RESUMEN
The sustainability of aquaculture has been debated intensely since 2000, when a review on the net contribution of aquaculture to world fish supplies was published in Nature. This paper reviews the developments in global aquaculture from 1997 to 2017, incorporating all industry sub-sectors and highlighting the integration of aquaculture in the global food system. Inland aquaculture-especially in Asia-has contributed the most to global production volumes and food security. Major gains have also occurred in aquaculture feed efficiency and fish nutrition, lowering the fish-in-fish-out ratio for all fed species, although the dependence on marine ingredients persists and reliance on terrestrial ingredients has increased. The culture of both molluscs and seaweed is increasingly recognized for its ecosystem services; however, the quantification, valuation, and market development of these services remain rare. The potential for molluscs and seaweed to support global nutritional security is underexploited. Management of pathogens, parasites, and pests remains a sustainability challenge industry-wide, and the effects of climate change on aquaculture remain uncertain and difficult to validate. Pressure on the aquaculture industry to embrace comprehensive sustainability measures during this 20-year period have improved the governance, technology, siting, and management in many cases.
Asunto(s)
Acuicultura/historia , Abastecimiento de Alimentos/historia , Desarrollo Sostenible/historia , Alimentación Animal , Animales , Animales Salvajes , Explotaciones Pesqueras , Peces , Agua Dulce , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Internacionalidad , Océanos y Mares , MariscosRESUMEN
The bacterium Vibrio parahaemolyticus is ubiquitous in tropical and temperate waters throughout the world and causes infections in humans resulting from water exposure and from ingestion of contaminated raw or undercooked seafood, such as oysters. We describe a nationwide outbreak of enteric infections caused by Vibrio parahaemolyticus in Australia during September 2021-January 2022. A total of 268 persons were linked with the outbreak, 97% of whom reported consuming Australia-grown oysters. Cases were reported from all states and territories of Australia. The outbreak comprised 2 distinct strains of V. parahaemolyticus, sequence types 417 and 50. We traced oysters with V. parahaemolyticus proliferation back to a common growing region within the state of South Australia. The outbreak prompted a national recall of oysters and subsequent improvements in postharvest processing of the shellfish.
Asunto(s)
Brotes de Enfermedades , Enfermedades Transmitidas por los Alimentos , Ostreidae , Vibriosis , Vibrio parahaemolyticus , Vibrio parahaemolyticus/clasificación , Vibrio parahaemolyticus/aislamiento & purificación , Humanos , Ostreidae/microbiología , Animales , Vibriosis/epidemiología , Vibriosis/microbiología , Australia/epidemiología , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/microbiología , Masculino , Adulto , Femenino , Persona de Mediana Edad , Adolescente , Adulto Joven , Anciano , Niño , Preescolar , Mariscos/microbiología , Lactante , Intoxicación por Mariscos/epidemiología , Microbiología de AlimentosRESUMEN
Salmonella enterica subsp. enterica Typhimurium and its monophasic variant I 1;4,[5],12:i:- (MVST) are responsible for thousands of reported cases of salmonellosis each year in Canada, and countries worldwide. We investigated S. Typhimurium and MVST isolates recovered from raw shellfish harvested in Atlantic Canada by the Canadian Food Inspection Agency (CFIA) over the past decade, to assess the potential impact of these isolates on human illness and to explore possible routes of shellfish contamination. Whole-genome sequence analysis was performed on 210 isolates of S. Typhimurium and MVST recovered from various food sources, including shellfish. The objective was to identify genetic markers linked to ST-99, a sequence type specifically associated with shellfish, which could explain their high prevalence in shellfish. We also investigated the genetic similarity amongst CFIA ST-99 isolates recovered in different years and geographical locations. Finally, the study aimed to enhance the molecular serotyping of ST-99 isolates, as they are serologically classified as MVST but are frequently misidentified as S. Typhimurium through sequence analysis. To ensure recovery of ST-99 from shellfish was not due to favourable growth kinetics, we measured the growth rates of these isolates relative to other Salmonella and determined that ST-99 did not have a faster growth rate and/or shorter lag phase than other Salmonella evaluated. The CFIA ST-99 isolates from shellfish were highly clonal, with up to 81 high-quality single nucleotide variants amongst isolates. ST-99 isolates both within the CFIA collection and those isolated globally carried numerous unique deletions, insertions and mutations in genes, including some considered important for virulence, such as gene deletions in the type VI secretion system. Interestingly, several of these genetic characteristics appear to be unique to North America. Most notably was a large genomic region showing a high prevalence in genomes from Canadian isolates compared to those from the USA. Although the functions of the majority of the proteins encoded within this region remain unknown, the genes umuC and umuD, known to be protective against UV light damage, were present. While this study did not specifically examine the effects of mutations and insertions, results indicate that these isolates may be adapted to survive in specific environments, such as ocean water, where wild birds and/or animals serve as the natural hosts. Our hypothesis is reinforced by a global phylogenetic analysis, which indicates that isolates obtained from North American shellfish and wild birds are infrequently connected to isolates from human sources. These findings suggest a distinct ecological niche for ST-99, potentially indicating their specialization and adaptation to non-human hosts and environments, such as oceanic habitats.
Asunto(s)
Tipificación de Secuencias Multilocus , Salmonella typhimurium , Mariscos , Mariscos/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/aislamiento & purificación , Salmonella typhimurium/clasificación , Canadá , Secuenciación Completa del Genoma , Animales , Humanos , Genoma Bacteriano , Microbiología de Alimentos , FilogeniaRESUMEN
Sun-drying is a traditional process for preparing dried shrimp in coastal area of South China, but its impacts on nutrition and the formation of flavor-contributory substances in dried shrimp remain largely unknown. This study aimed to examine the effects of the production process on the microbiota and metabolites in dried shrimp. 16S rDNA amplicon sequencing was employed to identify 170 operational taxonomic units (OTUs), with Vibrio, Photobacterium, and Shewanella emerging as the primary pathogenic bacteria in shrimp samples. Lactococcus lactis was identified as the principal potential beneficial microorganism to accrue during the dried shrimp production process and found to contribute significantly to the development of desirable shrimp flavors. LC-MS-based analyses of dried shrimp sample metabolomes revealed a notable increase in compounds associated with unsaturated fatty acid biosynthesis, arachidonic acid metabolism, amino acid biosynthesis, and flavonoid and flavanol biosynthesis throughout the drying process. Subsequent exploration of the relationship between metabolites and bacterial communities highlighted the predominant coexistence of Bifidobacterium, Clostridium, and Photobacterium contributing heterocyclic compounds and metabolites of organic acids and their derivatives. Conversely, Arthrobacter and Staphylococcus were found to inhibit each other, primarily in the presence of heterocyclic compounds. This comprehensive investigation provides valuable insights into the dynamic changes in the microbiota and metabolites of dried shrimps spanning different drying periods, which we expect to contribute to enhancing production techniques and safety measures for dried shrimp processing.
Asunto(s)
Bacterias , Metabolómica , Metagenómica , Microbiota , Penaeidae , Penaeidae/microbiología , Animales , China , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Metabolómica/métodos , Metagenómica/métodos , ARN Ribosómico 16S/genética , Metaboloma , Manipulación de Alimentos/métodos , Mariscos/microbiologíaRESUMEN
Paralytic shellfish toxins (PSTs) produced by marine dinoflagellates significantly impact shellfish industries worldwide. Early detection on-farm and with minimal training would allow additional time for management decisions to minimize economic losses. Here, we describe and test a standardized workflow based on the detection of sxtA4, an initial gene in the biosynthesis of PSTs. The workflow is simple and inexpensive and does not require a specialized laboratory. It consists of (1) water collection and filtration using a custom gravity sampler, (2) buffer selection for sample preservation and cell lysis for DNA, and (3) an assay based on a region of sxtA, DinoDtec lyophilized quantitative polymerase chain reaction (qPCR) assay. Water samples spiked with Alexandrium catenella showed a cell recovery of >90% when compared to light microscopy counts. The performance of the lysis method (90.3% efficient), Longmire's buffer, and the DinoDtec qPCR assay (tested across a range of Alexandrium species (90.7-106.9% efficiency; r2 > 0.99)) was found to be specific, sensitive, and efficient. We tested the application of this workflow weekly from May 2016 to 30th October 2017 to compare the relationship between sxtA4 copies L-1 in seawater and PSTs in mussel tissue (Mytilus galloprovincialis) on-farm and spatially (across multiple sites), effectively demonstrating an â¼2 week early warning of two A. catenella HABs (r = 0.95). Our tool provides an early, accurate, and efficient method for the identification of PST risk in shellfish aquaculture.
Asunto(s)
Acuicultura , Dinoflagelados , Floraciones de Algas Nocivas , Toxinas Marinas , Flujo de Trabajo , Animales , Mariscos , Granjas , Intoxicación por MariscosRESUMEN
Paralytic shellfish toxins (PSTs) are widely distributed neurotoxins, and the PST metabolic detoxification mechanism in bivalves has received increasing attention. To reveal the effect of phase I (cytochrome P450)-II (GST)-III (ABC transport) metabolic systems on the PST metabolism in Azumapecten farreri, this study amplified stress on the target systems using rifampicin, dl-α-tocopherol, and colchicine; measured PST levels; and conducted transcriptomic analyses. The highest toxin content reached 1623.48 µg STX eq/kg in the hepatopancreas and only 8.8% of that in the gills. Inducer intervention significantly decreased hepatopancreatic PST accumulation. The proportional reductions in the rifampicin-, dl-α-tocopherol-, and colchicine-induced groups were 55.3%, 50.4%, and 36.1%, respectively. Transcriptome analysis showed that 11 modules were significantly correlated with PST metabolism (six positive/five negative), with phase I CYP450 and phase II glutathione metabolism significantly enriched in negatively correlated pathways. Twenty-three phase I-II-III core genes were further validated using qRT-PCR and correlated with PST metabolism, revealing that CYP46A1, CYP4F6, GSTM1, and ABCF2 were significantly correlated, while CYP4F11 and ABCB1 were indirectly correlated. In conclusion, phase I-II-III detoxification enzyme systems jointly participate in the metabolic detoxification of PSTs in A. farreri. This study provides key data support to profoundly elucidate the PST metabolic detoxification mechanism in bivalves.
Asunto(s)
Bivalvos , Dinoflagelados , Animales , Rifampin/metabolismo , alfa-Tocoferol/metabolismo , Mariscos/análisis , Colchicina/metabolismo , Dinoflagelados/metabolismoRESUMEN
Phytotoxins produced by marine microalgae, such as paralytic shellfish toxins (PSTs), can accumulate in bivalve molluscs, representing a human health concern due to the life-threatening symptoms they cause. To avoid the commercialization of contaminated bivalves, monitoring programs were established in the EU. The purpose of this work is the implementation of a PST transforming enzyme-carbamoylase-in an impedimetric test for rapid simultaneous detection of several carbamate and N-sulfocarbamoyl PSTs. Carbamoylase hydrolyses carbamate and sulfocarbamoyl toxins, which may account for up to 90% of bivalve toxicity related to PSTs. Conformational changes of carbamoylase accompanying enzymatic reactions were probed by Fourier transform mid-infrared spectroscopy (FT-MIR) and electrochemical impedance spectroscopy (EIS). Furthermore, a combination of EIS with a metal electrode and a carbamoylase-based assay was employed to harness changes in the enzyme conformation and adsorption on the electrode surface during the enzymatic reaction as an analytical signal. After optimization of the working conditions, the developed impedimetric e-tongue could quantify N-sulfocarbamoyl toxins with a detection limit of 0.1 µM. The developed e-tongue allows the detection of these toxins at concentration levels observed in bivalves with PST toxicity close to the regulatory limit. The quantification of a sum of N-sulfocarbamoyl PSTs in naturally contaminated mussel extracts using the developed impedimetric e-tongue has been demonstrated.
Asunto(s)
Bivalvos , Intoxicación por Mariscos , Animales , Humanos , Toxinas Marinas/química , Nariz Electrónica , Bivalvos/química , Mariscos/análisis , Carbamatos , Intoxicación por Mariscos/etiologíaRESUMEN
With increasing public awareness of PFAS, and their presence in biological and environmental media across the globe, comes a matching increase in the number of PFAS monitoring studies. As more matrices and sample cohorts are examined, there are more opportunities for matrix interferents to appear as PFAS where there are none (i.e., "seeing ghosts"), impacting subsequent reports. Addressing these ghosts is vital for the research community, as proper analytical measurements are necessary for decision-makers to understand the presence, levels, and potential risks associated with PFAS and protect human and environmental health. To date, PFAS interference has been identified in several matrices (e.g., food, shellfish, blood, tissue); however, additional unidentified interferents are likely to be observed as PFAS research continues to expand. Therefore, the aim of this commentary is several fold: (1) to create and support a publicly available dataset of all currently known PFAS analytical interferents, (2) to allow for the expansion of that dataset as more sources of interference are identified, and (3) to advise the wider scientific community on how to both identify and eliminate current or new analytical interference in PFAS analyses.
Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis , Alimentos Marinos/análisis , Mariscos/análisis , Membrana EritrocíticaRESUMEN
PURPOSE: Fish and shellfish consumption is suggested to be a cancer-protective factor. However, studies investigating this association for gastric cancer, especially considering Helicobacter pylori (H. pylori) and atrophic gastritis (AG), are limited. We investigated gastric cancer risk associated with fish, shellfish, and n-3 polyunsaturated fatty acids (n-3 PUFAs) consumption among Japanese adults. METHODS: 90,504 subjects enrolled in the Japan Public Health Center-based Prospective Study (JPHC Study) were followed until December 2013. Dietary intake data were collected using a food frequency questionnaire. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for gastric cancer risk associated with fish and shellfish consumption and marine n-3 PUFAs (sum of eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA)) using Cox proportional hazards models. Among those with avaliable data, we conducted a subgroup analysis taking H. pylori infection and AG status into consideration. RESULTS: There were 2,701 gastric cancer cases during an average of 15 years of follow-up. We observed an increased gastric cancer risk for salted fish consumption for men [HR for fifth quintile versus first quintile 1.43 (95% CI 1.18-1.75)] and for women [HR 1.33 (95% CI 1.00-1.77)]. We observed a weak risk reduction trend for women as the intake of marine n-3 PUFAs increased (p-trend:0.07). When we included H. pylori infection and atrophic gastritis status in the analysis, the associations diminished. CONCLUSION: Our results suggest that salted fish increases gastric cancer risk for men and women, while marine n-3 PUFAs marginally decreases this risk among women in Japan.
Asunto(s)
Ácidos Grasos Omega-3 , Peces , Alimentos Marinos , Mariscos , Neoplasias Gástricas , Humanos , Japón/epidemiología , Femenino , Estudios Prospectivos , Masculino , Ácidos Grasos Omega-3/administración & dosificación , Neoplasias Gástricas/epidemiología , Neoplasias Gástricas/prevención & control , Persona de Mediana Edad , Animales , Factores de Riesgo , Alimentos Marinos/análisis , Dieta/métodos , Dieta/estadística & datos numéricos , Infecciones por Helicobacter/epidemiología , Infecciones por Helicobacter/complicaciones , Anciano , Adulto , Helicobacter pylori , Modelos de Riesgos Proporcionales , Estudios de SeguimientoRESUMEN
AIMS: Shellfish production areas are classified for suitability for human consumption using counts of Escherichia coli in shellfish samples. Two alternative laboratory methods are approved in the European Union and UK for measuring E. coli in shellfish samples; the most probable number (MPN) and pour plate methods. These methods have inherently different statistical uncertainty and may give different counts for the same sample. Using two approaches: simulated data and spiking experiments, we investigate the theoretical properties of the two methods to determine their reliability for shellfish waters classification. METHODS AND RESULTS: Assuming a Poisson distribution of E. coli in shellfish samples, we simulate concentrations in 10 000 samples using the MPN and pour plate methods. We show that for higher concentrations of E. coli the pour plate method becomes increasingly more reliable than the MPN method. The MPN method has higher probabilities than pour plate of generating results exceeding shellfish classification thresholds, while conversely having higher probabilities of failing to detect counts that exceed regulatory thresholds. The theoretical analysis also demonstrates that the MPN method can produce genuine extreme outliers, even when E. coli are randomly distributed within the sampled material. A laboratory spiking experiment showed results consistent with the theoretical analysis, suggesting the Poisson assumption used in the theoretical analysis is reasonable. CONCLUSION: The large differences in statistical properties between the pour plate and MPN methods should be taken into consideration in classifying shellfish beds, with the pour plate method being more reliable over the crucial range of E. coli concentrations used to determine class boundaries.
Asunto(s)
Escherichia coli , Mariscos , Escherichia coli/aislamiento & purificación , Mariscos/microbiología , Recuento de Colonia Microbiana , Microbiología de Alimentos , Animales , Contaminación de Alimentos/análisis , Humanos , Distribución de Poisson , Reproducibilidad de los ResultadosRESUMEN
To better understand the ecological effects of mariculture, the diversity distribution, determinant and interaction of microeukaryote communities from fish cage and suspended shellfish farming were investigated in three bays of South China Coast. Our alpha and beta diversity analyses showed that the difference of the microeukaryote community between fish and shellfish farming was more significant at local than regional scale, and microeukaryotes respond more to spatial effect than mariculture effect at regional scale. Mantel test, variation partitioning analysis and co-occurrence network analysis revealed that the environmental factors especially chemical and biotic factors contributed more to community assembly in fish than shellfish farming. Based on the comparisons of community composition and determinant between fish and shellfish farming, the effect mechanisms of the two farming types on microeukaryote community were proposed. Fish farming brings significant environmental variation and thus has strong bottom-up impacts on microeukaryotes, while shellfish farming exerts a grazing pressure on microeukaryotes by filter-feeding and has top-down control to them. Furthermore, the network stability analyses revealed weaker community stability in fish than shellfish farming, suggesting that the microeukaryote community was more sensitive to environmental change deduced by fish than shellfish farming. Overall, this study revealed the different influencing mechanisms of fish and shellfish mariculture on microeukaryotes, which will improve the understanding of the ecological effects of mariculture and provide guidance for the management of mariculture under future environmental pressures.
Asunto(s)
Acuicultura , Mariscos , Animales , Peces , Agricultura , ChinaRESUMEN
Vibrio parahaemolyticus is a leading cause of human gastroenteritis associated with seafood consumption. The present study aimed to investigate the occurrence and risk assessment of V. parahaemolyticus isolated from live Indian black clams, sediment, and water samples collected from shellfish harvesting areas located along the south-west coast of India. Out of the total 72 samples collected, 55.6% revealed the presence of V. parahaemolyticus; the highest occurrence was observed in shellfish samples. The presence of tdh and trh virulence genes was screened by multiplex PCR. Virulence genes could be detected in 25.8% of the strains; 19.35% of them were trh positive and 3.2% were tdh positive, while 3.2% of strains exhibited the coexistence of both virulence genes. Antimicrobial resistance (AMR) determined by the disk diffusion method revealed that 87% of the strains were multiple drug resistant and exhibited 21 diverse resistance patterns. The overall multiple antibiotic resistance (MAR) index values ranged from 0 to 0.8. To the best of our knowledge, this is the first report to document the presence of pathogenic and multidrug-resistant V. parahaemolyticus in shellfish harvesting areas of the Indian sub-continent. The study reveals possible health hazards associated with consuming shellfish harvested from the study area.
Asunto(s)
Bivalvos , Mariscos , Vibrio parahaemolyticus , Vibrio parahaemolyticus/aislamiento & purificación , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio parahaemolyticus/genética , India , Mariscos/microbiología , Virulencia , Animales , Bivalvos/microbiología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Factores de Virulencia/genéticaRESUMEN
Ostreid herpesvirus 1 (OsHV-1) and its microvariants (µVars) cause economically devastating mass mortalities of oysters and pose a threat to the shellfish aquaculture industry globally. OsHV-1 outbreaks can cause up to 100% mortality in the Pacific oyster Crassostrea gigas. However, OsHV-1 and its variants have a broad host range and can infect at least 7 bivalve species, including bay scallops Argopecten irradians and eastern oysters C. virginica. Determining the susceptibility of economically and ecologically important bivalve species to OsHV-1 is critical for improving biosecurity and disease management to protect the aquaculture industry. Surveys of eastern oysters were conducted in June to August 2021 in the Maryland portion of the Chesapeake Bay to determine the prevalence and viral load of OsHV-1 at 5 aquaculture farms. Using quantitative PCR, OsHV-1 was not detected at any sites. Experiments examined the susceptibility of single stocks of eastern oysters and hard clams Mercenaria mercenaria to the virus and their ability to horizontally transmit it using OsHV-1 µVar SD (San Diego, California) and OsHV-1 µVar FRA (Marennes-Olreon, France). Results showed that OsHV-1 µVars did not cause mortality or symptomatic infection in the single stocks of eastern oysters and hard clams used in these experiments using natural infection pathways. However, the eastern oyster stock, when injected with OsHV-1, did transmit the virus to naïve Pacific oysters. Further experimentation using additional stocks and lines and establishment of surveillance programs along the east and Gulf coasts of the USA are necessary to prepare for the potential spread and impact of OsHV-1 related disease.
Asunto(s)
Crassostrea , Virus ADN , Herpesviridae , Animales , Maryland , Mariscos , AcuiculturaRESUMEN
Cyclic imines are a class of lipophilic shellfish toxins comprising gymnodimines, spirolides, pinnatoxins, portimines, pteriatoxins, prorocentrolides, spiro-prorocentrimine, symbiomines and kabirimine. They are structurally diverse, but all share an imine moiety as part of a bicyclic ring system. These compounds are produced by marine microalgal species and are characterized by the rapid death that they induce when injected into mice. Cyclic imines have been detected in a range of shellfish species collected from all over the world, which raises the question as to whether they present a food safety risk. The European Food Safety Authority (EFSA) considers them to be an emerging food safety issue, and in this review, the risk posed by these toxins to shellfish consumers is assessed by collating all available occurrence and toxicity data. Except for pinnatoxins, the risk posed to human health by the cyclic imines appears low, although this is based on only a limited dataset. For pinnatoxins, two different health-based guidance values have been proposed at which the concentration should not be exceeded in shellfish (268 and 23 µg PnTX/kg shellfish flesh), with the discrepancy caused by the application of different uncertainty factors. Pinnatoxins have been recorded globally in multiple shellfish species at concentrations of up to 54 times higher than the lower guidance figure. Despite this observation, pinnatoxins have not been associated with recorded human illness, so it appears that the lower guidance value may be conservative. However, there is insufficient data to generate a more robust guidance value, so additional occurrence data and toxicity information are needed.
Asunto(s)
Microalgas , Alimentos Marinos , Humanos , Animales , Ratones , Mariscos , Inocuidad de los Alimentos , IminasRESUMEN
Tetrodotoxin (TTX) is a potent marine neurotoxin found in several phylogenetically diverse organisms, some of which are sought as seafood. Since 2015, TTX has been reported in bivalve shellfish from several estuarine locations along the Mediterranean and European Atlantic coasts, posing an emerging food safety concern. Although reports on spatial and temporal distribution have increased in recent years, processes leading to TTX accumulation in European bivalves are yet to be described. Here, we explored the hypothesis that the ribbon worm species Cephalothrix simula, known to contain high levels of TTX, could play a role in the trophic transfer of the toxin into shellfish. During a field study at a single location in southern England, we confirmed C. simula DNA in seawater adjacent to trestle-farmed Pacific oysters Magallana gigas (formerly Crassostrea gigas) with a history of TTX occurrence. C. simula DNA in seawater was significantly higher in June and July during the active phase of toxin accumulation compared to periods of either no or continually decreasing TTX concentrations in M. gigas. In addition, C. simula DNA was detected in oyster digestive glands collected on 15 June 2021, the day with the highest recorded C. simula DNA abundance in seawater. These findings show evidence of a relationship between C. simula and TTX occurrence, providing support for the hypothesis that bivalves may acquire TTX through filter-feeding on microscopic life forms of C. simula present in the water column at particular periods each year. Although further evidence is needed to confirm such feeding activity, this study significantly contributes to discussions about the biological source of TTX in European bivalve shellfish.
Asunto(s)
Bivalvos , Mariscos , Tetrodotoxina , Tetrodotoxina/análisis , Animales , Agua de Mar , Contaminación de Alimentos/análisis , Reino UnidoRESUMEN
The blue crab (Callinectes sapidus), originally from the western Atlantic Ocean, has recently spread to the Mediterranean and is now considered one of the one hundred most invasive species in that region. This opportunistic species, known for its adaptability to different temperatures and salinities, negatively impacts biodiversity and human activities such as fishing and tourism in the Mediterranean. However, the blue crab is gaining interest as a potential food resource due to its high nutritional value and delicate, sweet flavor. Its meat is rich in protein (14% to 30%), omega-3 fatty acids (EPA and DHA) and other essential nutrients beneficial for human health such as vitamins, and minerals. Utilizing this species in the production of new foods could help mitigate the negative impact of its invasiveness and offer economic opportunities. One challenge with this potential resource is the generation of waste. Approximately 6-8 million tonnes of crab shells are produced worldwide each year, leading to disposal problems and concerns regarding environmental sustainability. To improve economic and environmental sustainability, there is a need to valorize these residues, which are an important source of proteins, lipids, chitin, minerals, and pigments that can be processed into high-value-added products. However, especially in areas with industrial pollution, attention should be paid to the heavy metal (Cd and As) contents of blue crab shells. Studies suggest that blue crab by-products can be used in various sectors, reducing environmental impacts, promoting a circular economy, and creating new industrial opportunities.
Asunto(s)
Braquiuros , Valor Nutritivo , Animales , Humanos , Especies Introducidas , Mariscos , Mar Mediterráneo , Conservación de los Recursos NaturalesRESUMEN
Although lipophilic shellfish toxins (LSTs) pose a significant threat to the health of seafood consumers, their systematic investigation and risk assessment remain scarce. The goals of this study were as follows: (1) analyze LST levels in commercially available shellfish in Zhejiang province, China, and determine factors influencing LST distribution; (2) assess the acute dietary risk of exposure to LSTs for local consumers during the red tide period; (3) explore potential health risks of LSTs in humans; and (4) study the acute risks of simultaneous dietary exposure to LSTs and paralytic shellfish toxins (PSTs). A total of 546 shellfish samples were collected. LSTs were detected in 89 samples (16.3%) at concentrations below the regulatory limits. Mussels were the main shellfish species contaminated with LSTs. Spatial variations were observed in the yessotoxin group. Acute exposure to LSTs based on multiple scenarios was low. The minimum tolerable exposure durations for LSTs calculated using the mean and the 95th percentile of consumption data were 19.7 and 4.9 years, respectively. Our findings showed that Zhejiang province residents are at a low risk of combined exposure to LSTs and PSTs; however, the risk may be higher for children under 6 years of age in the extreme scenario.
Asunto(s)
Exposición Dietética , Toxinas Marinas , Mariscos , China , Humanos , Mariscos/análisis , Toxinas Marinas/análisis , Toxinas Marinas/toxicidad , Animales , Medición de Riesgo , Exposición Dietética/análisis , Intoxicación por Mariscos/prevención & control , Intoxicación por Mariscos/etiología , Contaminación de Alimentos/análisis , Adulto , Niño , Persona de Mediana Edad , Alimentos Marinos/análisis , Preescolar , Bivalvos/química , Femenino , Adulto JovenRESUMEN
This study aimed to determine the prevalence of V. parahaemolyticus in oysters from the northwestern coast of Mexico and to identify the serotypes, virulence factors, and antibiotic resistance of the strains. Oyster samples were collected from 2012 to 2020 from the northwest coast of Mexico; biochemical and molecular methods were used to identify V. parahaemolyticus from oysters; antiserum reaction to determine V. parahaemolyticus serotypes, and PCR assays were performed to identify pathogenic (tdh and/or trh) or pandemic (toxRS/new, and/or orf8) strains and antibiotic resistance testing. A total of 441 oyster samples were collected and tested for V. parahaemolyticus. Forty-seven percent of oyster samples were positive for V. parahaemolyticus. Ten different O serogroups and 72 serovars were identified, predominantly serotype O1:KUT with 22.2% and OUT:KUT with 17.3%. Twenty new serotypes that had not been previously reported in our region were identified. We detected 4.3% of pathogenic clones but no pandemic strains. About 73.5% of strains were resistant to at least one antibiotic, mainly ampicillin and ciprofloxacin; 25% were multi-drug resistant. In conclusion, the pathogenic strains in oysters and antibiotic resistance are of public health concern, as the potential for outbreaks throughout northwestern Mexico is well established.
Asunto(s)
Antibacterianos , Ostreidae , Mariscos , Vibrio parahaemolyticus , Factores de Virulencia , Animales , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio parahaemolyticus/aislamiento & purificación , México/epidemiología , Ostreidae/microbiología , Factores de Virulencia/genética , Antibacterianos/farmacología , Mariscos/microbiología , Farmacorresistencia Bacteriana , Serogrupo , Virulencia/genética , Pruebas de Sensibilidad MicrobianaRESUMEN
Paralytic shellfish toxins (PSTs) are widely distributed in shellfish along the coast of China, causing a serious threat to consumer health; however, there is still a lack of large-scale systematic investigations and risk assessments. Herein, 641 shellfish samples were collected from March to November 2020, and the PSTs' toxicity was detected via liquid chromatography-tandem mass spectrometry. Furthermore, the contamination status and potential dietary risks of PSTs were discussed. PSTs were detected in 241 shellfish samples with a detection rate of 37.60%. The average PST toxicities in mussels and ark shells were considerably higher than those in other shellfish. The PSTs mainly included N-sulfonylcarbamoyl toxins (class C) and carbamoyl toxins (class GTX), and the highest PST toxicity was 546.09 µg STX eq. kg-1. The PST toxicity in spring was significantly higher than those in summer and autumn (p < 0.05). Hebei Province had the highest average PST toxicity in spring. An acute exposure assessment showed that consumers in Hebei Province had a higher dietary risk, with mussels posing a significantly higher dietary risk to consumers. This research provides reference for the green and sustainable development of the shellfish industry and the establishment of a shellfish toxin prevention and control system.