Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.970
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 174(1): 59-71.e14, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29804835

RESUMEN

Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments.


Asunto(s)
Potenciación a Largo Plazo , Memoria , Neuronas/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Calcio/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Hipocampo/citología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Optogenética , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/metabolismo , Estrés Psicológico , Potenciales Sinápticos/efectos de los fármacos
2.
Cell ; 155(5): 1154-1165, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24267894

RESUMEN

Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here, we show that synaptic and cognitive impairments following repeated exposure to Δ(9)-tetrahydrocannabinol (Δ(9)-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids in the brain. COX-2 induction by Δ(9)-THC is mediated via CB1 receptor-coupled G protein ßγ subunits. Pharmacological or genetic inhibition of COX-2 blocks downregulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ(9)-THC exposures. Ablation of COX-2 also eliminates Δ(9)-THC-impaired hippocampal long-term synaptic plasticity, working, and fear memories. Importantly, the beneficial effects of decreasing ß-amyloid plaques and neurodegeneration by Δ(9)-THC in Alzheimer's disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Dronabinol/farmacología , Memoria/efectos de los fármacos , Transducción de Señal , Sinapsis/efectos de los fármacos , Animales , Cannabis/química , Ciclooxigenasa 2/genética , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/metabolismo , Receptor Cannabinoide CB1/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(33): e2400420121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39106304

RESUMEN

Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1ß2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Modelos Animales de Enfermedad , Ritmo Gamma , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Ratones , Cognición/efectos de los fármacos , Ritmo Gamma/efectos de los fármacos , Memoria/efectos de los fármacos , Receptores de GABA-A/metabolismo , Ratones Transgénicos , Humanos , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Alanina/análogos & derivados , Azepinas
4.
Hum Mol Genet ; 33(16): 1406-1419, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38727562

RESUMEN

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is reported to be the most common type of autosomal dominant cerebellar ataxia (ADCA). SCA3 patients suffer from a progressive decline in motor coordination and other disease-associated symptoms. Moreover, recent studies have reported that SCA3 patients also exhibit symptoms of cerebellar cognitive affective syndrome (CCAS). We previously observed signs of CCAS in mouse model of SCA3. Particularly, SCA3-84Q mice suffer from anxiety, recognition memory decline, and also exhibit signs of low mood and aversion to activity. Here we studied the effect of long-term injections of SK channels activator chlorzoxazone (CHZ) together and separately with the folic acid (FA) on the cerebellar Purkinje cell (PC) firing and histology, and also on the motor and cognitive functions as well as mood alterations in SCA3-84Q hemizygous transgenic mice. We realized that both CHZ and CHZ-FA combination had similar positive effect on pure cerebellum impairments including PC firing precision, PC histology, and motor performance in SCA3-84Q mice. However, only the CHZ-FA combination, but not CHZ, had significantly ameliorated the signs of anxiety and depression, and also noticeably improved recognition memory in SCA3-84Q mice. Our results suggest that the combination therapy for both ataxia and non-motor symptoms is required for the complex treatment of ADCA.


Asunto(s)
Ansiedad , Clorzoxazona , Depresión , Modelos Animales de Enfermedad , Ácido Fólico , Enfermedad de Machado-Joseph , Ratones Transgénicos , Animales , Ratones , Ansiedad/tratamiento farmacológico , Ansiedad/fisiopatología , Depresión/tratamiento farmacológico , Depresión/genética , Depresión/fisiopatología , Ácido Fólico/farmacología , Ácido Fólico/administración & dosificación , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/fisiopatología , Enfermedad de Machado-Joseph/patología , Clorzoxazona/farmacología , Células de Purkinje/efectos de los fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patología , Memoria/efectos de los fármacos , Humanos , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Masculino , Ataxina-3/genética , Ataxina-3/metabolismo
5.
J Neurosci ; 44(34)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38991791

RESUMEN

The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement in rodent models of cocaine use disorder. The output from the mPFC is potently modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets. We previously showed that treatment with chondroitinase ABC (ABC) reduced the consolidation and reconsolidation of a cocaine conditioned place preference memory. However, self-administration memories are more difficult to disrupt. Here we report in male rats that ABC treatment in the mPFC attenuated the consolidation and blocked the reconsolidation of a cocaine self-administration memory. However, reconsolidation was blocked when rats were given a novel, but not familiar, type of retrieval session. Furthermore, ABC treatment prior to, but not after, memory retrieval blocked reconsolidation. This same treatment did not alter a sucrose memory, indicating specificity for cocaine-induced memory. In naive rats, ABC treatment in the mPFC altered levels of PV intensity and cell firing properties. In vivo recordings from the mPFC and dorsal hippocampus (dHIP) during the novel retrieval session revealed that ABC prevented reward-associated increases in high-frequency oscillations and synchrony of these oscillations between the dHIP and mPFC. Together, this is the first study to show that ABC treatment disrupts reconsolidation of the original memory when combined with a novel retrieval session that elicits coupling between the dHIP and mPFC. This coupling after ABC treatment may serve as a fundamental signature for how to disrupt reconsolidation of cocaine memories and reduce relapse.


Asunto(s)
Condroitina ABC Liasa , Cocaína , Hipocampo , Memoria , Corteza Prefrontal , Autoadministración , Animales , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Masculino , Ratas , Cocaína/administración & dosificación , Cocaína/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Condroitina ABC Liasa/farmacología , Memoria/efectos de los fármacos , Memoria/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Ratas Sprague-Dawley , Parvalbúminas/metabolismo , Consolidación de la Memoria/efectos de los fármacos , Consolidación de la Memoria/fisiología , Trastornos Relacionados con Cocaína/fisiopatología
6.
Mol Psychiatry ; 29(5): 1406-1416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38388704

RESUMEN

Chronic social isolation increases the risk of mental health problems, including cognitive impairments and depression. While subanesthetic ketamine is considered effective for cognitive impairments in patients with depression, the neural mechanisms underlying its effects are not well understood. Here we identified unique activation of the anterior insular cortex (aIC) as a characteristic feature in brain-wide regions of mice reared in social isolation and treated with (R)-ketamine, a ketamine enantiomer. Using fiber photometry recording on freely moving mice, we found that social isolation attenuates aIC neuronal activation upon social contact and that (R)-ketamine, but not (S)-ketamine, is able to counteracts this reduction. (R)-ketamine facilitated social cognition in social isolation-reared mice during the social memory test. aIC inactivation offset the effect of (R)-ketamine on social memory. Our results suggest that (R)-ketamine has promising potential as an effective intervention for social cognitive deficits by restoring aIC function.


Asunto(s)
Disfunción Cognitiva , Corteza Insular , Ketamina , Aislamiento Social , Animales , Ketamina/farmacología , Ratones , Masculino , Corteza Insular/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Ratones Endogámicos C57BL , Memoria/efectos de los fármacos , Cognición/efectos de los fármacos , Conducta Social , Corteza Cerebral/efectos de los fármacos , Neuronas/efectos de los fármacos , Trastornos del Conocimiento/tratamiento farmacológico
7.
Mol Psychiatry ; 29(3): 730-741, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38221548

RESUMEN

Remote memory usually decreases over time, whereas remote drug-cue associated memory exhibits enhancement, increasing the risk of relapse during abstinence. Memory system consolidation is a prerequisite for remote memory formation, but neurobiological underpinnings of the role of consolidation in the enhancement of remote drug memory are unclear. Here, we found that remote cocaine-cue associated memory was enhanced in rats that underwent self-administration training, together with a progressive increase in the response of prelimbic cortex (PrL) CaMKII neurons to cues. System consolidation was required for the enhancement of remote cocaine memory through PrL CaMKII neurons during the early period post-training. Furthermore, dendritic spine maturation in the PrL relied on the basolateral amygdala (BLA) input during the early period of consolidation, contributing to remote memory enhancement. These findings indicate that memory consolidation drives the enhancement of remote cocaine memory through a time-dependent increase in activity and maturation of PrL CaMKII neurons receiving a sustained BLA input.


Asunto(s)
Complejo Nuclear Basolateral , Cocaína , Consolidación de la Memoria , Neuronas , Corteza Prefrontal , Animales , Consolidación de la Memoria/efectos de los fármacos , Consolidación de la Memoria/fisiología , Cocaína/farmacología , Masculino , Ratas , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Complejo Nuclear Basolateral/efectos de los fármacos , Complejo Nuclear Basolateral/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/fisiología , Señales (Psicología) , Ratas Sprague-Dawley , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Autoadministración , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Espinas Dendríticas/fisiología , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/fisiopatología , Memoria/efectos de los fármacos , Memoria/fisiología
9.
Learn Mem ; 31(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38862166

RESUMEN

Drug addiction and the circuitry for learning and memory are intimately intertwined. Drugs of abuse create strong, inappropriate, and lasting memories that contribute to many of their destructive properties, such as continued use despite negative consequences and exceptionally high rates of relapse. Studies in Drosophila melanogaster are helping us understand how drugs of abuse, especially alcohol, create memories at the level of individual neurons and in the circuits where they function. Drosophila is a premier organism for identifying the mechanisms of learning and memory. Drosophila also respond to drugs of abuse in ways that remarkably parallel humans and rodent models. An emerging consensus is that, for alcohol, the mushroom bodies participate in the circuits that control acute drug sensitivity, not explicitly associative forms of plasticity such as tolerance, and classical associative memories of their rewarding and aversive properties. Moreover, it is becoming clear that drugs of abuse use the mushroom body circuitry differently from other behaviors, potentially providing a basis for their addictive properties.


Asunto(s)
Memoria , Cuerpos Pedunculados , Animales , Memoria/efectos de los fármacos , Memoria/fisiología , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/efectos de los fármacos , Aprendizaje/fisiología , Aprendizaje/efectos de los fármacos , Trastornos Relacionados con Sustancias , Drosophila melanogaster/fisiología , Humanos , Drosophila/fisiología , Drogas Ilícitas/farmacología
10.
Learn Mem ; 31(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38862169

RESUMEN

Octopamine, the functional analog of noradrenaline, modulates many different behaviors and physiological processes in invertebrates. In the central nervous system, a few octopaminergic neurons project throughout the brain and innervate almost all neuropils. The center of memory formation in insects, the mushroom bodies, receive octopaminergic innervations in all insects investigated so far. Different octopamine receptors, either increasing or decreasing cAMP or calcium levels in the cell, are localized in Kenyon cells, further supporting the release of octopamine in the mushroom bodies. In addition, different mushroom body (MB) output neurons, projection neurons, and dopaminergic PAM cells are targets of octopaminergic neurons, enabling the modulation of learning circuits at different neural sites. For some years, the theory persisted that octopamine mediates rewarding stimuli, whereas dopamine (DA) represents aversive stimuli. This simple picture has been challenged by the finding that DA is required for both appetitive and aversive learning. Furthermore, octopamine is also involved in aversive learning and a rather complex interaction between these biogenic amines seems to modulate learning and memory. This review summarizes the role of octopamine in MB function, focusing on the anatomical principles and the role of the biogenic amine in learning and memory.


Asunto(s)
Aprendizaje , Memoria , Cuerpos Pedunculados , Octopamina , Octopamina/metabolismo , Octopamina/farmacología , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/efectos de los fármacos , Animales , Memoria/fisiología , Memoria/efectos de los fármacos , Aprendizaje/fisiología , Aprendizaje/efectos de los fármacos , Dopamina/metabolismo , Insectos/fisiología , Neuronas/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo
11.
Learn Mem ; 31(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39384429

RESUMEN

Memory updating is essential for integrating new information into existing representations. However, this process could become maladaptive in conditions like post-traumatic stress disorder (PTSD), when fear memories generalize to neutral contexts. Previously, we have shown that contextual fear memory malleability in rats requires activation of M1 muscarinic acetylcholine receptors in the dorsal hippocampus. Here, we investigated the involvement of this mechanism in the transfer of contextual fear memories to other contexts using a novel fear memory updating paradigm. Following brief reexposure to a previously fear conditioned context, male rats (n = 8-10/group) were placed into a neutral context to evaluate the transfer of fear memory. We also infused the selective M1 receptor antagonist pirenzepine into the dorsal hippocampus before memory reactivation to try to block this effect. Results support the hypothesis that fear memory can be updated with novel contextual information, but only if rats are reexposed to the originally trained context relatively recently before the neutral context; evidence for transfer was not seen if the fear memory reactivation was omitted or if it occurred 6 h before neutral context exposure. The transferred fear persisted for 4 weeks, and the effect was blocked by M1 antagonism. These findings strongly suggest that fear transfer requires reactivation and destabilization of the original fear memory. The novel preclinical model introduced here, and its implication of muscarinic receptors in this process, could therefore inform therapeutic strategies for PTSD and similar conditions.


Asunto(s)
Condicionamiento Clásico , Miedo , Hipocampo , Antagonistas Muscarínicos , Pirenzepina , Receptor Muscarínico M1 , Animales , Masculino , Miedo/fisiología , Miedo/efectos de los fármacos , Receptor Muscarínico M1/antagonistas & inhibidores , Receptor Muscarínico M1/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Hipocampo/metabolismo , Antagonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/administración & dosificación , Pirenzepina/farmacología , Condicionamiento Clásico/fisiología , Condicionamiento Clásico/efectos de los fármacos , Ratas , Transferencia de Experiencia en Psicología/efectos de los fármacos , Transferencia de Experiencia en Psicología/fisiología , Memoria/fisiología , Memoria/efectos de los fármacos , Ratas Sprague-Dawley
12.
J Biol Chem ; 299(5): 104693, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037305

RESUMEN

The Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of learning and memory, which poses a problem for targeting it therapeutically. Indeed, our study supports prior conclusions that long-term interference with CaMKII signaling can erase pre-formed memories. By contrast, short-term pharmacological CaMKII inhibition with the neuroprotective peptide tatCN19o interfered with learning in mice only mildly and transiently (for less than 1 h) and did not at all reverse pre-formed memories. These results were obtained with ≥500-fold of the dose that protected hippocampal neurons from cell death after a highly clinically relevant pig model of transient global cerebral ischemia: ventricular fibrillation followed by advanced life support and electrical defibrillation to induce the return of spontaneous circulation. Of additional importance for therapy development, our preliminary cardiovascular safety studies in mice and pig did not indicate any concerns with acute tatCN19o injection. Taken together, although prolonged interference with CaMKII signaling can erase memory, acute short-term CaMKII inhibition with tatCN19o did not cause such retrograde amnesia that would pose a contraindication for therapy.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Memoria , Animales , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Memoria/efectos de los fármacos , Memoria/fisiología , Neuronas/metabolismo , Fosforilación/fisiología , Porcinos , Péptidos/farmacología
13.
Neurobiol Dis ; 199: 106588, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38960101

RESUMEN

Clinical and preclinical evidence has demonstrated an increased risk for neuropsychiatric disorders following prenatal cannabinoid exposure. However, given the phytochemical complexity of cannabis, there is a need to understand how specific components of cannabis may contribute to these neurodevelopmental risks later in life. To investigate this, a rat model of prenatal cannabinoid exposure was utilized to examine the impacts of specific cannabis constituents (Δ9-tetrahydrocannabinol [THC]; cannabidiol [CBD]) alone and in combination on future neuropsychiatric liability in male and female offspring. Prenatal THC and CBD exposure were associated with low birth weight. At adolescence, offspring displayed sex-specific behavioural changes in anxiety, temporal order and social cognition, and sensorimotor gating. These phenotypes were associated with sex and treatment-specific neuronal and gene transcriptional alterations in the prefrontal cortex, and ventral hippocampus, regions where the endocannabinoid system is implicated in affective and cognitive development. Electrophysiology and RT-qPCR analysis in these regions implicated dysregulation of the endocannabinoid system and balance of excitatory and inhibitory signalling in the developmental consequences of prenatal cannabinoids. These findings reveal critical insights into how specific cannabinoids can differentially impact the developing fetal brains of males and females to enhance subsequent neuropsychiatric risk.


Asunto(s)
Conducta Animal , Cannabidiol , Dronabinol , Hipocampo , Corteza Prefrontal , Efectos Tardíos de la Exposición Prenatal , Modelos Animales , Animales , Ratas , Dronabinol/toxicidad , Cannabidiol/toxicidad , Factores Sexuales , Corteza Prefrontal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Femenino , Embarazo , Conducta Animal/efectos de los fármacos , Ratas Wistar , Memoria/efectos de los fármacos , Ansiedad/inducido químicamente , Cognición/efectos de los fármacos , Conducta Impulsiva/efectos de los fármacos , Psicotrópicos/toxicidad
14.
Hippocampus ; 34(7): 342-356, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38780087

RESUMEN

Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.


Asunto(s)
Giro Dentado , Receptores AMPA , Receptores de N-Metil-D-Aspartato , Sacarosa , Animales , Masculino , Ratas , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Aprendizaje Discriminativo/efectos de los fármacos , Aprendizaje Discriminativo/fisiología , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Memoria/fisiología , Memoria/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Wistar , Receptores AMPA/metabolismo , Receptores AMPA/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , ARN Mensajero/metabolismo , Autoadministración , Sacarosa/administración & dosificación
15.
Eur J Neurosci ; 60(4): 4491-4502, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38932560

RESUMEN

D-limonene is a widely used flavouring additive in foods, beverages and fragrances due to its pleasant lemon-like odour. This study aimed to investigate the effects of D-limonene on the central nervous system when subjected to chronic restraint stress in rats for 21 days. Forty rats were randomly divided into five groups: i) control, ii) D-limonene, iii) restraint stress, iv) restraint stress+D-limonene and v) restraint stress+fluoxetine. Following the induction of restraint stress, the sucrose preference test, the open field test, the novel object recognition test and the forced swimming test were performed. The levels of BDNF, IL-1ß, IL-6 and caspase-1 were measured from hippocampal tissue using the ELISA method. Sucrose preference test results showed an increase in consumption rate in the stress+D-limonene and a decrease in the stress group. The stress+D-limonene group reversed the increased defensive behaviour observed in the open-field test compared to the stress group. In the novel object recognition test, the discrimination index of the stress+D-limonene group increased compared to the stress group. BDNF levels increased in the stress+limonene group compared to the stress group. In contrast, IL-1ß and caspase-1 levels increased in the stress group compared to the control and decreased in the stress+limonene group compared to the stress group. In this study, D-limonene has been found to have antidepressant-like properties, reducing anhedonic and defensive behaviours and the impairing effects of stress on learning and memory tests. It was observed that D-limonene showed these effects by alleviating neuroinflammation induced by chronic restraint stress in rats.


Asunto(s)
Depresión , Limoneno , Restricción Física , Estrés Psicológico , Animales , Masculino , Limoneno/farmacología , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Ratas , Depresión/tratamiento farmacológico , Memoria/efectos de los fármacos , Ratas Wistar , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Aprendizaje/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fluoxetina/farmacología , Conducta Animal/efectos de los fármacos , Terpenos/farmacología , Antidepresivos/farmacología
16.
Biochem Biophys Res Commun ; 720: 150076, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-38772224

RESUMEN

Chronic morphine withdrawal memory formation is a complex process influenced by various molecular mechanisms. In this study, we aimed to investigate the contributions of the basolateral amygdala (BLA) and complement component 1, q subcomponent-like 3 (C1QL3), a secreted and presynaptically targeted protein, to the formation of chronic morphine (repeat dosing of morphine) withdrawal memory using conditioned place aversion (CPA) and chemogenetic methods. We conducted experiments involving the inhibition of the BLA during naloxone-induced withdrawal to assess its impact on CPA scores, providing insights into the significance of the BLA in the chronic morphine memory formation process. We also examined changes in C1ql3/C1QL3 expression within the BLA following conditioning. Immunofluorescence analysis revealed the colocalization of C1QL3 and the G protein-coupled receptor, brain-specific angiogenesis inhibitor 3 (BAI3) in the BLA, supporting their involvement in synaptic development. Moreover, we downregulated C1QL3 expression in the BLA to investigate its role in chronic morphine withdrawal memory formation. Our findings revealed that BLA inhibition during naloxone-induced withdrawal led to a significant reduction in CPA scores, confirming the critical role of the BLA in this memory process. Additionally, the upregulation of C1ql3 expression within the BLA postconditioning suggested its participation in withdrawal memory formation. The colocalization of C1QL3 and BAI3 in the BLA further supported their involvement in synaptic development. Furthermore, downregulation of C1QL3 in the BLA effectively hindered chronic morphine withdrawal memory formation, emphasizing its pivotal role in this process. Notably, we identified postsynaptic density protein 95 (PSD95) as a potential downstream effector of C1QL3 during chronic morphine withdrawal memory formation. Blocking PSD95 led to a significant reduction in the CPA score, and it appeared that C1QL3 modulated the ubiquitination-mediated degradation of PSD95, resulting in decreased PSD95 protein levels. This study underscores the importance of the BLA, C1QL3 and PSD95 in chronic morphine withdrawal memory formation. It provides valuable insights into the underlying molecular mechanisms, emphasizing their significance in this intricate process.


Asunto(s)
Complejo Nuclear Basolateral , Homólogo 4 de la Proteína Discs Large , Memoria , Morfina , Síndrome de Abstinencia a Sustancias , Animales , Morfina/farmacología , Síndrome de Abstinencia a Sustancias/metabolismo , Masculino , Ratones , Memoria/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large/metabolismo , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/efectos de los fármacos , Complemento C1q/metabolismo , Ratones Endogámicos C57BL , Naloxona/farmacología
17.
J Neurosci Res ; 102(10): e25390, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39373381

RESUMEN

Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. These new findings support the view that gut vagal afferents and the cNTSNA-to-vlBNST circuit play a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.


Asunto(s)
Reacción de Prevención , Ratas Sprague-Dawley , Nervio Vago , Animales , Masculino , Reacción de Prevención/fisiología , Reacción de Prevención/efectos de los fármacos , Ratas , Nervio Vago/fisiología , Nervio Vago/efectos de los fármacos , Nervio Vago/metabolismo , Saporinas , Neuronas Adrenérgicas/efectos de los fármacos , Neuronas Adrenérgicas/fisiología , Neuronas Adrenérgicas/metabolismo , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Norepinefrina/metabolismo , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Recuerdo Mental/fisiología , Recuerdo Mental/efectos de los fármacos , Memoria/fisiología , Memoria/efectos de los fármacos , Núcleos Septales/efectos de los fármacos , Núcleos Septales/metabolismo , Núcleos Septales/fisiología
18.
Neurobiol Learn Mem ; 213: 107960, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004160

RESUMEN

Labilization-reconsolidation, which relies on retrieval, has been considered an opportunity to attenuate the negative aspects of traumatic memories. A therapeutic strategy based on reconsolidation blockade is deemed more effective than current therapies relying on memory extinction. Nevertheless, extremely stressful memories frequently prove resistant to this process. Here, after inducing robust fear memory in mice through strong fear conditioning, we examined the possibility of rendering it susceptible to pharmacological modulation based on the degree of generalized fear (GF). To achieve this, we established an ordered gradient of GF, determined by the perceptual similarity between the associated context (CA) and non-associated contexts (CB, CC, CD, and CE) to the aversive event. We observed that as the exposure context became less similar to CA, the defensive pattern shifted from passive to active behaviors in both male and female mice. Subsequently, in conditioned animals, we administered propranolol after exposure to the different contexts (CA, CB, CC, CD or CE). In males, propranolol treatment resulted in reduced freezing time and enhanced risk assessment behaviors when administered following exposure to CA or CB, but not after CC, CD, or CE, compared to the control group. In females, a similar change in behavioral pattern was observed with propranolol administered after exposure to CC, but not after the other contexts. These results highlight the possibility of indirectly manipulating a robust contextual fear memory by controlling the level of generalization during recall. Additionally, it was demonstrated that the effect of propranolol on reconsolidation would not lead to a reduction in fear memory per se, but rather to its reorganization resulting in greater behavioral flexibility (from passive to active behaviors). Finally, from a clinical viewpoint, this would be of considerable relevance since following this strategy could make the treatment of psychiatric disorders associated with traumatic memory formation more effective and less stressful.


Asunto(s)
Condicionamiento Clásico , Miedo , Propranolol , Miedo/efectos de los fármacos , Miedo/fisiología , Animales , Masculino , Propranolol/farmacología , Femenino , Ratones , Condicionamiento Clásico/efectos de los fármacos , Consolidación de la Memoria/efectos de los fármacos , Consolidación de la Memoria/fisiología , Ratones Endogámicos C57BL , Memoria/efectos de los fármacos , Memoria/fisiología , Generalización Psicológica/efectos de los fármacos , Generalización Psicológica/fisiología , Extinción Psicológica/efectos de los fármacos
19.
Neurobiol Learn Mem ; 213: 107959, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964600

RESUMEN

Adolescence is characterized by a critical period of maturation and growth, during which regions of the brain are vulnerable to long-lasting cognitive disturbances. Adolescent exposure to nicotine can lead to deleterious neurological and psychological outcomes. Moreover, the nicotinic acetylcholine receptor (nAChR) has been shown to play a functionally distinct role in the development of the adolescent brain. CHRNA2 encodes for the α2 subunit of nicotinic acetylcholine receptors associated with CA1 oriens lacunosum moleculare GABAergic interneurons and is associated with learning and memory. Previously, we found that adolescent male hypersensitive CHRNA2L9'S/L9' mice had impairments in learning and memory during a pre-exposure-dependent contextual fear conditioning task that could be rescued by low-dose nicotine exposure. In this study, we assessed learning and memory in female adolescent hypersensitive CHRNA2L9'S/L9' mice exposed to saline or a subthreshold dose of nicotine using a hippocampus-dependent task of pre-exposure-dependent contextual fear conditioning. We found that nicotine-treated wild-type female mice had significantly greater improvements in learning and memory than both saline-treated wild-type mice and nicotine-treated CHRNA2L9'S/L9' female mice. Thus, hyperexcitability of CHRNA2 in female adolescent mice ablated the nicotine-mediated potentiation of learning and memory seen in wild-types. Our results indicate that nicotine exposure during adolescence mediates sexually dimorphic patterns of learning and memory, with wild-type female adolescents being more susceptible to the effects of sub-threshold nicotine exposure. To understand the mechanism underlying sexually dimorphic behavior between hyperexcitable CHRNA2 mice, it is critical that further research be conducted.


Asunto(s)
Miedo , Hipocampo , Memoria , Nicotina , Receptores Nicotínicos , Animales , Receptores Nicotínicos/metabolismo , Nicotina/farmacología , Femenino , Ratones , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Miedo/efectos de los fármacos , Miedo/fisiología , Memoria/efectos de los fármacos , Memoria/fisiología , Agonistas Nicotínicos/farmacología , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Ratones Endogámicos C57BL
20.
Nat Rev Neurosci ; 20(1): 5-18, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30518959

RESUMEN

Mortality due to opioid use has grown to the point where, for the first time in history, opioid-related deaths exceed those caused by car accidents in many states in the United States. Changes in the prescribing of opioids for pain and the illicit use of fentanyl (and derivatives) have contributed to the current epidemic. Less known is the impact of opioids on hippocampal neurogenesis, the functional manipulation of which may improve the deleterious effects of opioid use. We provide new insights into how the dysregulation of neurogenesis by opioids can modify learning and affect, mood and emotions, processes that have been well accepted to motivate addictive behaviours.


Asunto(s)
Afecto/efectos de los fármacos , Analgésicos Opioides/farmacología , Encéfalo/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Encéfalo/metabolismo , Humanos , Receptores Opioides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA