Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.679
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 585-613, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38424470

RESUMEN

Alzheimer disease (AD) is the most common neurodegenerative disease, and with no efficient curative treatment available, its medical, social, and economic burdens are expected to dramatically increase. AD is historically characterized by amyloid ß (Aß) plaques and tau neurofibrillary tangles, but over the last 25 years chronic immune activation has been identified as an important factor contributing to AD pathogenesis. In this article, we review recent and important advances in our understanding of the significance of immune activation in the development of AD. We describe how brain-resident macrophages, the microglia, are able to detect Aß species and be activated, as well as the consequences of activated microglia in AD pathogenesis. We discuss transcriptional changes of microglia in AD, their unique heterogeneity in humans, and emerging strategies to study human microglia. Finally, we expose, beyond Aß and microglia, the role of peripheral signals and different cell types in immune activation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Microglía , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Humanos , Animales , Microglía/inmunología , Microglía/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Macrófagos/inmunología , Macrófagos/metabolismo
2.
Annu Rev Immunol ; 41: 431-452, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36750318

RESUMEN

The complement system is an ancient collection of proteolytic cascades with well-described roles in regulation of innate and adaptive immunity. With the convergence of a revolution in complement-directed clinical therapeutics, the discovery of specific complement-associated targetable pathways in the central nervous system, and the development of integrated multi-omic technologies that have all emerged over the last 15 years, precision therapeutic targeting in Alzheimer disease and other neurodegenerative diseases and processes appears to be within reach. As a sensor of tissue distress, the complement system protects the brain from microbial challenge as well as the accumulation of dead and/or damaged molecules and cells. Additional more recently discovered diverse functions of complement make it of paramount importance to design complement-directed neurotherapeutics such that the beneficial roles in neurodevelopment, adult neural plasticity, and neuroprotective functions of the complement system are retained.


Asunto(s)
Enfermedades Neuroinflamatorias , Neuroprotección , Humanos , Animales , Encéfalo , Proteínas del Sistema Complemento , Plasticidad Neuronal/fisiología , Microglía/fisiología
3.
Annu Rev Immunol ; 39: 251-277, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33556248

RESUMEN

The immune system of the central nervous system (CNS) consists primarily of innate immune cells. These are highly specialized macrophages found either in the parenchyma, called microglia, or at the CNS interfaces, such as leptomeningeal, perivascular, and choroid plexus macrophages. While they were primarily thought of as phagocytes, their function extends well beyond simple removal of cell debris during development and diseases. Brain-resident innate immune cells were found to be plastic, long-lived, and host to an outstanding number of risk genes for multiple pathologies. As a result, they are now considered the most suitable targets for modulating CNS diseases. Additionally, recent single-cell technologies enhanced our molecular understanding of their origins, fates, interactomes, and functional cell statesduring health and perturbation. Here, we review the current state of our understanding and challenges of the myeloid cell biology in the CNS and treatment options for related diseases.


Asunto(s)
Sistema Nervioso Central , Microglía , Animales , Encéfalo , Humanos , Macrófagos , Células Mieloides
4.
Annu Rev Immunol ; 37: 73-95, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31026414

RESUMEN

Neurotropic RNA viruses continue to emerge and are increasingly linked to diseases of the central nervous system (CNS) despite viral clearance. Indeed, the overall mortality of viral encephalitis in immunocompetent individuals is low, suggesting efficient mechanisms of virologic control within the CNS. Both immune and neural cells participate in this process, which requires extensive innate immune signaling between resident and infiltrating cells, including microglia and monocytes, that regulate the effector functions of antiviral T and B cells as they gain access to CNS compartments. While these interactions promote viral clearance via mainly neuroprotective mechanisms, they may also promote neuropathology and, in some cases, induce persistent alterations in CNS physiology and function that manifest as neurologic and psychiatric diseases. This review discusses mechanisms of RNA virus clearance and neurotoxicity during viral encephalitis with a focus on the cytokines essential for immune and neural cell inflammatory responses and interactions. Understanding neuroimmune communications in the setting of viral infections is essential for the development of treatments that augment neuroprotective processes while limiting ongoing immunopathological processes that cause ongoing CNS disease.


Asunto(s)
Encéfalo/inmunología , Inmunidad Innata , Microglía/fisiología , Infecciones por Virus ARN/inmunología , Virus ARN/fisiología , Animales , Barrera Hematoencefálica , Encéfalo/virología , Humanos , Inflamación Neurogénica , Neuroinmunomodulación
5.
Annu Rev Immunol ; 35: 441-468, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28226226

RESUMEN

Microglia are resident cells of the brain that regulate brain development, maintenance of neuronal networks, and injury repair. Microglia serve as brain macrophages but are distinct from other tissue macrophages owing to their unique homeostatic phenotype and tight regulation by the central nervous system (CNS) microenvironment. They are responsible for the elimination of microbes, dead cells, redundant synapses, protein aggregates, and other particulate and soluble antigens that may endanger the CNS. Furthermore, as the primary source of proinflammatory cytokines, microglia are pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Alterations in microglia functionality are implicated in brain development and aging, as well as in neurodegeneration. Recent observations about microglia ontogeny combined with extensive gene expression profiling and novel tools to study microglia biology have allowed us to characterize the spectrum of microglial phenotypes during development, homeostasis, and disease. In this article, we review recent advances in our understanding of the biology of microglia, their contribution to homeostasis, and their involvement in neurodegeneration. Moreover, we highlight the complexity of targeting microglia for therapeutic intervention in neurodegenerative diseases.


Asunto(s)
Terapia Biológica/métodos , Encéfalo/fisiología , Sistema Nervioso Central , Microglía/fisiología , Enfermedades Neurodegenerativas/inmunología , Inflamación Neurogénica , Animales , Citocinas/metabolismo , Homeostasis , Humanos , Microglía/trasplante
6.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309258

RESUMEN

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Asunto(s)
Encéfalo , Microglía , Axones , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Macrófagos/fisiología , Microglía/patología , Morfogénesis
7.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38490196

RESUMEN

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Asunto(s)
Encéfalo , Interferón Tipo I , Microglía , Animales , Ratones , Interferón Tipo I/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Pez Cebra , Encéfalo/citología , Encéfalo/crecimiento & desarrollo
8.
Cell ; 187(16): 4193-4212.e24, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38942014

RESUMEN

Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.


Asunto(s)
Envejecimiento , Encéfalo , Complemento C1q , Homeostasis , Microglía , Neuronas , Ribonucleoproteínas , Animales , Complemento C1q/metabolismo , Ratones , Microglía/metabolismo , Envejecimiento/metabolismo , Encéfalo/metabolismo , Ribonucleoproteínas/metabolismo , Neuronas/metabolismo , Ratones Endogámicos C57BL , Humanos
9.
Cell ; 187(2): 428-445.e20, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38086389

RESUMEN

A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear. We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-ß (Aß) plaque-depositing model. We injected AD-tau brain extract to investigate tau seeding and spreading in the presence or absence of amyloid. Similar to the case report, APOE3ch expression resulted in peripheral dyslipidemia and a marked reduction in plaque-associated tau pathology. Additionally, we observed decreased amyloid response and enhanced microglial response around plaques. We also demonstrate increased myeloid cell phagocytosis and degradation of tau aggregates linked to weaker APOE3ch binding to heparin sulfate proteoglycans. APOE3ch influences the microglial response to Aß plaques, which suppresses Aß-induced tau seeding and spreading. The results reveal new possibilities to target Aß-induced tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Apolipoproteína E3 , Proteínas tau , Animales , Humanos , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Informes de Casos como Asunto
10.
Cell ; 186(10): 2111-2126.e20, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172564

RESUMEN

Microglia are specialized brain-resident macrophages that play crucial roles in brain development, homeostasis, and disease. However, until now, the ability to model interactions between the human brain environment and microglia has been severely limited. To overcome these limitations, we developed an in vivo xenotransplantation approach that allows us to study functionally mature human microglia (hMGs) that operate within a physiologically relevant, vascularized immunocompetent human brain organoid (iHBO) model. Our data show that organoid-resident hMGs gain human-specific transcriptomic signatures that closely resemble their in vivo counterparts. In vivo two-photon imaging reveals that hMGs actively engage in surveilling the human brain environment, react to local injuries, and respond to systemic inflammatory cues. Finally, we demonstrate that the transplanted iHBOs developed here offer the unprecedented opportunity to study functional human microglia phenotypes in health and disease and provide experimental evidence for a brain-environment-induced immune response in a patient-specific model of autism with macrocephaly.


Asunto(s)
Microglía , Organoides , Humanos , Encéfalo , Macrófagos , Fenotipo
11.
Cell ; 186(20): 4454-4471.e19, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37703875

RESUMEN

Macrophages are heterogeneous and play critical roles in development and disease, but their diversity, function, and specification remain inadequately understood during human development. We generated a single-cell RNA sequencing map of the dynamics of human macrophage specification from PCW 4-26 across 19 tissues. We identified a microglia-like population and a proangiogenic population in 15 macrophage subtypes. Microglia-like cells, molecularly and morphologically similar to microglia in the CNS, are present in the fetal epidermis, testicle, and heart. They are the major immune population in the early epidermis, exhibit a polarized distribution along the dorsal-lateral-ventral axis, and interact with neural crest cells, modulating their differentiation along the melanocyte lineage. Through spatial and differentiation trajectory analysis, we also showed that proangiogenic macrophages are perivascular across fetal organs and likely yolk-sac-derived as microglia. Our study provides a comprehensive map of the heterogeneity and developmental dynamics of human macrophages and unravels their diverse functions during development.


Asunto(s)
Macrófagos , Humanos , Diferenciación Celular , Linaje de la Célula , Macrófagos/citología , Microglía , Especificidad de Órganos
12.
Cell ; 186(20): 4386-4403.e29, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774678

RESUMEN

Altered microglial states affect neuroinflammation, neurodegeneration, and disease but remain poorly understood. Here, we report 194,000 single-nucleus microglial transcriptomes and epigenomes across 443 human subjects and diverse Alzheimer's disease (AD) pathological phenotypes. We annotate 12 microglial transcriptional states, including AD-dysregulated homeostatic, inflammatory, and lipid-processing states. We identify 1,542 AD-differentially-expressed genes, including both microglia-state-specific and disease-stage-specific alterations. By integrating epigenomic, transcriptomic, and motif information, we infer upstream regulators of microglial cell states, gene-regulatory networks, enhancer-gene links, and transcription-factor-driven microglial state transitions. We demonstrate that ectopic expression of our predicted homeostatic-state activators induces homeostatic features in human iPSC-derived microglia-like cells, while inhibiting activators of inflammation can block inflammatory progression. Lastly, we pinpoint the expression of AD-risk genes in microglial states and differential expression of AD-risk genes and their regulators during AD progression. Overall, we provide insights underlying microglial states, including state-specific and AD-stage-specific microglial alterations at unprecedented resolution.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Regulación de la Expresión Génica , Inflamación/patología , Microglía/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Epigenoma
13.
Cell ; 186(20): 4438-4453.e23, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774681

RESUMEN

Cellular perturbations underlying Alzheimer's disease (AD) are primarily studied in human postmortem samples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the early cortical amyloid response-were prominent in neurons, wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes and pyramidal neurons upregulated genes associated with ß-amyloid production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Lóbulo Frontal , Microglía , Neuronas , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides/metabolismo , Microglía/patología , Neuronas/patología , Células Piramidales , Biopsia , Lóbulo Frontal/patología , Análisis de Expresión Génica de una Sola Célula , Núcleo Celular/metabolismo , Núcleo Celular/patología
14.
Cell ; 185(22): 4043-4045, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36306731

RESUMEN

During neurodegenerative disease, resident CNS macrophages termed "microglia" assume a neuroprotective role and engulf toxic protein aggregates and cell debris. In this issue of Cell, two groups independently show how spleen tyrosine kinase (SYK) acts downstream of microglial surface receptors to propagate this neuroprotective program in vivo.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Humanos , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Macrófagos , Quinasa Syk/metabolismo
15.
Cell ; 185(22): 4135-4152.e22, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36257314

RESUMEN

Recent studies have begun to reveal critical roles for the brain's professional phagocytes, microglia, and their receptors in the control of neurotoxic amyloid beta (Aß) and myelin debris accumulation in neurodegenerative disease. However, the critical intracellular molecules that orchestrate neuroprotective functions of microglia remain poorly understood. In our studies, we find that targeted deletion of SYK in microglia leads to exacerbated Aß deposition, aggravated neuropathology, and cognitive defects in the 5xFAD mouse model of Alzheimer's disease (AD). Disruption of SYK signaling in this AD model was further shown to impede the development of disease-associated microglia (DAM), alter AKT/GSK3ß-signaling, and restrict Aß phagocytosis by microglia. Conversely, receptor-mediated activation of SYK limits Aß load. We also found that SYK critically regulates microglial phagocytosis and DAM acquisition in demyelinating disease. Collectively, these results broaden our understanding of the key innate immune signaling molecules that instruct beneficial microglial functions in response to neurotoxic material.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía/patología , Fagocitosis
16.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768006

RESUMEN

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Asunto(s)
COVID-19 , Gripe Humana , Neoplasias , Animales , Humanos , Gripe Humana/patología , Ratones , Microglía/patología , Vaina de Mielina , Neoplasias/patología , SARS-CoV-2
17.
Cell ; 185(22): 4153-4169.e19, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36306735

RESUMEN

Genetic studies have highlighted microglia as pivotal in orchestrating Alzheimer's disease (AD). Microglia that adhere to Aß plaques acquire a transcriptional signature, "disease-associated microglia" (DAM), which largely emanates from the TREM2-DAP12 receptor complex that transmits intracellular signals through the protein tyrosine kinase SYK. The human TREM2R47H variant associated with high AD risk fails to activate microglia via SYK. We found that SYK-deficient microglia cannot encase Aß plaques, accelerating brain pathology and behavioral deficits. SYK deficiency impaired the PI3K-AKT-GSK-3ß-mTOR pathway, incapacitating anabolic support required for attaining the DAM profile. However, SYK-deficient microglia proliferated and advanced to an Apoe-expressing prodromal stage of DAM; this pathway relied on the adapter DAP10, which also binds TREM2. Thus, microglial responses to Aß involve non-redundant SYK- and DAP10-pathways. Systemic administration of an antibody against CLEC7A, a receptor that directly activates SYK, rescued microglia activation in mice expressing the TREM2R47H allele, unveiling new options for AD immunotherapy.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Animales , Ratones , Humanos , Microglía/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/patología , Placa Amiloide/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Quinasa Syk/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
18.
Cell ; 185(13): 2213-2233.e25, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35750033

RESUMEN

The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Astrocitos/metabolismo , Colesterol/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Microglía/metabolismo
19.
Nat Immunol ; 25(2): 357-370, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177281

RESUMEN

Cerebral ischemia triggers a powerful inflammatory reaction involving peripheral leukocytes and brain resident cells that contribute to both tissue injury and repair. However, their dynamics and diversity remain poorly understood. To address these limitations, we performed a single-cell transcriptomic study of brain and blood cells 2 or 14 days after ischemic stroke in mice. We observed a strong divergence of post-ischemic microglia, monocyte-derived macrophages and neutrophils over time, while endothelial cells and brain-associated macrophages showed altered transcriptomic signatures at 2 days poststroke. Trajectory inference predicted the in situ trans-differentiation of macrophages from blood monocytes into day 2 and day 14 phenotypes, while neutrophils were projected to be continuously de novo recruited from the blood. Brain single-cell transcriptomes from both female and male aged mice were similar to that of young male mice, but aged and young brains differed in their immune cell composition. Although blood leukocyte analysis also revealed altered transcriptomes after stroke, brain-infiltrating leukocytes displayed higher transcriptomic divergence than their circulating counterparts, indicating that phenotypic diversification occurs within the brain in the early and recovery phases of ischemic stroke. A portal ( https://anratherlab.shinyapps.io/strokevis/ ) is provided to allow user-friendly access to our data.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Femenino , Masculino , Ratones , Animales , Células Endoteliales , Accidente Cerebrovascular/genética , Encéfalo , Monocitos , Microglía , Perfilación de la Expresión Génica , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
20.
Nat Immunol ; 25(7): 1158-1171, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38902519

RESUMEN

Up to 25% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit postacute cognitive sequelae. Although millions of cases of coronavirus disease 2019 (COVID-19)-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1 (IL-1), a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of individuals with COVID-19. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 Beta variant leads to central nervous system infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1ß and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes postacute cognitive deficits. Vaccination with a low dose of adenoviral-vectored spike protein prevents hippocampal production of IL-1ß during breakthrough SARS-CoV-2 infection, loss of neurogenesis and subsequent memory deficits. Our study identifies IL-1ß as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new mouse model that is prevented by vaccination.


Asunto(s)
COVID-19 , Hipocampo , Interleucina-1beta , Trastornos de la Memoria , Ratones Endogámicos C57BL , Neurogénesis , SARS-CoV-2 , Animales , Interleucina-1beta/metabolismo , Interleucina-1beta/inmunología , Ratones , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Hipocampo/inmunología , Hipocampo/metabolismo , Trastornos de la Memoria/inmunología , Neurogénesis/inmunología , Vacunación , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas contra la COVID-19/inmunología , Masculino , Humanos , Microglía/inmunología , Microglía/metabolismo , Modelos Animales de Enfermedad , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética , Monocitos/inmunología , Monocitos/metabolismo , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA