Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 33(1-2): 75-89, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30567999

RESUMEN

Numerous DNA repair and signaling proteins function at DNA damage sites to protect the genome. Here, we show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites, allowing identification of ZPET (zinc finger protein proximal to RAD eighteen)/ZNF280C as a potential DNA damage response (DDR) protein. ZPET binds ssDNA and localizes to DNA double-strand breaks (DSBs) and stalled replication forks. In vitro, ZPET inhibits MRE11 binding to ssDNA. In cells, ZPET delays MRE11 binding to chromatin after DSB formation and slows DNA end resection through binding ssDNA. ZPET hinders resection independently of 53BP1 and HELB. Cells lacking ZPET displayed enhanced homologous recombination (HR), accelerated replication forks under stress, and increased resistance to DSBs and PARP inhibition. These results not only reveal ZPET as an HR repressor but also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins.


Asunto(s)
Biotinilación/métodos , Daño del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga/genética , Factores de Transcripción/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Línea Celular , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Técnicas de Silenciamiento del Gen , Humanos , Proteína Homóloga de MRE11/metabolismo , Unión Proteica , Transporte de Proteínas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Nucleic Acids Res ; 52(7): e37, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38452210

RESUMEN

G-quadruplexes (G4s) are noncanonical nucleic acid structures pivotal to cellular processes and disease pathways. Deciphering G4-interacting proteins is imperative for unraveling G4's biological significance. In this study, we developed a G4-targeting biotin ligase named G4PID, meticulously assessing its binding affinity and specificity both in vitro and in vivo. Capitalizing on G4PID, we devised a tailored approach termed G-quadruplex-interacting proteins specific biotin-ligation procedure (PLGPB) to precisely profile G4-interacting proteins. Implementing this innovative strategy in live cells, we unveiled a cohort of 149 potential G4-interacting proteins, which exhibiting multifaceted functionalities. We then substantiate the directly binding affinity of 7 candidate G4-interacting-proteins (SF3B4, FBL, PP1G, BCL7C, NDUV1, ILF3, GAR1) in vitro. Remarkably, we verified that splicing factor 3B subunit 4 (SF3B4) binds preferentially to the G4-rich 3' splice site and the corresponding splicing sites are modulated by the G4 stabilizer PDS, indicating the regulating role of G4s in mRNA splicing procedure. The PLGPB strategy could biotinylate multiple proteins simultaneously, which providing an opportunity to map G4-interacting proteins network in living cells.


Asunto(s)
Biotina , G-Cuádruplex , Humanos , Biotina/metabolismo , Unión Proteica , Factores de Empalme de ARN/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Empalme del ARN , Células HEK293 , Proteínas de Unión al ARN/metabolismo , Células HeLa
3.
Mol Cell ; 65(2): 220-230, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-27989440

RESUMEN

The guanidyl moiety is a component of fundamental metabolites, including the amino acid arginine, the energy carrier creatine, and the nucleobase guanine. Curiously, reports regarding the importance of free guanidine in biology are sparse, and no biological receptors that specifically recognize this compound have been previously identified. We report that many members of the ykkC motif RNA, the longest unresolved riboswitch candidate, naturally sense and respond to guanidine. This RNA is found throughout much of the bacterial domain of life, where it commonly controls the expression of proteins annotated as urea carboxylases and multidrug efflux pumps. Our analyses reveal that these proteins likely function as guanidine carboxylases and guanidine transporters, respectively. Furthermore, we demonstrate that bacteria are capable of endogenously producing guanidine. These and related findings demonstrate that free guanidine is a biologically relevant compound, and several gene families that can alleviate guanidine toxicity exist.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Guanidina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Riboswitch , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Conformación de Ácido Nucleico , Motivos de Nucleótidos , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Mensajero/química , ARN Mensajero/genética , Especificidad por Sustrato
4.
Proteins ; 92(4): 435-448, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37997490

RESUMEN

Biotin (vitamin H or B7) is a coenzyme essential for all forms of life. Biotin has biological activity only when covalently attached to a few key metabolic enzyme proteins. Most organisms have only one attachment enzyme, biotin protein ligase (BPL), which attaches biotin to all target proteins. The sequences of these proteins and their substrate proteins are strongly conserved throughout biology. Structures of both the biotin ligase- and biotin-acceptor domains of mammals, plants, several bacterial species, and archaea have been determined. These, together with mutational analyses of ligases and their protein substrates, illustrate the exceptional specificity of this protein modification. For example, the Escherichia coli BPL biotinylates only one of the >4000 cellular proteins. Several bifunctional bacterial biotin ligases transcriptionally regulate biotin synthesis and/or transport in concert with biotinylation. The human BPL has been demonstrated to play an important role in that mutations in the BPL encoding gene cause one form of the disease, biotin-responsive multiple carboxylase deficiency. Promiscuous mutant versions of several BPL enzymes release biotinoyl-AMP, the active intermediate of the ligase reaction, to solvent. The released biotinoyl-AMP acts as a chemical biotinylation reagent that modifies lysine residues of neighboring proteins in vivo. This proximity-dependent biotinylation (called BioID) approach has been heavily utilized in cell biology.


Asunto(s)
Ligasas de Carbono-Nitrógeno , Proteínas de Escherichia coli , Animales , Humanos , Biotinilación , Biotina/química , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Proteínas/metabolismo , Escherichia coli/metabolismo , Ligasas/genética , Ligasas/metabolismo , Bacterias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mamíferos/metabolismo
5.
Protein Expr Purif ; 221: 106520, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38833752

RESUMEN

Staphylococcus aureus (S. aureus) presents a significant challenge in both nosocomial and community settings due to its pathogenicity. The emergence of drug-resistant strains exacerbates S. aureus infections, leading to increased mortality rates. PyrG, a member of the cytidine triphosphate (CTP) synthase family, serves as a crucial therapeutic target against S. aureus due to the pivotal role of CTP in cellular metabolism. However, the structural and mechanistic details of S. aureus PyrG remains unknown. Here, we successfully expressed and purified monomeric PyrG. Mutational experiments were conducted based on the results of molecular docking. Based on the results of the molecular docking, we carried out mutation experiments and found that Q386A dramatically decreased the CTP synthase activity compared to the wild-type protein, while Y54A almost completely abolished the activity. Exposure of S. aureus to the kinase inhibitor crizotinib increased expression of gene pyrG. Our results identify the two key sites on PyrG for the CTP synthase activity, and present PyrG gene expression increased during the treatment of crizotinib, which may eventually provide valuable guidance for the development of new drugs against S. aureus infections.


Asunto(s)
Proteínas Bacterianas , Ligasas de Carbono-Nitrógeno , Staphylococcus aureus , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Ligasas de Carbono-Nitrógeno/aislamiento & purificación , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/biosíntesis , Expresión Génica , Simulación del Acoplamiento Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis
6.
Exp Cell Res ; 422(1): 113433, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423659

RESUMEN

Although most cells are mononuclear, the nucleus can exist in the form of binucleate or even multinucleate to respond to different physiological processes. The male accessory gland of Drosophila is the organ that produces semen, and its main cells are binucleate. Here we observe that CTP synthase (CTPS) forms filamentous cytoophidia in binuclear main cells, primarily located at the cell boundary. In CTPSH355A, a point mutation that destroys the formation of cytoophidia, we find that the nucleation mode of the main cells changes, including mononucleates and vertical distribution of binucleates. Although the overexpression of CTPSH355A can restore the level of CTPS protein, it will neither form cytoophidia nor eliminate the abnormal nucleation pattern. Therefore, our data indicate that there is an unexpected functional link between the formation of cytoophidia and the maintenance of binucleation in Drosophila main cells.


Asunto(s)
Ligasas de Carbono-Nitrógeno , Drosophila , Animales , Masculino , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Drosophila/metabolismo
7.
Bioessays ; 44(12): e2200128, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36209393

RESUMEN

Two enzymes involved in the synthesis of pyrimidine and purine nucleotides, CTP synthase (CTPS) and IMP dehydrogenase (IMPDH), can assemble into a single or very few large filaments called rods and rings (RR) or cytoophidia. Most recently, asymmetric cytoplasmic distribution of organelles during cell division has been described as a decisive event in hematopoietic stem cell fate. We propose that cytoophidia, which could be considered as membrane-less organelles, may also be distributed asymmetrically during mammalian cell division as previously described for Schizosaccharomyces pombe. Furthermore, because each type of nucleotide intervenes in distinct processes (e.g., membrane synthesis, glycosylation, and G protein-signaling), alterations in the rate of synthesis of specific nucleotide types could influence cell differentiation in multiple ways. Therefore, we hypothesize that whether a daughter cell inherits or not CTPS or IMPDH filaments determines its fate and that this asymmetric inheritance, together with the dynamic nature of these structures enables plasticity in a cell population.


Asunto(s)
Ligasas de Carbono-Nitrógeno , Schizosaccharomyces , Animales , IMP Deshidrogenasa/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Diferenciación Celular , Schizosaccharomyces/genética , Nucleótidos/metabolismo , Mamíferos/metabolismo
8.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928282

RESUMEN

Biotin (vitamin B7, or vitamin H) is a water-soluble B-vitamin that functions as a cofactor for carboxylases, i.e., enzymes involved in the cellular metabolism of fatty acids and amino acids and in gluconeogenesis; moreover, as reported, biotin may be involved in gene regulation. Biotin is not synthesized by human cells, but it is found in food and is also produced by intestinal bacteria. Biotin status/homeostasis in human individuals depends on several factors, including efficiency/deficiency of the enzymes involved in biotin recycling within the human organism (biotinidase, holocarboxylase synthetase), and/or effectiveness of intestinal uptake, which is mainly accomplished through the sodium-dependent multivitamin transporter. In the last years, administration of biotin at high/"pharmacological" doses has been proposed to treat specific defects/deficiencies and human disorders, exhibiting mainly neurological and/or dermatological symptoms and including biotinidase deficiency, holocarboxylase synthetase deficiency, and biotin-thiamine-responsive basal ganglia disease. On the other hand, according to warnings of the Food and Drug Administration, USA, high biotin levels can affect clinical biotin-(strept)avidin assays and thus lead to false results during quantification of critical biomarkers. In this review article, recent findings/advancements that may offer new insight in the abovementioned research fields concerning biotin will be presented and briefly discussed.


Asunto(s)
Biotina , Deficiencia de Biotinidasa , Biotinidasa , Homeostasis , Humanos , Biotina/metabolismo , Deficiencia de Biotinidasa/metabolismo , Deficiencia de Biotinidasa/diagnóstico , Deficiencia de Biotinidasa/genética , Deficiencia de Biotinidasa/tratamiento farmacológico , Biotinidasa/metabolismo , Biotinidasa/genética , Deficiencia de Holocarboxilasa Sintetasa/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Animales , Ataxia/metabolismo , Ataxia/genética , Enfermedades de los Ganglios Basales
9.
Plant Cell ; 32(11): 3388-3407, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32843435

RESUMEN

Proximity labeling is a powerful approach for detecting protein-protein interactions. Most proximity labeling techniques use a promiscuous biotin ligase or a peroxidase fused to a protein of interest, enabling the covalent biotin labeling of proteins and subsequent capture and identification of interacting and neighboring proteins without the need for the protein complex to remain intact. To date, only a few studies have reported on the use of proximity labeling in plants. Here, we present the results of a systematic study applying a variety of biotin-based proximity labeling approaches in several plant systems using various conditions and bait proteins. We show that TurboID is the most promiscuous variant in several plant model systems and establish protocols that combine mass spectrometry-based analysis with harsh extraction and washing conditions. We demonstrate the applicability of TurboID in capturing membrane-associated protein interactomes using Lotus japonicus symbiotically active receptor kinases as a test case. We further benchmark the efficiency of various promiscuous biotin ligases in comparison with one-step affinity purification approaches. We identified both known and novel interactors of the endocytic TPLATE complex. We furthermore present a straightforward strategy to identify both nonbiotinylated and biotinylated peptides in a single experimental setup. Finally, we provide initial evidence that our approach has the potential to suggest structural information of protein complexes.


Asunto(s)
Biotina/química , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas , Arabidopsis/citología , Arabidopsis/metabolismo , Biotina/metabolismo , Biotinilación , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lotus/genética , Lotus/metabolismo , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Temperatura , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo
10.
Nat Chem Biol ; 17(1): 96-103, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33046851

RESUMEN

Eukaryotic cells compartmentalize metabolic pathways in organelles to achieve optimal reaction conditions and avoid crosstalk with cytosolic factors. We found that cytosolic expression of norcoclaurine synthase (NCS), the enzyme that catalyzes the first committed reaction in benzylisoquinoline alkaloid biosynthesis, is toxic in Saccharomyces cerevisiae and, consequently, restricts (S)-reticuline production. We developed a compartmentalization strategy that alleviates NCS toxicity while promoting increased (S)-reticuline titer. This strategy is achieved through efficient targeting of toxic NCS to the peroxisome while, crucially, taking advantage of the free flow of metabolite substrates and products across the peroxisome membrane. We demonstrate that expression of engineered transcription factors can mimic the oleate response for larger peroxisomes, further increasing benzylisoquinoline alkaloid titer without the requirement for peroxisome induction with fatty acids. This work specifically addresses the challenges associated with toxic NCS expression and, more broadly, highlights the potential for engineering organelles with desired characteristics for metabolic engineering.


Asunto(s)
Bencilisoquinolinas/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Regulación Fúngica de la Expresión Génica , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Ligasas de Carbono-Nitrógeno/metabolismo , Compartimento Celular , Citosol/metabolismo , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas , Ácido Oléico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Fluorescente Roja
11.
Exp Cell Res ; 416(1): 113155, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35427600

RESUMEN

CTP synthase (CTPS), the enzyme responsible for the last step of de novo synthesis of CTP, forms filamentous structures termed cytoophidia in all three domains of life. Here we report that oncogenic Ras regulates cytoophidium formation in Drosophila intestines. Overexpressing active Ras induces elongate and abundant cytoophidia in intestinal stem cells (ISCs) and enteroblasts (EBs). Knocking-down CTPS in ISCs/EBs suppresses the over- proliferation phenotype induced by ectopic expression of active Ras. Moreover, disrupting cytoophidium formation increases the number of proliferating cells in the background of overexpressing active Ras. Therefore, our results demonstrate a link between Ras and CTPS.


Asunto(s)
Ligasas de Carbono-Nitrógeno , Drosophila , Animales , Ligasas de Carbono-Nitrógeno/genética , Intestinos , Células Madre
12.
Exp Cell Res ; 418(1): 113250, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35691380

RESUMEN

CTP synthase (CTPS) catalyzes the final step of de novo synthesis of the nucleotide CTP. In 2010, CTPS has been found to form filamentous structures termed cytoophidia in Drosophila follicle cells and germline cells. Subsequently, cytoophidia have been reported in many species across three domains of life: bacteria, eukaryotes and archaea. Forming cytoophidia appears to be a highly conserved and ancient property of CTPS. To our surprise, here we find that polar cells and stalk cells, two specialized types of cells composing Drosophila interfollicular stalks, do not possess obvious cytoophidia. We show that Myc level is low in these two types of cells. Treatment with a glutamine analog, 6-diazo-5-oxo-l-norleucine (DON), increases cytoophidium assembly in main follicle cells, but not in polar cells or stalk cells. Moreover, overexpressing Myc induces cytoophidium formation in stalk cells. When CTPS is overexpressed, cytoophidia can be observed both in stalk cells and polar cells. Our findings provide an interesting paradigm for the in vivo study of cytoophidium assembly and disassembly among different populations of follicle cells.


Asunto(s)
Ligasas de Carbono-Nitrógeno , Drosophila , Animales , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/genética , Células Germinativas , Glutamina
13.
Cell Mol Life Sci ; 79(10): 534, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36180607

RESUMEN

Tissue architecture determines its unique physiology and function. How these properties are intertwined has remained unclear. Here we show that the metabolic enzyme CTP synthase (CTPS) form filamentous structures termed cytoophidia along the adipocyte cortex in Drosophila adipose tissue. Loss of cytoophidia, whether due to reduced CTPS expression or a point mutation that specifically abrogates its polymerization ability, causes impaired adipocyte adhesion and defective adipose tissue architecture. Moreover, CTPS influences integrin distribution and dot-like deposition of type IV collagen (Col IV). Col IV-integrin signaling reciprocally regulates the assembly of cytoophidia in adipocytes. Our results demonstrate that a positive feedback signaling loop containing both cytoophidia and integrin adhesion complex couple tissue architecture and metabolism in Drosophila adipose tissue.


Asunto(s)
Ligasas de Carbono-Nitrógeno , Colágeno Tipo IV , Animales , Tejido Adiposo/metabolismo , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Drosophila/metabolismo , Integrinas
14.
Molecules ; 28(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298742

RESUMEN

(S)-Norcoclaurine is synthesized in vivo through a metabolic pathway that ends with (S)-norcoclaurine synthase (NCS). The former constitutes the scaffold for the biosynthesis of all benzylisoquinoline alkaloids (BIAs), including many drugs such as the opiates morphine and codeine and the semi-synthetic opioids oxycodone, hydrocodone, and hydromorphone. Unfortunately, the only source of complex BIAs is the opium poppy, leaving the drug supply dependent on poppy crops. Therefore, the bioproduction of (S)-norcoclaurine in heterologous hosts, such as bacteria or yeast, is an intense area of research nowadays. The efficiency of (S)-norcoclaurine biosynthesis is strongly dependent on the catalytic efficiency of NCS. Therefore, we identified vital NCS rate-enhancing mutations through the rational transition-state macrodipole stabilization method at the Quantum Mechanics/Molecular Mechanics (QM/MM) level. The results are a step forward for obtaining NCS variants able to biosynthesize (S)-norcoclaurine on a large scale.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Ligasas de Carbono-Nitrógeno , Papaver , Alcaloides/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Codeína , Papaver/genética , Papaver/metabolismo
15.
J Biol Chem ; 297(4): 101091, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34416230

RESUMEN

Cryptococcus neoformans is a fungus that causes life-threatening systemic mycoses. During infection of the human host, this pathogen experiences a major change in the availability of purines; the fungus can scavenge the abundant purines in its environmental niche of pigeon excrement, but must employ de novo biosynthesis in the purine-poor human CNS. Eleven sequential enzymatic steps are required to form the first purine base, IMP, an intermediate in the formation of ATP and GTP. Over the course of evolution, several gene fusion events led to the formation of multifunctional purine biosynthetic enzymes in most organisms, particularly the higher eukaryotes. In C. neoformans, phosphoribosyl-glycinamide synthetase (GARs) and phosphoribosyl-aminoimidazole synthetase (AIRs) are fused into a bifunctional enzyme, while the human ortholog is a trifunctional enzyme that also includes GAR transformylase. Here we functionally, biochemically, and structurally characterized C. neoformans GARs and AIRs to identify drug targetable features. GARs/AIRs are essential for de novo purine production and virulence in a murine inhalation infection model. Characterization of GARs enzymatic functional parameters showed that C. neoformans GARs/AIRs have lower affinity for substrates glycine and PRA compared with the trifunctional metazoan enzyme. The crystal structure of C. neoformans GARs revealed differences in the glycine- and ATP-binding sites compared with the Homo sapiens enzyme, while the crystal structure of AIRs shows high structural similarity compared with its H. sapiens ortholog as a monomer but differences as a dimer. The alterations in functional and structural characteristics between fungal and human enzymes could potentially be exploited for antifungal development.


Asunto(s)
Antifúngicos/química , Ligasas de Carbono-Nitrógeno , Criptococosis , Cryptococcus neoformans , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/química , Proteínas Fúngicas , Animales , Antifúngicos/uso terapéutico , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/genética , Criptococosis/tratamiento farmacológico , Criptococosis/enzimología , Criptococosis/genética , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/genética , Cristalografía por Rayos X , Inhibidores Enzimáticos/uso terapéutico , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Ratones , Dominios Proteicos
16.
Plant J ; 107(5): 1283-1298, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34250670

RESUMEN

Cadaverine, a polyamine, has been linked to modification of root growth architecture and response to environmental stresses in plants. However, the molecular mechanisms that govern the regulation of root growth by cadaverine are largely unexplored. Here we conducted a forward genetic screen and isolated a mutation, cadaverine hypersensitive 3 (cdh3), which resulted in increased root-growth sensitivity to cadaverine, but not other polyamines. This mutation affects the BIO3-BIO1 biotin biosynthesis gene. Exogenous supply of biotin and a pathway intermediate downstream of BIO1, 7,8-diaminopelargonic acid, suppressed this cadaverine sensitivity phenotype. An in vitro enzyme assay showed cadaverine inhibits the BIO3-BIO1 activity. Furthermore, cadaverine-treated seedlings displayed reduced biotinylation of Biotin Carboxyl Carrier Protein 1 of the acetyl-coenzyme A carboxylase complex involved in de novo fatty acid biosynthesis, resulting in decreased accumulation of triacylglycerides. Taken together, these results revealed an unexpected role of cadaverine in the regulation of biotin biosynthesis, which leads to modulation of primary root growth of plants.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Biotina/biosíntesis , Cadaverina/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Transaminasas/metabolismo , Acetil-CoA Carboxilasa/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biotinilación , Ligasas de Carbono-Nitrógeno/genética , Acido Graso Sintasa Tipo II/genética , Acido Graso Sintasa Tipo II/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transaminasas/genética
17.
Mol Microbiol ; 116(1): 200-210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33590553

RESUMEN

Guanidine is sensed by at least four different classes of riboswitches that are widespread in bacteria. However, only very few insights into physiological roles of guanidine exist. Genes predominantly regulated by guanidine riboswitches are Gdx transporters exporting the compound from the bacterial cell. In addition, urea/guanidine carboxylases and associated hydrolases and ABC transporters are often found combined in guanidine-inducible operons. We noted that the associated ABC transporters are configured to function as importers, challenging the current view that riboswitches solely control the detoxification of guanidine in bacteria. We demonstrate that the carboxylase pathway enables utilization of guanidine as sole nitrogen source. We isolated three enterobacteria (Raoultella terrigena, Klebsiella michiganensis, and Erwinia rhapontici) that utilize guanidine efficiently as N-source. Proteome analyses show that the expression of a carboxylase, associated hydrolases and transport genes is strongly induced by guanidine. Finding two urea/guanidine carboxylase enzymes in E. rhapontici, we demonstrate that the riboswitch-controlled carboxylase displays specificity toward guanidine, whereas the other enzyme prefers urea. We characterize the distribution of riboswitch-associated carboxylases and Gdx exporters in bacterial habitats by analyzing available metagenome data. The findings represent a paradigm shift from riboswitch-controlled detoxification of guanidine to the uptake and assimilation of this enigmatic nitrogen-rich compound.


Asunto(s)
Enterobacteriaceae/metabolismo , Erwinia/metabolismo , Guanidina/metabolismo , Klebsiella/metabolismo , Riboswitch/genética , Ligasas de Carbono-Nitrógeno/genética , Metabolismo Energético/genética , Regulación Bacteriana de la Expresión Génica/genética , Hidrolasas/metabolismo , Proteínas de Transporte de Membrana/genética
18.
Mol Microbiol ; 116(2): 648-662, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34028100

RESUMEN

Group I biotin protein ligases (BPLs) catalyze the covalent attachment of biotin to its cognate acceptor proteins. In contrast, Group II BPLs have an additional N-terminal DNA-binding domain and function not only in biotinylation but also in transcriptional regulation of genes of biotin biosynthesis and transport. Most bacteria contain only a single biotin protein ligase, whereas Clostridium acetobutylicum contains two biotin protein ligase homologs: BplA and BirA'. Sequence alignments showed that BplA is a typical group I BPL, whereas BirA' lacked the C-terminal domain conserved throughout extant BPL proteins. This raised the questions of why two BPL homologs are needed and why the apparently defective BirA' has been retained. We have used in vivo and in vitro assays to show that BplA is a functional BPL whereas BirA' acts as a biotin sensor involved in transcriptional regulation of biotin transport. We also successfully converted BirA' into a functional biotin protein ligase with regulatory activity by fusing it to the C-terminal domain from BplA. Finally, we provide evidence that BplA and BirA' interact in vivo.


Asunto(s)
Biotina/metabolismo , Biotinilación/fisiología , Ligasas de Carbono-Nitrógeno/metabolismo , Clostridium acetobutylicum/metabolismo , Transcripción Genética/genética , Biotina/biosíntesis , Ligasas de Carbono-Nitrógeno/genética , Clostridium acetobutylicum/genética , Regulación Bacteriana de la Expresión Génica/genética , Dominios y Motivos de Interacción de Proteínas/fisiología
19.
Mol Microbiol ; 116(5): 1315-1327, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34597430

RESUMEN

Biotin is an essential metabolic cofactor and de novo biotin biosynthetic pathways are widespread in microorganisms and plants. Biotin synthetic genes are generally found clustered into bio operons to facilitate tight regulation since biotin synthesis is a metabolically expensive process. Dethiobiotin synthetase (DTBS) catalyzes the penultimate step of biotin biosynthesis, the formation of 7,8-diaminononanoate (DAPA). In Escherichia coli, DTBS is encoded by the bio operon gene bioD. Several studies have reported transcriptional activation of ynfK a gene of unknown function, under anaerobic conditions. Alignments of YnfK with BioD have led to suggestions that YnfK has DTBS activity. We report that YnfK is a functional DTBS, although an enzyme of poor activity that is poorly expressed. Supplementation of growth medium with DAPA or substitution of BioD active site residues for the corresponding YnfK residues greatly improved the DTBS activity of YnfK. We confirmed that FNR activates transcriptional level of ynfK during anaerobic growth and identified the FNR binding site of ynfK. The ynfK gene is well conserved in γ-proteobacteria.


Asunto(s)
Biotina/biosíntesis , Biotina/genética , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Aminoácidos Diaminos/metabolismo , Anaerobiosis , Sitios de Unión , Vías Biosintéticas , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Hierro-Azufre/metabolismo , Operón , Filogenia
20.
Biochem Biophys Res Commun ; 593: 108-115, 2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35063765

RESUMEN

Holocarboxylase synthetase (HLCS) catalyzes the covalent attachment of biotin onto the biotin-dependent carboxylases. Recent studies have shown that HLCS is over-expressed in breast cancer patients. Here we investigated the functional roles of free biotin and HLCS in supporting growth and migration of breast cancer cell lines. Depletion of biotin from culture medium markedly reduced biotinylation of the two most abundant biotin-carboxylases, acetyl-CoA carboxylase and pyruvate carboxylase. This was accompanied by a marked decrease in cell growth. Suppression of HLCS expression in the low invasive breast cancer cell line MCF-7 resulted in an 80% reduction of biotinylated ACC, but not PC. HLCS knockdown MCF-7 cell lines showed 40-50% reduction of proliferation and 35% reduction of migration, accompanied by G1 cell cycle-arrest-induced apoptosis. In contrast, knockdown of HLCS expression in the highly invasive cell line MDA-MB-231 resulted in only marginal reduction of biotinylation of both ACC and PC, accompanied by 30% reduction of proliferation and 30% reduction of migration. Our studies provide new insights to use HLCS as a novel anti-cancer drug target.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Puntos de Control del Ciclo Celular , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , ARN Interferente Pequeño/genética , Acetil-CoA Carboxilasa , Apoptosis , Biomarcadores de Tumor/genética , Biotina/deficiencia , Biotinilación , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Proliferación Celular , Femenino , Humanos , Piruvato Carboxilasa , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA