Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 119(4): 2033-2044, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38949911

RESUMEN

Plant fungal parasites manipulate host metabolism to support their own survival. Among the many central metabolic pathways altered during infection, the glyoxylate cycle is frequently upregulated in both fungi and their host plants. Here, we examined the response of the glyoxylate cycle in bread wheat (Triticum aestivum) to infection by the obligate biotrophic fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Gene expression analysis revealed that wheat genes encoding the two unique enzymes of the glyoxylate cycle, isocitrate lyase (TaICL) and malate synthase, diverged in their expression between susceptible and resistant Pst interactions. Focusing on TaICL, we determined that the TaICL B homoeolog is specifically upregulated during early stages of a successful Pst infection. Furthermore, disruption of the B homoeolog alone was sufficient to significantly perturb Pst disease progression. Indeed, Pst infection of the TaICL-B disruption mutant (TaICL-BY400*) was inhibited early during initial penetration, with the TaICL-BY400* line also accumulating high levels of malic acid, citric acid, and aconitic acid. Exogenous application of malic acid or aconitic acid also suppressed Pst infection, with trans-aconitic acid treatment having the most pronounced effect by decreasing fungal biomass 15-fold. Thus, enhanced TaICL-B expression during Pst infection may lower accumulation of malic acid and aconitic acid to promote Pst proliferation. As exogenous application of aconitic acid and malic acid has previously been shown to inhibit other critical pests and pathogens, we propose TaICL as a potential target for disruption in resistance breeding that could have wide-reaching protective benefits for wheat and beyond.


Asunto(s)
Glioxilatos , Isocitratoliasa , Malato Sintasa , Enfermedades de las Plantas , Puccinia , Triticum , Triticum/microbiología , Triticum/genética , Triticum/metabolismo , Triticum/enzimología , Isocitratoliasa/metabolismo , Isocitratoliasa/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Glioxilatos/metabolismo , Malato Sintasa/metabolismo , Malato Sintasa/genética , Puccinia/fisiología , Puccinia/patogenicidad , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203573

RESUMEN

Trichophyton rubrum is the primary causative agent of dermatophytosis worldwide. This fungus colonizes keratinized tissues and uses keratin as a nutritional source during infection. In T. rubrum-host interactions, sensing a hostile environment triggers the adaptation of its metabolic machinery to ensure its survival. The glyoxylate cycle has emerged as an alternative metabolic pathway when glucose availability is limited; this enables the conversion of simple carbon compounds into glucose via gluconeogenesis. In this study, we investigated the impact of stuA deletion on the response of glyoxylate cycle enzymes during fungal growth under varying culture conditions in conjunction with post-transcriptional regulation through alternative splicing of the genes encoding these enzymes. We revealed that the ΔstuA mutant downregulated the malate synthase and isocitrate lyase genes in a keratin-containing medium or when co-cultured with human keratinocytes. Alternative splicing of an isocitrate lyase gene yielded a new isoform. Enzymatic activity assays showed specific instances where isocitrate lyase and malate synthase activities were affected in the mutant strain compared to the wild type strain. Taken together, our results indicate a relevant balance in transcriptional regulation that has distinct effects on the enzymatic activities of malate synthase and isocitrate lyase.


Asunto(s)
Arthrodermataceae , Factores de Transcripción , Humanos , Isocitratoliasa/genética , Malato Sintasa/genética , Gluconeogénesis/genética , Empalme Alternativo , Carbono , Glucosa , Queratinas , Glioxilatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA