Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.838
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 615(7952): 535-540, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859551

RESUMEN

Energy transfer from light-harvesting ketocarotenoids to the light-driven proton pump xanthorhodopsins has been previously demonstrated in two unique cases: an extreme halophilic bacterium1 and a terrestrial cyanobacterium2. Attempts to find carotenoids that bind and transfer energy to abundant rhodopsin proton pumps3 from marine photoheterotrophs have thus far failed4-6. Here we detected light energy transfer from the widespread hydroxylated carotenoids zeaxanthin and lutein to the retinal moiety of xanthorhodopsins and proteorhodopsins using functional metagenomics combined with chromophore extraction from the environment. The light-harvesting carotenoids transfer up to 42% of the harvested energy in the violet- or blue-light range to the green-light absorbing retinal chromophore. Our data suggest that these antennas may have a substantial effect on rhodopsin phototrophy in the world's lakes, seas and oceans. However, the functional implications of our findings are yet to be discovered.


Asunto(s)
Organismos Acuáticos , Procesos Fototróficos , Bombas de Protones , Rodopsinas Microbianas , Organismos Acuáticos/metabolismo , Organismos Acuáticos/efectos de la radiación , Bacterias/metabolismo , Bacterias/efectos de la radiación , Carotenoides/metabolismo , Color , Cianobacterias/metabolismo , Cianobacterias/efectos de la radiación , Procesos Heterotróficos/efectos de la radiación , Luz , Océanos y Mares , Procesos Fototróficos/efectos de la radiación , Bombas de Protones/metabolismo , Bombas de Protones/efectos de la radiación , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efectos de la radiación , Zeaxantinas/metabolismo , Zeaxantinas/efectos de la radiación , Luteína/metabolismo , Luteína/efectos de la radiación , Metagenoma , Lagos
2.
Anal Chem ; 96(3): 1301-1309, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38193144

RESUMEN

Microalgae play a crucial role in global carbon cycling as they convert carbon dioxide into various valuable macromolecules. Among them, Haematococcus pluvialis (H. pluvialis) is the richest natural source of astaxanthin (AXT), which is a valuable antioxidant, anti-inflammatory, and antiapoptosis agent. These benefits make AXT highly commercially valuable in pharmaceuticals, cosmetics, and nutritional industries. However, intrinsic genetic characteristics and extrinsic cultivation conditions influence biomass gains, leading to low productivity and extraction as the main techno-economic bottlenecks in this industry. Thus, detecting AXT in H. pluvialis is essential to determine the influence of multiple parameters on biocompound accumulation, enabling optimization of cultivation and enrichment of AXT-rich H. pluvialis cells. This work developed an opto-acousto-fluidic microplatform for detection, analysis, and sorting of microalgae. Via label-free monitoring and extraction of sample-induced ultrasonic signals, a photoacoustic microscopic system was proposed to provide a full-field visualization of AXT's content and distribution inside H. pluvialis cells. When employed as on-chip image-based flow cytometry, our microplatform can also offer high-throughput measurements of intracellular AXT in real time, which demonstrates similar results to conventional spectrophotometry methods and further reveals the heterogeneity of AXT content at the single-cell level. In addition, a solenoid valve-pump dual-mode cell sorter was integrated for effective sorting of cells with a maximum working frequency of 0.77 Hz, reducing the fluid response time by 50% in rising and 40-fold in recovery. The H. pluvialis cells which have more AXT accumulation (>30 µm in diameter) were 4.38-fold enriched with almost no dead empty and small green cells. According to the results, automated and reliable photoacoustics-activated cell sorting (PA-ACS) can screen AXT-rich cells and remove impurities at the terminal stage of cultivation, thereby increasing the effectiveness and purity of AXT extraction. The proposed system can be further adopted to enrich strains and mutants for the production of biofuels or other rare organic substances such as ß-carotene and lutein.


Asunto(s)
Chlorophyceae , Microalgas , Luteína , Análisis Espectral , Movimiento Celular
3.
Arch Biochem Biophys ; 752: 109883, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38211638

RESUMEN

Free fatty acids, like palmitic acid (PA), and xanthophyll pigments, like lutein (LUT) are the natural membrane compounds in plants. To study the effect of PA on LUT and their organization, a model membrane of 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) enriched with 2 mol% PA and 1 mol% LUT was formed. Molecular mechanisms underlying the interaction between these two compounds were examined with application of molecular spectroscopy techniques, e.g., visible spectroscopy, electron paramagnetic resonance and Fourier transform infrared. We determined the monomeric/dimeric organization of LUT in the membrane. We proved that the presence of PA in the lipid phase facilitated and stabilized the formation of LUT structures in the membrane. Lutein with PA did not form strong molecular aggregates like H- and J-structures. We presented the simplified model membrane that could be a suitable representation of the physiological process of de-esterification of PA from LUT appearing in natural biomembranes in humans.


Asunto(s)
Luteína , Xantófilas , Humanos , Luteína/farmacología , Luteína/química , Espectroscopía de Resonancia por Spin del Electrón , Ácidos Palmíticos , Lípidos , Membrana Dobles de Lípidos/química , Dimiristoilfosfatidilcolina/química
4.
Biotechnol Bioeng ; 121(5): 1596-1608, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372661

RESUMEN

Mixotrophic cultivation holds great promise to significantly enhance the productivities of biomass and valuable metabolites from microalgae. In this study, a new kinetic model is developed, explicitly describing the effect of the most influential environmental factors on both biomass growth and the production of the high-value product lutein. This extensive study of multinutrient kinetics for Tetradesmus obliquus in a mixotrophic regime covers various nutritional conditions. Crucial nutrients governing the model include nitrate, phosphate, and glucose. Using seven state variables and 13 unknown parameters, the model's accuracy was ensured through a well-designed two-factor, four-level experimental setup, providing ample data for reliable calibration and validation. Results accurately predict dynamic concentration profiles for all validation experiments, revealing broad applicability. Optimizing nitrogen availability led to significant increases in biomass (up to fourfold) and lutein production (up to 12-fold), with observed maximum biomass concentration of 6.80 g L-1 and lutein reaching 25.58 mg L-1. Noticeably, the model exhibits a maximum specific growth rate of 4.03 day-1, surpassing reported values for photoautotrophic and heterotrophic conditions, suggesting synergistic effects. Valuable guidance is provided for applying the method to various microalgal species and results are large-scale production-ready. Future work will exploit these results to develop real-time photobioreactor operation strategies.


Asunto(s)
Microalgas , Microalgas/metabolismo , Luteína/metabolismo , Biomasa , Fotobiorreactores , Procesos Heterotróficos
5.
BMC Gastroenterol ; 24(1): 51, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287248

RESUMEN

BACKGROUND: Gastric cancer is characterized by high invasiveness, heterogeneity, and late diagnosis, leading to high incidence and mortality rates. It is a significant public health concern globally. Early prevention is crucial in reducing the occurrence of gastric cancer, and dietary prevention, particularly focusing on carotenoids, has been considered a convenient and effective approach. However, the association between carotenoid intake and gastric cancer incidence remains controversial. METHODS: A systematic search was conducted in PubMed, Ovid Embase, Web of Science, and Cochrane databases from inception to January 5, 2023. Two reviewers independently screened search results, extracted relevant data, and evaluated study quality. Statistical analysis was performed using the "metan" command in STATA 16 software. Random-effects or fixed-effects models were chosen based on the magnitude of heterogeneity among studies. RESULTS: This study included a total of 35 publications, consisting of 23 case-control studies and 12 cohort studies. Meta-analysis of case-control studies showed that alpha-carotene (OR = 0.71, 95% CI: 0.55-0.92), beta-carotene (OR = 0.62, 95% CI: 0.53-0.72), and lutein (OR = 0.82, 95% CI: 0.69-0.97) significantly reduced the risk of gastric cancer, while beta-cryptoxanthin (OR = 0.88, 95% CI: 0.75-1.04) and lycopene (OR = 0.86, 95% CI: 0.73-1.00) showed no significant correlation. Meta-analysis of cohort studies indicated no significant associations between any of the five carotenoids and gastric cancer incidence (alpha-carotene: RR = 0.81, 95% CI: 0.54-1.23; beta-carotene: RR = 0.86, 95% CI: 0.64-1.16; beta-cryptoxanthin: RR = 0.86, 95% CI: 0.64-1.16; lutein: RR = 0.94, 95% CI: 0.69-1.29; lycopene: RR = 0.89, 95% CI: 0.69-1.14). CONCLUSIONS: The relationship between carotenoids and gastric cancer incidence may vary depending on the type of study conducted. Considering that evidence from cohort studies is generally considered stronger than evidence from case-control studies, and high-quality randomized controlled trials show no significant association between carotenoids and gastric cancer incidence, current evidence does not support the supplementation of carotenoids for gastric cancer prevention. Further targeted research is needed to explore the association between the two.


Asunto(s)
Neoplasias Gástricas , beta Caroteno , Humanos , beta Caroteno/uso terapéutico , Licopeno , Luteína/uso terapéutico , Neoplasias Gástricas/epidemiología , Neoplasias Gástricas/prevención & control , beta-Criptoxantina , Factores de Riesgo , Carotenoides/uso terapéutico
6.
Nutr Metab Cardiovasc Dis ; 34(8): 1976-1983, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38890092

RESUMEN

BACKGROUND AND AIMS: Systemic inflammation and oxidation are primary contributors to the development of atherosclerosis. Oxidation of low-density lipoprotein (LDL) particles within the vascular endothelium has been hypothesized to be an initial step in the formation of atherosclerotic plaques, with inflammatory cytokines serving as the signaling mechanism for concomitant macrophage activation. Supplementation with the antioxidative macular xanthophylls (lutein [L], zeaxanthin [Z], and meso-zeaxanthin [MZ]) has been shown to aid in the reduction of inflammatory physiologic responses; therefore, we hypothesized that in our study population, supplementation with these xanthophylls would facilitate a systemic reduction in markers of inflammation and cardiovascular lipid oxidation. METHODS AND RESULTS: In this double-blind placebo-controlled supplementation study, participants were randomly allocated to receive the active intervention containing L (10 mg) + MZ (10 mg) + Z (2 mg) or placebo (containing sunflower oil). Serum concentrations of carotenoids (assessed by HPLC), inflammatory cytokines (IL-6, IL-1ß, TNF-α) and oxidized LDL (OxLDL; by solid-phase sandwich ELISA) were measured at baseline and at 6-months. Results showed that over the supplementation period, compared to placebo, the active group demonstrated statistically significant increases in serum concentrations of L, Z, & MZ (p < 0.05), reductions in inflammatory cytokines IL-1ß (p < 0.001) and TNF-α (p = 0.003), as well as a corresponding reduction in serum OxLDL (p = 0.009). CONCLUSIONS: Our data show that L, Z, & MZ supplementation results in decreased serum IL-1ß, TNF-α, and OxLDL. This suggests that these carotenoids are acting systemically to attenuate oxidative lipid products and inflammation, thus reducing their contribution to atherosclerotic plaque formation.


Asunto(s)
Biomarcadores , Citocinas , Suplementos Dietéticos , Lipoproteínas LDL , Luteína , Estrés Oxidativo , Zeaxantinas , Humanos , Zeaxantinas/sangre , Zeaxantinas/administración & dosificación , Masculino , Método Doble Ciego , Femenino , Biomarcadores/sangre , Luteína/sangre , Luteína/administración & dosificación , Lipoproteínas LDL/sangre , Persona de Mediana Edad , Citocinas/sangre , Adulto , Estrés Oxidativo/efectos de los fármacos , Mediadores de Inflamación/sangre , Antioxidantes/administración & dosificación , Inflamación/prevención & control , Inflamación/sangre , Factor de Necrosis Tumoral alfa/sangre , Interleucina-1beta/sangre , Antiinflamatorios/administración & dosificación , Xantófilas/administración & dosificación , Xantófilas/sangre , Anciano , Interleucina-6/sangre , Aterosclerosis/prevención & control , Aterosclerosis/sangre
7.
Appl Microbiol Biotechnol ; 108(1): 390, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910175

RESUMEN

Microalgae are gaining attention as they are considered green fabrics able to synthesize many bioactive metabolites, with unique biological activities. However, their use at an industrial scale is still a challenge because of the high costs related to upstream and downstream processes. Here, a biorefinery approach was proposed, starting from the biomass of the green microalga Pseudococcomyxa simplex for the extraction of two classes of molecules with a potential use in the cosmetic industry. Carotenoids were extracted first by an ultrasound-assisted extraction, and then, from the residual biomass, lipids were obtained by a conventional extraction. The chemical characterization of the ethanol extract indicated lutein, a biosynthetic derivative of α-carotene, as the most abundant carotenoid. The extract was found to be fully biocompatible on a cell-based model, active as antioxidant and with an in vitro anti-aging property. In particular, the lutein-enriched fraction was able to activate Nrf2 pathway, which plays a key role also in aging process. Finally, lipids were isolated from the residual biomass and the isolated fatty acids fraction was composed by palmitic and stearic acids. These molecules, fully biocompatible, can find application as emulsifiers and softener agents in cosmetic formulations. Thus, an untapped microalgal species can represent a sustainable source for cosmeceutical formulations. KEY POINTS: • Pseudococcomyxa simplex has been explored in a cascade approach. • Lutein is the main extracted carotenoid and has antioxidant and anti-aging activity. • Fatty acids are mainly composed of palmitic and stearic acids.


Asunto(s)
Cosméticos , Microalgas , Microalgas/metabolismo , Microalgas/química , Cosméticos/química , Carotenoides/química , Carotenoides/aislamiento & purificación , Biomasa , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Luteína/aislamiento & purificación , Luteína/química , Luteína/metabolismo , Humanos , Ácidos Grasos/química
8.
Eur J Pediatr ; 183(6): 2671-2682, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38509232

RESUMEN

To describe the variability in carotenoid content of human milk (HM) in mothers of very to extremely low birth weight preterm infants throughout lactation and to explore the relationship between lutein in HM and the occurrence of retinopathy of prematurity (ROP) in preterm infants. We recruited healthy mothers along with their preterm infants that were born at gestational age 24 + 2 to 29 + 6 weeks or with a birth weight under 1500 g and were exclusively breastfed HM. Each participant provided up to 7 HM samples (2-10 ml) on day 0-3 and once a week until 6 weeks. Additionally, when possible, a blood sample was collected from the infant at week 6. Concentrations of the major carotenoids (lutein, zeaxanthin, beta-carotene, and lycopene) in all HM and blood samples were assessed and compared. Thirty-nine mother-infant dyads were included and 184 HM samples and 21 plasma samples were provided. Mean lutein, zeaxanthin, beta-carotene, and lycopene concentration decreased as lactation progressed, being at their highest in colostrum samples (156.9 vs. 66.9 vs. 363.9 vs. 426.8 ng/ml, respectively). Lycopene (41%) and beta-carotene (36%) were the predominant carotenoids in colostrum and up to 2 weeks post-delivery. Inversely, the proportion of lutein and zeaxanthin increased with lactation duration to account for 45% of the carotenoids in mature HM. Lutein accounted for 58% of the carotenoids in infant plasma and only 28% in HM. Lutein content of transition and mature HM did not differ between mothers of ROP and non-ROP infants.Conclusion Carotenoid content of HM was dynamic and varied between mothers and as lactation progressed. Infant plasma displayed a distinct distribution of carotenoids from HM.


Asunto(s)
Carotenoides , Leche Humana , Humanos , Leche Humana/química , Femenino , Carotenoides/análisis , Carotenoides/sangre , Recién Nacido , Adulto , Estudios Longitudinales , Retinopatía de la Prematuridad/sangre , Recien Nacido Prematuro , Masculino , Lactancia/metabolismo , Calostro/química , Lactancia Materna , Luteína/análisis , Luteína/sangre
9.
Mar Drugs ; 22(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39057415

RESUMEN

Chromochloris zofingiensis, a unicellular green alga, is a potential source of natural carotenoids. In this study, the mutant LUT-4 was acquired from the chemical mutagenesis pool of C. zofingiensis strain. The biomass yield and lutein content of LUT-4 reached 9.23 g·L-1, and 0.209% of dry weight (DW) on Day 3, which was 49.4%, and 33% higher than that of wild-type (WT), respectively. The biomass yields of LUT-4 under 100, 300, and 500 µmol/m2/s reached 8.4 g·L-1, 7.75 g·L-1, and 6.6 g·L-1, which was 10.4%, 21%, and 29.6% lower compared with the control, respectively. Under mixotrophic conditions, the lutein yields were significantly higher than that obtained in the control. The light intensity of 300 µmol/m2/s was optimal for lutein biosynthesis and the content of lutein reached 0.294% of DW on Day 3, which was 40.7% more than that of the control. When LUT-4 was grown under 300 µmol/m2/s, a significant increase in expression of genes implicated in lutein biosynthesis, including phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene epsilon cyclase (LCYe) was observed. The changes in biochemical composition, Ace-CoA, pyruvate, isopentenyl pyrophosphate (IPP), and geranylgeranyl diphosphate (GGPP) contents during lutein biosynthesis were caused by utilization of organic carbon. It was thereby concluded that 300 µmol/m2/s was the optimal culture light intensity for the mutant LUT-4 to synthesize lutein. The results would be helpful for the large-scale production of lutein.


Asunto(s)
Luz , Luteína , Luteína/biosíntesis , Chlorophyta/genética , Chlorophyta/metabolismo , Mutación , Biomasa , Carotenoides/metabolismo
10.
Phytother Res ; 38(6): 3190-3217, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38634408

RESUMEN

Lutein is a naturally occurring carotenoid synthesized by plants and algae that has a beneficial effect on several biological processes and associated ailments. Its immediate application is in ophthalmology, where it significantly lowers the incidences of age-related macular degeneration (AMD). It also has anti-inflammatory action, treatment of diabetic retinopathy, and cataracts, and enhancement of visual contrast. To critically assess lutein biosynthesis, therapeutic applicability, and market research literature. We have discussed its theoretical frameworks, experimental evidence, limitations, as well as clinical trial results, and future research prospects. The literature for this review article was mined and compiled by collecting and analyzing articles from several databases, including ScienceDirect, Google Scholar, PubMed, Wiley Online Library, Patentscope, and ClinicalTrials.gov published until March 30, 2022. Patent publications were identified using the search terms like IC:(C07C67/56) AND EN_AB:(lutein) OR EN_TI:(lutein) OR EN_AB:(extraction) OR EN_TI:(process). According to the literature, lutein is an essential nutrient given that it cannot be synthesized in the human body and acts as an antioxidant, affecting AMD, diabetic retinopathy, Rheumatic diseases, inflammation, and cancer. Due to inadequate production and laborious extraction, lutein is expensive despite its high demand and applicability. Market research predicts a 6.3% compound annual growth rate for lutein by 2032. Optimizing lutein extraction for high yield and purity is necessary. Lutein has proven applicability in various ailments as well as cosmetics that can be developed as a candidate drug for various diseases discussed in the review.


Asunto(s)
Luteína , Humanos , Luteína/uso terapéutico , Luteína/farmacología , Degeneración Macular/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Retinopatía Diabética/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
11.
Arch Gynecol Obstet ; 309(5): 2167-2173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503849

RESUMEN

OBJECTIVE: The purpose of this study is to compare the clinical efficacy of oral dydrogesterone and micronized vaginal progesterone (MVP) gel during the first HRT-FET cycle. METHODS: A retrospective cohort study based on a total of 344 women undergoing their first HRT-FET cycles without Gonadotropin-Releasing Hormone agonist (GnRH-a) pretreatment was conducted. All the cycles were allocated to two groups in the reproductive medical center at the University of Hong Kong-Shenzhen Hospital. One group (n = 193) received oral dydrogesterone 30 mg/d before embryo transfer, while the other group (n = 151) received MVP gel 180 mg/d. RESULTS: The demographics and baseline characteristics of two groups were comparable. We found no statistically significant difference in live birth rate (24.35% vs. 31.13%, P = 0.16), clinical pregnancy rate (34.72% vs. 36.42%, P = 0.74), embryo implantation rate (25.09% vs. 28.36%, P = 0.43), positive pregnancy rate (42.49% vs 38.41%, P = 0.45), miscarriage rate (9.33% vs 3.97%, P = 0.05), or ectopic pregnancy rate (0.52% vs. 0.66%, P = 0.86) between the oral dydrogesterone group and MVP gel group. In the multivariate logistic regression analysis for covariates, medication used for luteal support was not associated with live birth rate (OR = 0.73, 95% CI: 0.32-1.57, P = 0.45). And the different luteal support medication did not have a significant positive association with the live birth rate in the cycles with day 2 embryo transferred (OR = 1.39, 95% CI:0.66-2.39, P = 0.39) and blastocyst transferred (OR = 1.31 95% CI:0.64-2.69, P = 0.46). CONCLUSION: 30 mg/d oral dydrogesterone and 180 mg/d MVP gel revealed similar reproductive outcomes in HRT-FET cycles in the study.


Asunto(s)
Didrogesterona , Progesterona , Embarazo , Femenino , Humanos , Progesterona/uso terapéutico , Estudios Retrospectivos , Índice de Embarazo , Transferencia de Embrión , Luteína
12.
Reprod Domest Anim ; 59(4): e14558, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38566368

RESUMEN

We aimed to evaluate the effects of rumen-protected lysine (RPL) supplementation during the close-up period on uterine involution and the resumption of ovarian function in dairy cows. Fifty-two multiparous Holstein cows were categorized based on parity and expected calving date and randomly assigned to the RPL or control (CON) groups. The RPL group received 80 g of RPL daily from day 21 before the expected calving date until parturition. Blood samples were obtained twice weekly from pre-supplementation to 6 weeks postpartum. The onset of luteal activity postpartum was determined via ultrasonography twice weekly for up to 6 weeks postpartum. Uterine involution was tracked at 3 and 5 weeks postpartum through the vaginal discharge score, percentage of polymorphonuclear cells (PMN) in endometrial cytology samples, presence of intrauterine fluid, and gravid horn diameter via ultrasonography. Before supplementation, the RPL group showed amino acid imbalance, which was improved by RPL supplementation. There were no significant differences in the onset of luteal activity, percentage of PMN, intrauterine fluid, or the diameter of the uterine horn between the two groups. The vaginal discharge score in the RPL group decreased from 3 to 5 weeks postpartum, whereas that in the CON groups did not decrease. The number of cows with clinical endometritis was lower in the RPL group. Overall, RPL supplementation during the close-up period enhanced vaginal discharge clearance, potentially averting clinical endometritis, but did not affect the first ovulation in dairy cows.


Asunto(s)
Enfermedades de los Bovinos , Endometritis , Excreción Vaginal , Animales , Bovinos , Femenino , Embarazo , Enfermedades de los Bovinos/tratamiento farmacológico , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Endometritis/prevención & control , Endometritis/veterinaria , Endometritis/metabolismo , Lactancia , Luteína/análisis , Luteína/metabolismo , Lisina/farmacología , Leche/química , Periodo Posparto , Rumen/metabolismo , Excreción Vaginal/veterinaria
13.
Int J Food Sci Nutr ; 75(5): 496-508, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38828549

RESUMEN

The association between dietary carotenoids and breast cancer (BC) risks were inconsistent. Therefore, this study investigated the association between dietary carotenoid and BC risks among Korean women. We recruited participants from the National Cancer Centre of Korea. Odds ratios and 95% confidence intervals were calculated with a logistic regression model. There was an inverse association between dietary carotenoid subclasses and BC risks; in particular, a higher intake of ß-carotene and lutein/zeaxanthin was associated with reduced BC risks. After subgroup analysis with estrogen receptor (ER)/progesterone receptor (PR) status, there was similar trend among ER-/PR- women. We further investigated which foods contribute to the carotenoid intake. A higher intake of radish leaves, kale, and bracken was associated with lowered BC risks. Accordingly, dietary carotenoid, particularly ß-carotene and lutein/zeaxanthin, appears to be associated with a lower risk of BC among Korean women.


Asunto(s)
Neoplasias de la Mama , Carotenoides , Dieta , Humanos , Femenino , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/etiología , República de Corea/epidemiología , Carotenoides/administración & dosificación , Persona de Mediana Edad , Estudios de Casos y Controles , Adulto , Factores de Riesgo , beta Caroteno/administración & dosificación , Luteína/administración & dosificación , Zeaxantinas/administración & dosificación , Receptores de Progesterona/metabolismo , Receptores de Estrógenos/metabolismo , Oportunidad Relativa , Anciano
14.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474137

RESUMEN

Microalgae have been reported to be excellent producers of bioactive molecules. Lutein is a pigment reported to have various beneficial effects for humans, and especially for eye well-being. In the current review, we summarize various methods that have been developed to optimize its extraction and bioactivities reported for human health. Several protective effects have been reported for lutein, including antioxidant, anticancer, anti-inflammatory, and cardioprotective activity. This review also reports attempts to increase lutein production by microalgae by changing culturing parameters or by using pilot-scale systems. Genetic engineering lutein production is also discussed. Considering the increasing aging of the worldwide population will create an increased need for lutein, a viable economic and eco-sustainable method to produce lutein is needed to face this market demand.


Asunto(s)
Luteína , Microalgas , Humanos , Antioxidantes , Biomasa
15.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542125

RESUMEN

In recent years, there has been a growing interest in plant pigments as readily available nutraceuticals. Photosynthetic pigments, specifically chlorophylls and carotenoids, renowned for their non-toxic antioxidant properties, are increasingly finding applications beyond their health-promoting attributes. Consequently, there is an ongoing need for cost-effective methods of isolation. This study employs a co-precipitation method to synthesize magnetic iron oxide nanoparticles. Scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) confirms that an aqueous environment and oxidizing conditions yield nanosized iron oxide with particle sizes ranging from 80 to 140 nm. X-ray photoelectron spectroscopy (XPS) spectra indicate the presence of hydrous iron oxide FeO(OH) on the surface of the nanosized iron oxide. The Brunauer-Emmett-Teller (BET) surface area of obtained nanomaterial was 151.4 m2 g-1, with total pore volumes of pores 0.25 cm3 g-1 STP. The material, designated as iron oxide nanoparticles (IONPs), serves as an adsorbent for magnetic solid phase extraction (MSPE) and isolation of photosynthetic pigments (chlorophyll a, lutein) from extracts of higher green plants (Mentha piperita L., Urtica dioica L.). Sorption of chlorophyll a onto the nanoparticles is confirmed using UV-vis spectroscopy, Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS), and high-performance liquid chromatography (HPLC). Selective sorption of chlorophyll a requires a minimum of 3 g of IONPs per 12 mg of chlorophyll a, with acetone as the solvent, and is dependent on a storage time of 48 h. Extended contact time of IONPs with the acetone extract, i.e., 72 h, ensures the elimination of remaining components except lutein, with a spectral purity of 98%, recovered with over 90% efficiency. The mechanism of chlorophyll removal using IONPs relies on the interaction of the pigment's carbonyl (C=O) groups with the adsorbent surface hydroxyl (-OH) groups. Based on molecular dynamics (MD) simulations, it has been proven that the selective adsorption of pigments is also influenced by more favorable dispersion interactions between acetone and chlorophyll in comparison with other solutes. An aqueous environment significantly promotes the removal of pigments; however, it results in a complete loss of selectivity.


Asunto(s)
Compuestos Férricos , Luteína , Extractos Vegetales , Extractos Vegetales/química , Clorofila A , Clorofila , Espectroscopía Infrarroja por Transformada de Fourier , Acetona , Agua , Adsorción , Extracción en Fase Sólida/métodos , Nanopartículas Magnéticas de Óxido de Hierro , Fenómenos Magnéticos
16.
Molecules ; 29(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542865

RESUMEN

Carotenoids are hydrophobic pigments produced exclusively by plants, fungi, and specific microbes. Microalgae are well suited for the production of valuable carotenoids due to their rapid growth, efficient isoprenoid production pathway, and ability to store these compounds within their cells. The possible markets for bio-products range from feed additives in aquaculture and agriculture to pharmaceutical uses. The production of carotenoids in microalgae is affected by several environmental conditions, which can be utilized to enhance productivity. The current study focused on optimizing the extraction parameters (time, temperature, and extraction number) to maximize the yield of carotenoids. Additionally, the impact of various nitrogen sources (ammonia, nitrate, nitrite, and urea) on the production of lutein and loroxanthin in Scenedesmus obliquus was examined. To isolate the carotenoids, 0.20 g of biomass was added to 0.20 g of CaCO3 and 10.0 mL of ethanol solution containing 0.01% (w/v) pyrogallol. Subsequently, the extraction was performed using an ultrasonic bath for a duration of 10 min at a temperature of 30 °C. This was followed by a four-hour saponification process using a 10% methanolic KOH solution. The concentration of lutein and loroxanthin was measured using HPLC-DAD at 446 nm, with a flow rate of 1.0 mL/min using a Waters YMC C30 Carotenoid column (4.6 × 250 mm, 5 µm). The confirmation of carotenoids after their isolation using preparative chromatography was achieved using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with an atmospheric pressure chemical ionization (APCI) probe and UV-vis spectroscopy. In summary, S. obliquus shows significant promise for the large-scale extraction of lutein and loroxanthin. The findings of this study provide strong support for the application of this technology to other species.


Asunto(s)
Microalgas , Scenedesmus , Luteína/química , Scenedesmus/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Carotenoides/química , Microalgas/metabolismo
17.
Molecules ; 29(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257270

RESUMEN

Brain-derived neurotrophic factor (BDNF) plays an important role in neurogenesis, synaptic plasticity, and cognition. BDNF is a neurotrophin that binds to tropomyosin receptor kinase B (TrkB), a specific receptor on target cell surfaces; it acts on neuronal formation, development, growth, and repair via transcription factors, such as cAMP response element-binding protein (CREB), and it is involved in learning and memory. BDNF expression is decreased in patients with Alzheimer's disease (AD). Exercise and the intake of several different foods or ingredients can increase BDNF expression, as confirmed with lutein, xanthophylls (polar carotenoids), and ethanolamine plasmalogen (PlsEtn), which are present at high levels in the brain. This study examined the effects of combining lutein and PlsEtn using lutein-rich Chlorella and ascidian extracts containing high levels of PlsEtn bearing docosahexaenoic acid, which is abundant in the human brain, on the activation of the BDNF-TrkB-CREB signaling pathway in the hippocampus of Sprague-Dawley rats. Although activation of the BDNF-TrkB-CREB signaling pathway in the hippocampus was not observed in Chlorella or ascidian PlsEtn monotherapy, activation was observed with combination therapy at an equal dose. The results of this study suggest that the combination of Chlorella and ascidian PlsEtn may have a preventive effect against dementia, including AD.


Asunto(s)
Enfermedad de Alzheimer , Chlorella , Plasmalógenos , Humanos , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo , Luteína , Ratas Sprague-Dawley , Transducción de Señal , Encéfalo , Enfermedad de Alzheimer/tratamiento farmacológico
18.
J Sci Food Agric ; 104(7): 3823-3833, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37971887

RESUMEN

The intensified attention to health, the growth of an elderly population, the changing lifestyles, and the medical discoveries have increased demand for natural and nutrient-rich foods, shaping the popularity of microalgae products. Microalgae thanks to their metabolic versatility represent a promising solution for a 'green' economy, exploiting non-arable land, non-potable water, capturing carbon dioxide (CO2) and solar energy. The interest in microalgae is justified by their high content of bioactive molecules, such as amino acids, peptides, proteins, carbohydrates, polysaccharides, polyunsaturated fatty acids (as ω-3 fatty acids), pigments (as ß-carotene, astaxanthin, fucoxanthin, phycocyanin, zeaxanthin and lutein), or mineral elements. Such molecules are of interest for human and animal nutrition, cosmetic and biofuel production, for which microalgae are potential renewable sources. Microalgae, also, represent effective biological systems for treating a variety of wastewaters and can be used as a CO2 mitigation approach, helping to combat greenhouse gases and global warming emergencies. Recently a growing interest has focused on extremophilic microalgae species, which are easier to cultivate axenically and represent good candidates for open pond cultivation. In some cases, the cultivation and/or harvesting systems are still immature, but novel techniques appear as promising solutions to overcome such barriers. This review provides an overview on the actual microalgae cultivation systems and the current state of their biotechnological applications to obtain high value compounds or ingredients. Moreover, potential and future research opportunities for environment, human and animal benefits are pointed out. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Dióxido de Carbono , Microalgas , Anciano , Humanos , Animales , Dióxido de Carbono/metabolismo , Microalgas/química , Biotecnología , beta Caroteno/metabolismo , Luteína/metabolismo
19.
AAPS PharmSciTech ; 25(5): 135, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862657

RESUMEN

Lutein (Lut) is a recognized nutritional supplement known for its antioxidative and anti-inflammatory properties, crucial in mitigating ocular disease. However, enhancements to Lut stability and solubility remain challenges to be addressed in the healthcare industry. Herein, we fabricated and evaluated a food-grade highly porous ß-cyclodextrin metal-organic framework (ß-CD-MOF) for its ability to encapsulate Lut. Lut stability considerably improved when loaded into ß-CD-MOF to form a Lut@ß-CD-MOF complex, which exhibited better stability than Lut loaded into the γ-cyclodextrin metal-organic framework (Lut@γ-CD-MOF), Lut@ß-CD, and commercial product (Blackmores™) at 40°C, 60°C, and 70°C, respectively. The solubility of Lut@ß-CD-MOF in water increased by 26.8-fold compared to raw Lut at 37°C. Lut@ß-CD-MOF exhibited greater hydrophilicity, as determined by measuring the water contact angle. Molecular docking and other characterizations of Fourier transform infrared spectroscopy and powder X-ray diffraction confirmed that Lut was successfully encapsulated in the chamber formed by the three cyclodextrins in ß-CD-MOF. Thermogravimetric analysis and Raman spectroscopy demonstrated that Lut distributed in the ß-CD-MOF cavity deeply improved Lut stability and solubility. In conclusion, our findings underscored the function of ß-CD-MOF in enhancing Lut stability and solubility for formulation applications.


Asunto(s)
Luteína , Estructuras Metalorgánicas , Solubilidad , beta-Ciclodextrinas , Estructuras Metalorgánicas/química , beta-Ciclodextrinas/química , Luteína/química , Estabilidad de Medicamentos , Difracción de Rayos X/métodos , Simulación del Acoplamiento Molecular/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Porosidad
20.
World J Microbiol Biotechnol ; 40(6): 197, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722384

RESUMEN

Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.


Asunto(s)
Luteína , Xantófilas , Zeaxantinas , Luteína/biosíntesis , Luteína/metabolismo , Zeaxantinas/metabolismo , Xantófilas/metabolismo , Ingeniería Metabólica/métodos , Carotenoides/metabolismo , Bacterias/metabolismo , Humanos , Vías Biosintéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA