Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.122
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 613(7943): 391-397, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599985

RESUMEN

Chemical modifications of RNA have key roles in many biological processes1-3. N7-methylguanosine (m7G) is required for integrity and stability of a large subset of tRNAs4-7. The methyltransferase 1-WD repeat-containing protein 4 (METTL1-WDR4) complex is the methyltransferase that modifies G46 in the variable loop of certain tRNAs, and its dysregulation drives tumorigenesis in numerous cancer types8-14. Mutations in WDR4 cause human developmental phenotypes including microcephaly15-17. How METTL1-WDR4 modifies tRNA substrates and is regulated remains elusive18. Here we show,  through structural, biochemical and cellular studies of human METTL1-WDR4, that WDR4 serves as a scaffold for METTL1 and the tRNA T-arm. Upon tRNA binding, the αC region of METTL1 transforms into a helix, which together with the α6 helix secures both ends of the tRNA variable loop. Unexpectedly, we find that the predicted disordered N-terminal region of METTL1 is part of the catalytic pocket and essential for methyltransferase activity. Furthermore, we reveal that S27 phosphorylation in the METTL1 N-terminal region inhibits methyltransferase activity by locally disrupting the catalytic centre. Our results provide a molecular understanding of tRNA substrate recognition and phosphorylation-mediated regulation of METTL1-WDR4, and reveal the presumed disordered N-terminal region of METTL1 as a nexus of methyltransferase activity.


Asunto(s)
Proteínas de Unión al GTP , Metiltransferasas , Procesamiento Postranscripcional del ARN , ARN de Transferencia , Humanos , Biocatálisis , Dominio Catalítico , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/química , Metiltransferasas/metabolismo , Fosforilación , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Especificidad por Sustrato
2.
Genes Dev ; 35(13-14): 1005-1019, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34168039

RESUMEN

N6-methyladenosine (m6A) is an abundant internal RNA modification, influencing transcript fate and function in uninfected and virus-infected cells. Installation of m6A by the nuclear RNA methyltransferase METTL3 occurs cotranscriptionally; however, the genomes of some cytoplasmic RNA viruses are also m6A-modified. How the cellular m6A modification machinery impacts coronavirus replication, which occurs exclusively in the cytoplasm, is unknown. Here we show that replication of SARS-CoV-2, the agent responsible for the COVID-19 pandemic, and a seasonal human ß-coronavirus HCoV-OC43, can be suppressed by depletion of METTL3 or cytoplasmic m6A reader proteins YTHDF1 and YTHDF3 and by a highly specific small molecule METTL3 inhibitor. Reduction of infectious titer correlates with decreased synthesis of viral RNAs and the essential nucleocapsid (N) protein. Sites of m6A modification on genomic and subgenomic RNAs of both viruses were mapped by methylated RNA immunoprecipitation sequencing (meRIP-seq). Levels of host factors involved in m6A installation, removal, and recognition were unchanged by HCoV-OC43 infection; however, nuclear localization of METTL3 and cytoplasmic m6A readers YTHDF1 and YTHDF2 increased. This establishes that coronavirus RNAs are m6A-modified and host m6A pathway components control ß-coronavirus replication. Moreover, it illustrates the therapeutic potential of targeting the m6A pathway to restrict coronavirus reproduction.


Asunto(s)
Coronavirus Humano OC43/fisiología , Procesamiento Postranscripcional del ARN/genética , SARS-CoV-2/fisiología , Replicación Viral/genética , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Línea Celular , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Regulación de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Proteínas de la Nucleocápside , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Replicación Viral/efectos de los fármacos
3.
Nature ; 607(7919): 593-603, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768510

RESUMEN

Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2-4)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.


Asunto(s)
5-Metilcitosina , Citosina/análogos & derivados , Glucólisis , Mitocondrias , Metástasis de la Neoplasia , Fosforilación Oxidativa , ARN Mitocondrial , 5-Metilcitosina/biosíntesis , 5-Metilcitosina/metabolismo , Antígenos CD36 , Supervivencia Celular , Citosina/metabolismo , Progresión de la Enfermedad , Glucólisis/efectos de los fármacos , Humanos , Metilación/efectos de los fármacos , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Fosforilación Oxidativa/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo
4.
Nature ; 593(7860): 597-601, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33902106

RESUMEN

N6-methyladenosine (m6A) is an abundant internal RNA modification1,2 that is catalysed predominantly by the METTL3-METTL14 methyltransferase complex3,4. The m6A methyltransferase METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but the potential of therapeutic applications targeting this enzyme remains unknown5-7. Here we present the identification and characterization of STM2457, a highly potent and selective first-in-class catalytic inhibitor of METTL3, and a crystal structure of STM2457 in complex with METTL3-METTL14. Treatment of tumours with STM2457 leads to reduced AML growth and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m6A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various mouse models of AML, specifically targeting key stem cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA-modifying enzymes represents a promising avenue for anticancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Metiltransferasas/antagonistas & inhibidores , Adenosina/análogos & derivados , Animales , Apoptosis , Diferenciación Celular , Línea Celular Tumoral , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Nature ; 565(7740): 500-504, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626973

RESUMEN

In mammals, 2'-O-methylation of RNA is a molecular signature by which the cellular innate immune system distinguishes endogenous from exogenous messenger RNA1-3. However, the molecular functions of RNA 2'-O-methylation are not well understood. Here we have purified TAR RNA-binding protein (TRBP) and its interacting partners and identified a DICER-independent TRBP complex containing FTSJ3, a putative 2'-O-methyltransferase (2'O-MTase). In vitro and ex vivo experiments show that FTSJ3 is a 2'O-MTase that is recruited to HIV RNA through TRBP. Using RiboMethSeq analysis4, we identified predominantly FTSJ3-dependent 2'-O-methylations at specific residues on the viral genome. HIV-1 viruses produced in FTSJ3 knockdown cells show reduced 2'-O-methylation and trigger expression of type 1 interferons (IFNs) in human dendritic cells through the RNA sensor MDA5. This induction of IFN-α and IFN-ß leads to a reduction in HIV expression. We have identified an unexpected mechanism used by HIV-1 to evade innate immune recognition: the recruitment of the TRBP-FTSJ3 complex to viral RNA and its 2'-O-methylation.


Asunto(s)
VIH-1/inmunología , VIH-1/patogenicidad , Inmunidad Innata , Metiltransferasas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Células Dendríticas/inmunología , VIH-1/genética , Células HeLa , Humanos , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Helicasa Inducida por Interferón IFIH1/metabolismo , Metilación , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/deficiencia , Unión Proteica , ARN Viral/química , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo
6.
Biochem Biophys Res Commun ; 716: 150011, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704890

RESUMEN

Methionine adenosyltransferase 2 A (MAT2A) mediates the synthesis of methyl donor S-Adenosylmethionine (SAM), providing raw materials for methylation reactions in cells. MAT2A inhibitors are currently used for the treatment of tumors with methylthioadenosine phosphorylase (MTAP) deficiency in clinical research. Methyltransferase like 3 (METTL3) catalyzes N6-methyladenosine (m6A) modification of mRNA in mammalian cells using SAM as the substrate which has been shown to affect the tumorigenesis of non-small cell lung cancer (NSCLC) from multiple perspectives. MAT2A-induced SAM depletion may have the potential to inhibit the methyl transfer function of METTL3. Therefore, in order to expand the applicability of inhibitors, improve anti-tumor effects and reduce toxicity, the combinational effect of MAT2A inhibitor AG-270 and METTL3 inhibitor STM2457 was evaluated in NSCLC. The results showed that this combination induced cell apoptosis rather than cell cycle arrest, which was non-tissue-specific and was independent of MTAP expression status, resulting in a significant synergistic anti-tumor effect. We further elucidated that the combination-induced enhanced apoptosis was associated with the decreased m6A level, leading to downregulation of PI3K/AKT protein, ultimately activating the apoptosis-related proteins. Unexpectedly, although combination therapy resulted in metabolic recombination, no significant change in methionine metabolic metabolites was found. More importantly, the combination also exerted synergistic effects in vivo. In summary, the combination of MAT2A inhibitor and METTL3 inhibitor showed synergistic effects both in vivo and in vitro, which laid a theoretical foundation for expanding the clinical application research of the two types of drugs.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Sinergismo Farmacológico , Neoplasias Pulmonares , Metionina Adenosiltransferasa , Metiltransferasas , Metionina Adenosiltransferasa/metabolismo , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Metiltransferasas/metabolismo , Metiltransferasas/antagonistas & inhibidores , Línea Celular Tumoral , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Ratones , Ratones Desnudos , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Nucleic Acids Res ; 50(8): 4216-4245, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35412633

RESUMEN

RNA methyltransferases (MTases) are ubiquitous enzymes whose hitherto low profile in medicinal chemistry, contrasts with the surging interest in RNA methylation, the arguably most important aspect of the new field of epitranscriptomics. As MTases become validated as drug targets in all major fields of biomedicine, the development of small molecule compounds as tools and inhibitors is picking up considerable momentum, in academia as well as in biotech. Here we discuss the development of small molecules for two related aspects of chemical biology. Firstly, derivates of the ubiquitous cofactor S-adenosyl-l-methionine (SAM) are being developed as bioconjugation tools for targeted transfer of functional groups and labels to increasingly visible targets. Secondly, SAM-derived compounds are being investigated for their ability to act as inhibitors of RNA MTases. Drug development is moving from derivatives of cosubstrates towards higher generation compounds that may address allosteric sites in addition to the catalytic centre. Progress in assay development and screening techniques from medicinal chemistry have led to recent breakthroughs, e.g. in addressing human enzymes targeted for their role in cancer. Spurred by the current pandemic, new inhibitors against coronaviral MTases have emerged at a spectacular rate, including a repurposed drug which is now in clinical trial.


Asunto(s)
Metiltransferasas/antagonistas & inhibidores , ARN , Desarrollo de Medicamentos , Humanos , S-Adenosilmetionina/análogos & derivados
8.
Nucleic Acids Res ; 50(2): 635-650, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35018474

RESUMEN

Coronaviral methyltransferases (MTases), nsp10/16 and nsp14, catalyze the last two steps of viral RNA-cap creation that takes place in cytoplasm. This cap is essential for the stability of viral RNA and, most importantly, for the evasion of innate immune system. Non-capped RNA is recognized by innate immunity which leads to its degradation and the activation of antiviral immunity. As a result, both coronaviral MTases are in the center of scientific scrutiny. Recently, X-ray and cryo-EM structures of both enzymes were solved even in complex with other parts of the viral replication complex. High-throughput screening as well as structure-guided inhibitor design have led to the discovery of their potent inhibitors. Here, we critically summarize the tremendous advancement of the coronaviral MTase field since the beginning of COVID pandemic.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Coronavirus/efectos de los fármacos , Coronavirus/enzimología , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/química , Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Sitios de Unión , Coronavirus/genética , Descubrimiento de Drogas , Humanos , Metilación , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Relación Estructura-Actividad
9.
Nucleic Acids Res ; 50(2): e9, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34718755

RESUMEN

Epigenetic therapy has significant potential for cancer treatment. However, few small potent molecules have been identified against DNA or RNA modification regulatory proteins. Current approaches for activity detection of DNA/RNA methyltransferases and demethylases are time-consuming and labor-intensive, making it difficult to subject them to high-throughput screening. Here, we developed a fluorescence polarization-based 'High-Throughput Methyl Reading' (HTMR) assay to implement large-scale compound screening for DNA/RNA methyltransferases and demethylases-DNMTs, TETs, ALKBH5 and METTL3/METTL14. This assay is simple to perform in a mix-and-read manner by adding the methyl-binding proteins MBD1 or YTHDF1. The proteins can be used to distinguish FAM-labelled substrates or product oligonucleotides with different methylation statuses catalyzed by enzymes. Therefore, the extent of the enzymatic reactions can be coupled with the variation of FP binding signals. Furthermore, this assay can be effectively used to conduct a cofactor competition study. Based on the assay, we identified two natural products as candidate compounds for DNMT1 and ALKBH5. In summary, this study outlines a powerful homogeneous approach for high-throughput screening and evaluating enzymatic activity for DNA/RNA methyltransferases and demethylases that is cheap, easy, quick, and highly sensitive.


Asunto(s)
Metilasas de Modificación del ADN/metabolismo , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Metiltransferasas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Proteínas Portadoras/metabolismo , Metilación de ADN , Metilasas de Modificación del ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Metiltransferasas/antagonistas & inhibidores , Nucleótidos/metabolismo , Oxidorreductasas N-Desmetilantes/antagonistas & inhibidores , ARN/metabolismo
10.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892207

RESUMEN

Pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) exhibit favorable survival rates. However, for AML and ALL patients carrying KMT2A gene translocations clinical outcome remains unsatisfactory. Key players in KMT2A-fusion-driven leukemogenesis include menin and DOT1L. Recently, menin inhibitors like revumenib have garnered attention for their potential therapeutic efficacy in treating KMT2A-rearranged acute leukemias. However, resistance to menin inhibition poses challenges, and identifying which patients would benefit from revumenib treatment is crucial. Here, we investigated the in vitro response to revumenib in KMT2A-rearranged ALL and AML. While ALL samples show rapid, dose-dependent induction of leukemic cell death, AML responses are much slower and promote myeloid differentiation. Furthermore, we reveal that acquired resistance to revumenib in KMT2A-rearranged ALL cells can occur either through the acquisition of MEN1 mutations or independently of mutations in MEN1. Finally, we demonstrate significant synergy between revumenib and the DOT1L inhibitor pinometostat in KMT2A-rearranged ALL, suggesting that such drug combinations represent a potent therapeutic strategy for these patients. Collectively, our findings underscore the complexity of resistance mechanisms and advocate for precise patient stratification to optimize the use of menin inhibitors in KMT2A-rearranged acute leukemia.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Leucemia Mieloide Aguda , Metiltransferasas , Proteína de la Leucemia Mieloide-Linfoide , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogénicas , Humanos , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/genética , Metiltransferasas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Sinergismo Farmacológico , Reordenamiento Génico , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Mutación
11.
Molecules ; 29(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38792173

RESUMEN

The ongoing COVID-19 pandemic still threatens human health around the world. The methyltransferases (MTases) of SARS-CoV-2, specifically nsp14 and nsp16, play crucial roles in the methylation of the N7 and 2'-O positions of viral RNA, making them promising targets for the development of antiviral drugs. In this work, we performed structure-based virtual screening for nsp14 and nsp16 using the screening workflow (HTVS, SP, XP) of Schrödinger 2019 software, and we carried out biochemical assays and molecular dynamics simulation for the identification of potential MTase inhibitors. For nsp14, we screened 239,000 molecules, leading to the identification of three hits A1-A3 showing N7-MTase inhibition rates greater than 60% under a concentration of 50 µM. For the SAM binding and nsp10-16 interface sites of nsp16, the screening of 210,000 and 237,000 molecules, respectively, from ZINC15 led to the discovery of three hit compounds B1-B3 exhibiting more than 45% of 2'-O-MTase inhibition under 50 µM. These six compounds with moderate MTase inhibitory activities could be used as novel candidates for the further development of anti-SARS-CoV-2 drugs.


Asunto(s)
Antivirales , Inhibidores Enzimáticos , Metiltransferasas , Simulación de Dinámica Molecular , SARS-CoV-2 , Proteínas no Estructurales Virales , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Metiltransferasas/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Antivirales/farmacología , Antivirales/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Humanos , Simulación del Acoplamiento Molecular , Evaluación Preclínica de Medicamentos , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Sitios de Unión , Exorribonucleasas
12.
Angew Chem Int Ed Engl ; 63(24): e202402611, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38607929

RESUMEN

METTL3, a primary methyltransferase catalyzing the RNA N6-methyladenosine (m6A) modification, has been identified as an oncogene in several cancer types and thus nominated as a potentially effective target for therapeutic inhibition. However, current options using this strategy are limited. In this study, we targeted protein-protein interactions at the METTL3-METTL14 binding interface to inhibit complex formation and subsequent catalysis of the RNA m6A modification. Among candidate peptides, RM3 exhibited the highest anti-cancer potency, inhibiting METTL3 activity while also facilitating its proteasomal degradation. We then designed a stapled peptide inhibitor (RSM3) with enhanced peptide stability and formation of the α-helical secondary structure required for METTL3 interaction. Functional and transcriptomic analysis in vivo indicated that RSM3 induced upregulation of programmed cell death-related genes while inhibiting cancer-promoting signals. Furthermore, tumor growth was significantly suppressed while apoptosis was enhanced upon RSM3 treatment, accompanied by increased METTL3 degradation, and reduced global RNA methylation levels in two in vivo tumor models. This peptide inhibitor thus exploits a mechanism distinct from other small-molecule competitive inhibitors to inhibit oncogenic METTL3 activity. Our findings collectively highlight the potential of targeting METTL3 in cancer therapies through peptide-based inhibition of complex formation and proteolytic degradation.


Asunto(s)
Antineoplásicos , Metiltransferasas , Péptidos , Metiltransferasas/metabolismo , Metiltransferasas/antagonistas & inhibidores , Humanos , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Adenosina/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos
13.
Molecules ; 28(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36677825

RESUMEN

SARS-CoV-2 nsp14 guanine-N7-methyltransferase plays an important role in the viral RNA translation process by catalyzing the transfer of a methyl group from S-adenosyl-methionine (SAM) to viral mRNA cap. We report a structure-guided design and synthesis of 3-(adenosylthio)benzoic acid derivatives as nsp14 methyltransferase inhibitors resulting in compound 5p with subnanomolar inhibitory activity and improved cell membrane permeability in comparison with the parent inhibitor. Compound 5p acts as a bisubstrate inhibitor targeting both SAM and mRNA-binding pockets of nsp14. While the selectivity of 3-(adenosylthio)benzoic acid derivatives against human glycine N-methyltransferase was not improved, the discovery of phenyl-substituted analogs 5p,t may contribute to further development of SARS-CoV-2 nsp14 bisubstrate inhibitors.


Asunto(s)
Antivirales , Metiltransferasas , SARS-CoV-2 , Metilación , Metiltransferasas/antagonistas & inhibidores , ARN Mensajero/genética , ARN Viral/genética , S-Adenosilmetionina/química , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Antivirales/farmacología
14.
Angew Chem Int Ed Engl ; 62(51): e202311924, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37909922

RESUMEN

5-Methylcytosine (m5 C) is an RNA modification prevalent on tRNAs, where it can protect tRNAs from endonucleolytic cleavage to maintain protein synthesis. The NSUN family (NSUN1-7 in humans) of RNA methyltransferases are capable of installing the methyl group onto the C5 position of cytosines in RNA. NSUNs are implicated in a wide range of (patho)physiological processes, but selective and cell-active inhibitors of these enzymes are lacking. Here, we use cysteine-directed activity-based protein profiling (ABPP) to discover azetidine acrylamides that act as stereoselective covalent inhibitors of human NSUN2. Despite targeting a conserved catalytic cysteine in the NSUN family, the NSUN2 inhibitors show negligible cross-reactivity with other human NSUNs and exhibit good proteome-wide selectivity. We verify that the azetidine acrylamides inhibit the catalytic activity of recombinant NSUN2, but not NSUN6, and demonstrate that these compounds stereoselectively disrupt NSUN2-tRNA interactions in cancer cells, leading to a global reduction in tRNA m5 C content. Our findings thus highlight the potential to create isotype-selective and cell-active inhibitors of NSUN2 with covalent chemistry targeting a conserved catalytic cysteine.


Asunto(s)
Azetidinas , Inhibidores Enzimáticos , Metiltransferasas , ARNt Metiltransferasas , Humanos , Acrilamidas , Cisteína/metabolismo , Metilación , Metiltransferasas/antagonistas & inhibidores , Proteómica , ARN de Transferencia/química , ARNt Metiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología
15.
Immunol Cell Biol ; 100(9): 718-730, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36005900

RESUMEN

Alloreactive CD4+ T cells play a central role in allograft rejection. However, the post-transcriptional regulation of the effector program in alloreactive CD4+ T cells remains unclear. N6 -methyladenosine (m6 A) RNA modification is involved in various physiological and pathological processes. Herein, we investigated whether m6 A methylation plays a role in the allogeneic T-cell effector program. m6 A levels of CD4+ T cells from spleens, draining lymph nodes and skin allografts were determined in a skin transplantation model. The effects of a METTL3 inhibitor (STM2457) on CD4+ T-cell characteristics including proliferation, cell cycle, cell apoptosis and effector differentiation were determined after stimulation of polyclonal and alloantigen-specific (TEa; CD4+ T cells specific for I-Eα52-68 ) CD4+ T cells with α-CD3/α-CD28 monoclonal antibodies and cognate CB6F1 alloantigen, respectively. We found that graft-infiltrating CD4+ T cells expressed high m6 A levels. Administration of STM2457 reduced m6 A levels, inhibited T-cell proliferation and suppressed effector differentiation of polyclonal CD4+ T cells. Alloreactive TEa cells challenged with 40 µm STM2457 exhibited deficits in T-cell proliferation and T helper type 1 cell differentiation, a cell cycle arrest in the G0 phase and elevated cell apoptosis. Moreover, these impaired T-cell responses were associated with the diminished expression levels of transcription factors Ki-67, c-Myc and T-bet. Therefore, METTL3 inhibition reduces the expression of several key transcriptional factors for the T-cell effector program and suppresses alloreactive CD4+ T-cell effector function and differentiation. Targeting m6 A-related enzymes and molecular machinery in CD4+ T cells represents an attractive therapeutic approach to prevent allograft rejection.


Asunto(s)
Adenosina/análogos & derivados , Linfocitos T CD4-Positivos , Trasplante de Células Madre Hematopoyéticas , Metiltransferasas , Adenosina/análisis , Animales , Anticuerpos Monoclonales/metabolismo , Antígenos CD28/metabolismo , Linfocitos T CD8-positivos , Rechazo de Injerto , Isoantígenos , Antígeno Ki-67 , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , ARN/metabolismo , Factores de Transcripción/metabolismo
16.
Nat Chem Biol ; 16(12): 1394-1402, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32719557

RESUMEN

Metabolism is often regulated by the transcription and translation of RNA. In turn, it is likely that some metabolites regulate enzymes controlling reversible RNA modification, such as N6-methyladenosine (m6A), to modulate RNA. This hypothesis is at least partially supported by the findings that multiple metabolic diseases are highly associated with fat mass and obesity-associated protein (FTO), an m6A demethylase. However, knowledge about whether and which metabolites directly regulate m6A remains elusive. Here, we show that NADP directly binds FTO, independently increases FTO activity, and promotes RNA m6A demethylation and adipogenesis. We screened a set of metabolites using a fluorescence quenching assay and NADP was identified to remarkably bind FTO. In vitro demethylation assays indicated that NADP enhances FTO activity. Furthermore, NADP regulated mRNA m6A via FTO in vivo, and deletion of FTO blocked NADP-enhanced adipogenesis in 3T3-L1 preadipocytes. These results build a direct link between metabolism and RNA m6A demethylation.


Asunto(s)
Adenosina/análogos & derivados , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , NADP/farmacología , ARN Mensajero/genética , Células 3T3-L1 , Adenosina/metabolismo , Adipocitos/citología , Adipocitos/enzimología , Adipogénesis/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/antagonistas & inhibidores , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Sitios de Unión , Diferenciación Celular/efectos de los fármacos , Desmetilación , Pruebas de Enzimas , Eliminación de Gen , Regulación de la Expresión Génica , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Cinética , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , NADP/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
17.
Biochem J ; 478(13): 2481-2497, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198328

RESUMEN

The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2'-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Exorribonucleasas/antagonistas & inhibidores , Metiltransferasas/antagonistas & inhibidores , Caperuzas de ARN/metabolismo , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antivirales/química , Clorobencenos/farmacología , Chlorocebus aethiops , Pruebas de Enzimas , Exorribonucleasas/genética , Exorribonucleasas/aislamiento & purificación , Exorribonucleasas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Indazoles/farmacología , Indenos/farmacología , Indoles/farmacología , Metiltransferasas/genética , Metiltransferasas/aislamiento & purificación , Metiltransferasas/metabolismo , Nitrilos/farmacología , Fenotiazinas/farmacología , Purinas/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Especificidad por Sustrato , Trifluperidol/farmacología , Células Vero , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/aislamiento & purificación , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/aislamiento & purificación , Proteínas Reguladoras y Accesorias Virales/metabolismo
18.
Nucleic Acids Res ; 48(1): e5, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31691820

RESUMEN

RNA:5-methylcytosine (m5C) methyltransferases are currently the focus of intense research following a series of high-profile reports documenting their physiological links to several diseases. However, no methods exist which permit the specific analysis of RNA:m5C methyltransferases in cells. Herein, we described how a combination of biophysical studies led us to identify distinct duplex-remodelling effects of m5C on RNA and DNA duplexes. Specifically, m5C induces a C3'-endo to C2'-endo sugar-pucker switch in CpG RNA duplex but triggers a B-to-Z transformation in CpG DNA duplex. Inspired by these different 'structural signatures', we developed a m5C-sensitive probe which fluoresces spontaneously in response to m5C-induced sugar-pucker switch, hence useful for sensing RNA:m5C methyltransferase activity. Through the use of this probe, we achieved real-time imaging and flow cytometry analysis of NOP2/Sun RNA methyltransferase 2 (NSUN2) activity in HeLa cells. We further applied the probe to the cell-based screening of NSUN2 inhibitors. The developed strategy could also be adapted for the detection of DNA:m5C methyltransferases. This was demonstrated by the development of DNA m5C-probe which permits the screening of DNA methyltransferase 3A inhibitors. To our knowledge, this study represents not only the first examples of m5C-responsive probes, but also a new strategy for discriminating RNA and DNA m5C methyltransferase activity in cells.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/química , ADN/química , Colorantes Fluorescentes/análisis , Metiltransferasas/química , Sondas Moleculares/análisis , ARN/química , ADN/genética , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Citometría de Flujo/métodos , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Células HeLa , Humanos , Cinética , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/genética , Metiltransferasas/metabolismo , Imagen Molecular/métodos , Sondas Moleculares/síntesis química , Sondas Moleculares/metabolismo , Conformación de Ácido Nucleico , ARN/genética , ARN/metabolismo , Análisis de la Célula Individual/métodos
19.
Drug Dev Res ; 83(3): 783-799, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35040501

RESUMEN

m6 A RNA methyltransferase (METTL3-14) catalyzes the methylation of adenosine in mRNA and plays important roles in mRNA functions, and it has been implicated in the progression of multiple cancers, including acute myeloid leukemia (AML). In this study, we describe the discovery of the first allosteric inhibitor of the METTL3-14 complex based on structure-activity relationship (SAR) and optimization studies of the hit compound, 4-[2-[5-chloro-1-(diphenylmethyl)-2-methyl-1H-indol-3-yl]-ethoxy]benzoic acid (CDIBA). Compound 43n was optimized throughout the modifications of 4 different regions of the structure, and it displayed potent enzyme inhibitory activity of the METTL3-14 complex (IC50  = 2.81 µM) and an antiproliferative effect in the AML cell lines by suppressing the m6 A level of mRNA. The inhibition mechanism and binding mode of 43n were based on the interaction of the reversible and noncompetitive inhibitory profile at the allosteric site along with selectivity for the METTL3-14 complex relative to each subunit enzyme or truncated complex enzyme.


Asunto(s)
Inhibidores Enzimáticos , Leucemia Mieloide Aguda , Metiltransferasas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Indoles/farmacología , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN/química , ARN/metabolismo , ARN Mensajero/metabolismo
20.
Molecules ; 27(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35209173

RESUMEN

Protein N-terminal methyltransferase 1 (NTMT1) recognizes a unique N-terminal X-P-K/R motif (X represents any amino acid other than D/E) and transfers 1-3 methyl groups to the N-terminal region of its substrates. Guided by the co-crystal structures of NTMT1 in complex with the previously reported peptidomimetic inhibitor DC113, we designed and synthesized a series of new peptidomimetic inhibitors. Through a focused optimization of DC113, we discovered a new cell-potent peptidomimetic inhibitor GD562 (IC50 = 0.93 ± 0.04 µM). GD562 exhibited improved inhibition of the cellular N-terminal methylation levels of both the regulator of chromosome condensation 1 and the oncoprotein SET with an IC50 value of ~50 µM in human colorectal cancer HCT116 cells. Notably, the inhibitory activity of GD562 for the SET protein increased over 6-fold compared with the previously reported cell-potent inhibitor DC541. Furthermore, GD562 also exhibited over 100-fold selectivity for NTMT1 against several other methyltransferases. Thus, this study provides a valuable probe to investigate the biological functions of NTMT1.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Metiltransferasas/antagonistas & inhibidores , Peptidomiméticos/química , Peptidomiméticos/farmacología , Sitios de Unión , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Humanos , Metilación , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA