes in the inverted nuclei of rods in nocturnal mammals19,20 provides an opportunity to elucidate the mechanisms that underlie spatial compartmentalization. Here we combine Hi-C analysis of inverted rod nuclei with microscopy and polymer simulations. We find that attractions between heterochromatic regions are crucial for establishing both compartmentalization and the concentric shells of pericentromeric heterochromatin, facultative heterochromatin and euchromatin in the inverted nucleus. When interactions between heterochromatin and the lamina are added, the same model recreates the conventional nuclear organization. In addition, our models allow us to rule out mechanisms of compartmentalization that involve strong euchromatin interactions. Together, our experiments and modelling suggest that attractions between heterochromatic regions are essential for the phase separation of the active and inactive genome in inverted and conventional nuclei, whereas interactions of the chromatin with the lamina are necessary to build the conventional architecture from these segregated phases.


Asunto(s)
Compartimento Celular , Núcleo Celular/metabolismo , Heterocromatina/metabolismo , Animales , Compartimento Celular/genética , Núcleo Celular/genética , Eucromatina/genética , Eucromatina/metabolismo , Heterocromatina/genética , Ratones , Modelos Biológicos , Lámina Nuclear/genética , Lámina Nuclear/metabolismo , Factores de Tiempo
16.
Nature ; 569(7758): 729-733, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118510

RESUMEN

In mammals, the emergence of totipotency after fertilization involves extensive rearrangements of the spatial positioning of the genome1,2. However, the contribution of spatial genome organization to the regulation of developmental programs is unclear3. Here we generate high-resolution maps of genomic interactions with the nuclear lamina (a filamentous meshwork that lines the inner nuclear membrane) in mouse pre-implantation embryos. We reveal that nuclear organization is not inherited from the maternal germline but is instead established de novo shortly after fertilization. The two parental genomes establish lamina-associated domains (LADs)4 with different features that converge after the 8-cell stage. We find that the mechanism of LAD establishment is unrelated to DNA replication. Instead, we show that paternal LAD formation in zygotes is prevented by ectopic expression of Kdm5b, which suggests that LAD establishment may be dependent on remodelling of H3K4 methylation. Our data suggest a step-wise assembly model whereby early LAD formation precedes consolidation of topologically associating domains.


Asunto(s)
Posicionamiento de Cromosoma , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Genoma/fisiología , Lámina Nuclear/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/embriología , Desarrollo Embrionario , Femenino , Fertilización , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Oocitos/citología , Oocitos/metabolismo , Cigoto/citología , Cigoto/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(17): e2121816119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35439057

RESUMEN

The ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we conduct quantitative confocal imaging to show that the loss of A-type lamins tends to increase nuclear and cellular volume while the loss of B-type lamins behaves in the opposite manner. We use fluorescence recovery after photobleaching, atomic force microscopy, optical tweezer microrheology, and traction force microscopy to demonstrate that A-type lamins engage with both F-actin and vimentin intermediate filaments (VIFs) through the linker of nucleoskeleton and cytoskeleton (LINC) complexes to modulate cortical and cytoplasmic stiffness as well as cellular contractility in mouse embryonic fibroblasts (MEFs). In contrast, we show that B-type lamins predominantly interact with VIFs through LINC complexes to regulate cytoplasmic stiffness and contractility. We then propose a physical model mediated by the lamin­LINC complex that explains these distinct mechanical phenotypes (mechanophenotypes). To verify this model, we use dominant negative constructs and RNA interference to disrupt the LINC complexes that facilitate the interaction of the nucleus with the F-actin and VIF cytoskeletons and show that the loss of these elements results in mechanophenotypes like those observed in MEFs that lack A- or B-type lamin isoforms. Finally, we demonstrate that the loss of each lamin isoform softens the cell nucleus and enhances constricted cell migration but in turn increases migration-induced DNA damage. Together, our findings uncover distinctive roles for each of the four major lamin isoforms in maintaining nucleocytoskeletal interactions and cellular mechanics.


Asunto(s)
Fibroblastos , Lámina Nuclear , Animales , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Ratones , Lámina Nuclear/metabolismo , Matriz Nuclear/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
18.
Nat Immunol ; 13(12): 1196-204, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23064439

RESUMEN

The genome is folded into domains located in compartments that are either transcriptionally inert or transcriptionally permissive. Here we used genome-wide strategies to characterize domains during B cell development. Structured interaction matrix analysis showed that occupancy by the architectural protein CTCF was associated mainly with intradomain interactions, whereas sites bound by the histone acetyltransferase p300 or the transcription factors E2A or PU.1 were associated with intra- and interdomain interactions that are developmentally regulated. We identified a spectrum of genes that switched nuclear location during early B cell development. In progenitor cells, the transcriptionally inactive locus encoding early B cell factor (Ebf1) was sequestered at the nuclear lamina, which thereby preserved their multipotency. After development into the pro-B cell stage, Ebf1 and other genes switched compartments to establish new intra- and interdomain interactions associated with a B lineage-specific transcription signature.


Asunto(s)
Linfocitos B/fisiología , Linaje de la Célula , Núcleo Celular/genética , Linfopoyesis , Células Precursoras de Linfocitos B/fisiología , Animales , Linfocitos B/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factor de Unión a CCCTC , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Lámina Nuclear/metabolismo , Células Precursoras de Linfocitos B/citología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética , Factores de Transcripción p300-CBP/genética
19.
FASEB J ; 37(8): e23116, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37498235

RESUMEN

Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.


Asunto(s)
Envejecimiento Prematuro , Laminopatías , Humanos , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Proteostasis , Núcleo Celular/metabolismo , Laminas/genética , Laminas/metabolismo , Laminopatías/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mutación , Lámina Nuclear/genética , Lámina Nuclear/metabolismo
20.
FASEB J ; 37(2): e22745, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36637913

RESUMEN

Here, we identify that Caveolin-2 (Cav-2), an integral membrane protein, controls adipocyte hypertrophy in association with nuclear lamina. In the hypertrophy stage of adipogenesis, pY19-Cav-2 association with lamin A/C facilitated the disengagement of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) from lamin A/C and repressed Cav-2 promoter at the nuclear periphery for epigenetic activation of Cav-2, and thereby promoted C/EBPα and PPARγ-induced adipocyte hypertrophy. Stable expression of Cav-2 was required and retained by phosphorylation, deubiquitination, and association with lamin A/C for the adipocyte hypertrophy. However, obese adipocytes exhibited augmented Cav-2 stability resulting from the up-regulation of lamin A/C over lamin B1, protein tyrosine phosphatase 1B (PTP1B), and nuclear deubiquitinating enzyme (DUB), Uchl5. Our findings show a novel epigenetic regulatory mechanism of adipocyte hypertrophy by Cav-2 at the nuclear periphery.


Asunto(s)
Lamina Tipo A , PPAR gamma , Humanos , Ratones , Animales , PPAR gamma/genética , PPAR gamma/metabolismo , Lamina Tipo A/metabolismo , Lámina Nuclear/metabolismo , Caveolina 2/genética , Caveolina 2/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Adipocitos/metabolismo , Hipertrofia/metabolismo , Diferenciación Celular , Adipogénesis/genética , Células 3T3-L1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA