Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(3): e1011225, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36893187

RESUMEN

Animals are under constant selective pressure from a myriad of diverse pathogens. Microsporidia are ubiquitous animal parasites, but the influence they exert on shaping animal genomes is mostly unknown. Using multiplexed competition assays, we measured the impact of four different species of microsporidia on 22 wild isolates of Caenorhabditis elegans. This resulted in the identification and confirmation of 13 strains with significantly altered population fitness profiles under infection conditions. One of these identified strains, JU1400, is sensitive to an epidermal-infecting species by lacking tolerance to infection. JU1400 is also resistant to an intestinal-infecting species and can specifically recognize and destroy this pathogen. Genetic mapping of JU1400 demonstrates that these two opposing phenotypes are caused by separate loci. Transcriptional analysis reveals the JU1400 sensitivity to epidermal microsporidia infection results in a response pattern that shares similarity to toxin-induced responses. In contrast, we do not observe JU1400 intestinal resistance being regulated at the transcriptional level. The transcriptional response to these four microsporidia species is conserved, with C. elegans strain-specific differences in potential immune genes. Together, our results show that phenotypic differences to microsporidia infection amongst C. elegans are common and that animals can evolve species-specific genetic interactions.


Asunto(s)
Proteínas de Caenorhabditis elegans , Microsporidios , Microsporidiosis , Animales , Microsporidios/genética , Caenorhabditis elegans , Interacciones Huésped-Patógeno/genética , Microsporidiosis/veterinaria , Proteínas de Caenorhabditis elegans/genética
2.
BMC Microbiol ; 24(1): 223, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926815

RESUMEN

BACKGROUND: Enterocytozoon bieneusi is the most common species found in humans. Although E. bieneusi has been investigated in humans, genotype profile of E. bieneusi is not known in Türkiye. METHODS: In this study, we screened E. bieneusi in patients (n = 94) with different types of malignant solid tumors by Real Time PCR and then sequenced E. bieneusi positive samples. All cancer patients were undergoing chemotherapy and had diarrhea. Moreover, as control groups, we also screened E. bieneusi in patients with diarrhea (n = 50) and without diarrhea (n = 50). RESULTS: Among all patients analyzed, 33 (17%) were found to be E. bieneusi-positive. As the patients were categorized, the molecular prevalence of E. bieneusi increased to 25.5% among cancer patients with diarrhea. However, the molecular prevalence of E. bieneusi was found to be lower in patients with presenting only diarrhea (8%) and patients without diarrhea (10%). The high molecular prevalence value detected among cancer patients with diarrhea was also statistically significant compared to other patient groups (P = 0.00112 and P = 0.0269). Among the 33 Real Time PCR positive samples, 10 of them were amplified by nested PCR and among these 10 samples, 6 of them were successfully genotyped. The phylogenetic tree showed the presence of D and Type IV which were also identified in stray cats living in Izmir in our previous study. CONCLUSIONS: High molecular prevalence value indicates the importance of screening stool samples of cancer patients with diarrhea for E. bieneusi and genotyping results indicate that D and Type IV are circulating between humans and cats.


Asunto(s)
Diarrea , Enterocytozoon , Genotipo , Microsporidiosis , Neoplasias , Humanos , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , Microsporidiosis/microbiología , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Masculino , Femenino , Diarrea/microbiología , Diarrea/epidemiología , Persona de Mediana Edad , Prevalencia , Adulto , Anciano , Reacción en Cadena en Tiempo Real de la Polimerasa , Adulto Joven , Filogenia , Análisis de Secuencia de ADN , Antineoplásicos , ADN de Hongos/genética , Anciano de 80 o más Años , Heces/microbiología
3.
Med Mycol ; 62(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38414255

RESUMEN

Enterocytozoon bieneusi is a microsporidia commonly found in the gastrointestinal tract of humans and a wide range of other animals, constituting a major cause of microsporidiosis in humans. Although E. bieneusi has been detected in humans, domestic, and wild animals in Portugal, and its presence in bats has been linked to zoonotic characteristics, its occurrence in bats within the country has not been reported. In this study, we investigated the presence of E. bieneusi in 380 bat fecal samples collected in mainland Portugal through a nested PCR assay targeting the internal transcribed spacer region and the flanking small and large subunits of the ribosomal RNA. Enterocytozoon bieneusi was detected in one bat sample (i.e., 0.26%; Pipistrellus pipistrellus). Additionally, another sample tested positive for Enterocytozoon sp. Phylogenetic analysis of the obtained ITS sequence of E. bieneusi revealed clustering within the potentially zoonotic Group 1. This study represents the first report of E. bieneusi in a bat from Europe. Findings presented here contribute to an enhanced understanding of E. bieneusi epidemiology.


Enterocytozoon bieneusi is the most frequent cause of microsporidiosis in humans. In this study, E. bieneusi, belonging to a potentially zoonotic Group, was detected in 0.26% bat samples from Portugal, highlighting bats' potential role in transmitting this microsporidia to humans and other animals.


Asunto(s)
Quirópteros , Enterocytozoon , Microsporidiosis , Animales , Humanos , Enterocytozoon/genética , Genotipo , Portugal/epidemiología , Filogenia , ADN Espaciador Ribosómico/genética , Prevalencia , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Heces , China/epidemiología
4.
Med Mycol ; 62(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39020251

RESUMEN

Enterocytozoon bieneusi microsporidia are emerging pathogens infecting a wide range of vertebrate and invertebrate hosts, known to have zoonotic features since they infect both wild and domestic animals, and humans. Despite their significance, there is very limited epidemiological data on microsporidia in hedgehogs, especially European hedgehogs (Erinaceus europaeus) and long-eared hedgehogs (Hemiechinus auritus), the former known as synantropic hedgehogs, and the latter suited as pets. As such, the present study aimed to assess the presence of E. bieneusi in hedgehogs from Portugal. For this purpose, fecal samples from 110 hedgehogs of three species-E. europaeus (n = 106), H. auritus (n = 1), and Atelerix albiventris (n = 3)-were collected and tested for E. bieneusi by PCR targeting the internal transcribed spacer region and the flanking small and large subunits of the rRNA. We found an overall occurrence of 22.7% (25/110; 95% confidence interval [CI]: 15.28-31.70), with 22.6% (24/106; 95% [CI]: 15.08-31.79) in E. europaeus, 100% (1/1) in H. auritus, and 0% in A. albiventris. Interestingly, three novel genotypes were identified, all belonging to the potentially zoonotic Group 1. Our findings highlight the importance of hedgehogs as potential reservoirs for E. bieneusi and emphasize the need for further research to understand their role in transmission dynamics and assess the associated risks to public and veterinary health.


Synanthropic hedgehogs were tested for Enterocytozoon bieneusi, the main cause of human microsporidiosis. Results showed 22.7% of hedgehogs were shedding E. bieneusi spores, with three new genotypes from the zoonotic Group 1. Hedgehogs may transmit to humans/animals, warranting more research.


Asunto(s)
ADN de Hongos , Enterocytozoon , Heces , Erizos , Microsporidiosis , Erizos/microbiología , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , Enterocytozoon/clasificación , Animales , Microsporidiosis/veterinaria , Microsporidiosis/epidemiología , Microsporidiosis/microbiología , Portugal/epidemiología , Heces/microbiología , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Reacción en Cadena de la Polimerasa , Filogenia , Análisis de Secuencia de ADN , Genotipo
5.
Parasitology ; 151(4): 351-362, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38305092

RESUMEN

Cryptosporidium spp., Giardia intestinalis and microsporidia are unicellular opportunistic pathogens that can cause gastrointestinal infections in both animals and humans. Since companion animals may serve as a source of infection, the aim of the present screening study was to analyse the prevalence of these intestinal protists in fecal samples collected from dogs living in 10 animal shelters in central Europe (101 dogs from Poland and 86 from the Czech Republic), combined with molecular subtyping of the detected organisms in order to assess their genetic diversity. Genus-specific polymerase chain reactions were performed to detect DNA of the tested species and to conduct molecular subtyping in collected samples, followed by statistical evaluation of the data obtained (using χ2 or Fisher's tests). The observed prevalence was 15.5, 10.2, 1 and 1% for G. intestinalis, Enterocytozoon bieneusi, Cryptosporidium spp. and Encephalitozoon cuniculi, respectively. Molecular evaluation has revealed the predominance of dog-specific genotypes (Cryptosporidium canis XXe1 subtype; G. intestinalis assemblages C and D; E. cuniculi genotype II; E. bieneusi genotypes D and PtEbIX), suggesting that shelter dogs do not pose a high risk of human transmission. Interestingly, the percentage distribution of the detected pathogens differed between both countries and individual shelters, suggesting that the risk of infection may be associated with conditions typical of a given location.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Enfermedades de los Perros , Enterocytozoon , Heces , Giardiasis , Microsporidiosis , Animales , Perros , Enfermedades de los Perros/parasitología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/microbiología , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , Enterocytozoon/clasificación , Cryptosporidium/genética , Cryptosporidium/aislamiento & purificación , Cryptosporidium/clasificación , Microsporidiosis/veterinaria , Microsporidiosis/epidemiología , Polonia/epidemiología , Criptosporidiosis/epidemiología , Criptosporidiosis/parasitología , Heces/parasitología , Heces/microbiología , República Checa/epidemiología , Giardiasis/veterinaria , Giardiasis/epidemiología , Giardiasis/parasitología , Prevalencia , Giardia/genética , Giardia/aislamiento & purificación , Giardia/clasificación , Genotipo , Giardia lamblia/genética , Giardia lamblia/aislamiento & purificación , Giardia lamblia/clasificación , Especificidad del Huésped
6.
Arch Insect Biochem Physiol ; 116(4): e22099, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39137216

RESUMEN

Nosema ceranae is a microsporidian parasite that threatens current apiculture. N. ceranae-infected honey bees (Apis mellifera) exhibit morbid physiological impairments and reduced honey production, malnutrition, shorter life span, and higher mortality than healthy honey bees. In this study, we found that dimethyl sulfoxide (DMSO) could enhance the survival rate of N. ceranae-infected honey bees. Therefore, we investigated the effect of DMSO on N. ceranae-infected honey bees using comparative RNA sequencing analysis. Our results revealed that DMSO was able to affect several biochemical pathways, especially the metabolic-related pathways in N. ceranae-infected honey bees. Based on these findings, we conclude that DMSO may be a useful alternative for treating N. ceranae infection in apiculture.


Asunto(s)
Dimetilsulfóxido , Nosema , Animales , Nosema/efectos de los fármacos , Nosema/fisiología , Abejas/microbiología , Dimetilsulfóxido/farmacología , Microsporidiosis/veterinaria
7.
BMC Vet Res ; 20(1): 53, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341563

RESUMEN

BACKGROUND: Enterocytozoon bieneusi is a zoonotic pathogen widely distributed in animals and humans. It can cause diarrhea and even death in immunocompromised hosts. Approximately 800 internal transcribed spacer (ITS) genotypes have been identified in E. bieneusi. Farmed foxes and raccoon dogs are closely associated to humans and might be the reservoir of E. bieneusi which is known to have zoonotic potential. However, there are only a few studies about E. bieneusi genotype identification and epidemiological survey in foxes and raccoon dogs in Henan and Hebei province. Thus, the present study investigated the infection rates and genotypes of E. bieneusi in farmed foxes and raccoon dogs in the Henan and Hebei provinces. RESULT: A total of 704 and 884 fecal specimens were collected from foxes and raccoon dogs, respectively. Nested PCR was conducted based on ITS of ribosomal RNA (rRNA), and then multilocus sequence typing (MLST) was conducted to analyze the genotypes. The result showed that infection rates of E. bieneusi in foxes and raccoon dogs were 18.32% and 5.54%, respectively. Ten E. bieneusi genotypes with zoonotic potential (NCF2, NCF3, D, EbpC, CHN-DC1, SCF2, CHN-F1, Type IV, BEB4, and BEB6) were identified in foxes and raccoon dogs. Totally 178 ITS-positive DNA specimens were identified from foxes and raccoon dogs and these specimens were then subjected to MLST analysis. In the MLST analysis, 12, 2, 7 and 8 genotypes were identified in at the mini-/ micro-satellite loci MS1, MS3, MS4 and MS7, respectively. A total of 14 multilocus genotypes were generated using ClustalX 2.1 software. Overall, the present study evaluated the infection of E. bieneusi in foxes and raccoon dogs in the Henan and Hebei province, and investigated the zoonotic potential of the E. bieneusi in foxes and raccoon dogs. CONCLUSIONS: These findings expand the geographic distribution information of E. bieneusi' host in China and was helpful in preventing against the infection of E. bieneusi with zoonotic potential in foxes and raccoon dogs.


Asunto(s)
Enterocytozoon , Microsporidiosis , Humanos , Animales , Tipificación de Secuencias Multilocus/veterinaria , Enterocytozoon/genética , Zorros/genética , Perros Mapache , Epidemiología Molecular , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Heces , Prevalencia , Filogenia , China/epidemiología , Genotipo
8.
BMC Vet Res ; 20(1): 309, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987757

RESUMEN

BACKGROUND: Parasites Entamoeba spp., Enterocytozoon bieneusi and Blastocystis are prevalent pathogens causing gastrointestinal illnesses in animals and humans. Consequently, researches on their occurrence, distribution and hosts are crucial for the well-being of both animals and humans. Due to the confined spaces and frequent interaction between animals and humans, animal sanctuaries have emerged as potential reservoirs for these parasites. In this study, the wildlife sanctuary near the Huang Gorge of the Qinling Mountains in northwest China is chosen as an ideal site for parasite distribution research, considering its expansive stocking area and high biodiversity. RESULTS: We collected 191 fecal specimens from 37 distinct wildlife species and extracted genomic DNA. We identified these three parasites by amplifying specific gene regions and analyzed their characteristics and evolutionary relationships. All the parasites exhibited a high overall infection rate, reaching 90.05%. Among them, seven Entamoeba species were identified, accounting for a prevalence of 54.97%, with the highest infection observed in Entamoeba bovis. In total, 11 Enterocytozoon bieneusi genotypes were discovered, representing a prevalence of 35.08%, including three genotypes of human-pathogenic Group 1 and two novel genotypes (SXWZ and SXLG). Additionally, 13 Blastocystis subtypes were detected, showing a prevalence of 74.87% and encompassing eight zoonotic subtypes. All of the above suggests significant possibilities of parasite transmission between animals and humans. CONCLUSIONS: This study investigated the occurrence and prevalence of three intestinal parasites, enhancing our understanding of their genetic diversity and host ranges in northwest China. Furthermore, the distribution of these parasites implies significant potential of zoonotic transmission, underscoring the imperative for ongoing surveillance and implementation of control measures. These efforts are essential to mitigate the risk of zoonotic disease outbreaks originating from wildlife sanctuary.


Asunto(s)
Animales Salvajes , Blastocystis , Entamoeba , Enterocytozoon , Microsporidiosis , Zoonosis , Animales , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , China/epidemiología , Blastocystis/genética , Blastocystis/clasificación , Blastocystis/aislamiento & purificación , Animales Salvajes/parasitología , Zoonosis/parasitología , Entamoeba/genética , Entamoeba/aislamiento & purificación , Entamoeba/clasificación , Microsporidiosis/veterinaria , Microsporidiosis/epidemiología , Filogenia , Heces/parasitología , Entamebiasis/veterinaria , Entamebiasis/epidemiología , Entamebiasis/parasitología , Infecciones por Blastocystis/veterinaria , Infecciones por Blastocystis/epidemiología , Infecciones por Blastocystis/transmisión , Infecciones por Blastocystis/parasitología , Prevalencia , Genotipo , Humanos
9.
Dis Aquat Organ ; 158: 133-141, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813854

RESUMEN

A novel microsporidium was observed in wild swamp guppies Micropoecilia picta from Levera Pond within Levera National Park Grenada, West Indies. Initial observations indicated similarity with Pseudoloma neurophilia, an important pathogen in zebrafish Danio rerio. P. neurophilia exhibit broad host specifity, including members of the family Poecillidae, and both parasites infect the central nervous system. However, spore morphology and molecular phylogeny based on rDNA showed that the swamp guppy microsporidium (SGM) is distinct from P. neurophilia and related microsporidia (Microsporidium cerebralis and M. luceopercae). Spores of the SGM were smaller than others in the clade (3.6 µm long). Differences were also noted in histology; the SGM formed large aggregates of spores within neural tissues along with a high incidence of numerous smaller aggregates and single spores within the surface tissue along the ventricular spaces that extended submeninx, whereas P. neurophilia and M. cerebralis infect deep into the neuropile and cause associated lesions. Analysis of small subunit ribosomal DNA sequences showed that the SGM was <93% similar to these related microsporidia. Nevertheless, one of 2 commonly used PCR tests for P. neurophilia cross reacted with tissues infected with SGM. These data suggest that there could be other related microsporidia capable of infecting zebrafish and other laboratory fishes that are not being detected by these highly specific assays. Consequently, exclusive use of these PCR tests may not accurately diagnose other related microsporidia infecting animals in laboratory and ornamental fish facilities.


Asunto(s)
Enfermedades de los Peces , Microsporidios , Microsporidiosis , Filogenia , Poecilia , Animales , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/parasitología , Microsporidios/genética , Microsporidios/aislamiento & purificación , Microsporidios/clasificación , Microsporidiosis/veterinaria , Microsporidiosis/microbiología , Grenada/epidemiología
10.
J Fish Dis ; 47(10): e13995, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38953156

RESUMEN

Intracellular parasites of the genus Glugea Thélohan, 1891 (Microsporidia) comprise about 34 putative species capable of causing high morbidity and mortality in freshwater and marine teleost fishes. In this study, we report on the first mass mortality event associated with Glugea sp. infecting free-ranging round sardinella Sardinella aurita in the southern Tyrrhenian Sea (Italy). Here, we describe the ultrastructure of mature spores of this microsporidian and characterize it molecularly, as well as report its phylogenetic position. Most of the affected fish showed an irregular swelling of its abdomen. At necropsy, a variable number of xenomas, spherical to ellipsoidal in shape, were found in the peritoneal cavity strongly attached to the viscera of all fish. Histological analysis revealed varying severity of chronic inflammation along with occasional necrosis in visceral organs associated with multiple xenoma proliferation. These pathological findings were considered the main cause of this mass mortality event. Morphologically, the present material was closely related to G. sardinellesis and G. thunni. The phylogenetically closest taxa to the newly SSU rDNA sequence were G. thunni and an erroneusly identified  G. plecoglossi, which were very closely related to each other, also suggesting that all these sequences might belong to the same species.


Asunto(s)
Enfermedades de los Peces , Glugea , Microsporidiosis , Filogenia , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/mortalidad , Animales , Italia/epidemiología , Microsporidiosis/veterinaria , Microsporidiosis/mortalidad , Glugea/genética , Peces , ADN Ribosómico
11.
J Fish Dis ; 47(11): e14006, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39136064

RESUMEN

In 2021, White Trevally or Striped Jack cultured in the western part of Japan exhibited mild, but chronic mortalities from late September through early October. The cumulative mortality rate was approximately 0.02% per a net pen containing approximately 50,000 fish. Although the cumulative mortality rate was not high, most of the fish in net pens showed characteristic gross signs and an abnormal swimming behaviour. The body of diseased fish became pale and the yellow lines on the lateral sides of fish body became darken. In addition, silver lines along the dorsal fin became apparent. Loss of schooling behaviour was noted during the mortality event. In addition, affected fish became lethargic and failed to swim against current, or frequently stopped swimming and sank to the bottom of net pens after feeding. The goal of this study was to identify the cause of the mortality event. To achieve the goal, we used histopathology and metatranscriptome analysis. Histopathological examination revealed that xenoma of microsporidian were frequently observed in the nerve axon in the brain and spinal cord. Spores observed in the sections were stained with a fluorescent dye, Uvitex 2B, indicating those spores are microsporidian. The data from metatranscriptome analysis indicated that the microsporidian is Spraguea sp. The microsporidian was frequently detected from diseased fish with similar symptoms collected in the same region, suggesting that the microsporidian was highly associated with abnormal swimming behaviour of fish.


Asunto(s)
Enfermedades de los Peces , Animales , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/mortalidad , Enfermedades de los Peces/patología , Japón/epidemiología , Microsporidiosis/veterinaria , Microsporidiosis/mortalidad , Acuicultura , Apansporoblastina/genética , Apansporoblastina/aislamiento & purificación , Apansporoblastina/fisiología , Natación
12.
Parasitol Res ; 123(3): 158, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460006

RESUMEN

Cryptosporidium spp., Enterocytozoon bieneusi and Encephalitozoon spp. are the most common protistan parasites of vertebrates. The results show that pigeon populations in Central Europe are parasitised by different species of Cryptosporidium and genotypes of microsporidia of the genera Enterocytozoon and Encephalitozoon. A total of 634 and 306 faecal samples of captive and feral pigeons (Columba livia f. domestica) from 44 locations in the Czech Republic, Slovakia and Poland were analysed for the presence of parasites by microscopy and PCR/sequence analysis of small subunit ribosomal RNA (18S rDNA), 60 kDa glycoprotein (gp60) and internal transcribed spacer (ITS) of SSU rDNA. Phylogenetic analyses revealed the presence of C. meleagridis, C. baileyi, C. parvum, C. andersoni, C. muris, C. galli and C. ornithophilus, E. hellem genotype 1A and 2B, E. cuniculi genotype I and II and E. bieneusi genotype Peru 6, CHN-F1, D, Peru 8, Type IV, ZY37, E, CHN4, SCF2 and WR4. Captive pigeons were significantly more frequently parasitised with screened parasite than feral pigeons. Cryptosporidium meleagridis IIIa and a new subtype IIIl have been described, the oocysts of which are not infectious to immunodeficient mice, whereas chickens are susceptible. This investigation demonstrates that pigeons can be hosts to numerous species, genotypes and subtypes of the studied parasites. Consequently, they represent a potential source of infection for both livestock and humans.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Encephalitozoon , Enterocytozoon , Microsporidiosis , Humanos , Animales , Ratones , Columbidae , Enterocytozoon/genética , Cryptosporidium/genética , Encephalitozoon/genética , Criptosporidiosis/epidemiología , Criptosporidiosis/parasitología , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Microsporidiosis/parasitología , Filogenia , Pollos , Europa (Continente)/epidemiología , ADN Ribosómico , Variación Genética , Genotipo , Heces/parasitología
13.
Parasitol Res ; 123(6): 233, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850488

RESUMEN

Enterocytozoon bieneusi is a common cause of human microsporidiosis and can infect a variety of animal hosts worldwide. In Thailand, previous studies have shown that this parasite is common in domestic animals. However, information on the prevalence and genotypes of this parasite in other synanthropic wildlife, including bats, remains limited. Several pathogens have been previously detected in bats, suggesting that bats may serve as a reservoir for this parasite. In this study, a total of 105 bat guano samples were collected from six different sites throughout Thailand. Of these, 16 from Chonburi (eastern), Ratchaburi (western), and Chiang Rai (northern) provinces tested positive for E. bieneusi, representing an overall prevalence of 15.2%. Based on ITS1 sequence analysis, 12 genotypes were identified, including two known genotypes (D and type IV) frequently detected in humans and ten novel potentially zoonotic genotypes (TBAT01-TBAT10), all belonging to zoonotic group 1. Lyle's flying fox (Pteropus lylei), commonly found in Southeast Asia, was identified as the host in one sample that was also positive for E. bieneusi. Network analysis of E. bieneusi sequences detected in this study and those previously reported in Thailand also revealed intraspecific divergence and recent population expansion, possibly due to adaptive evolution associated with host range expansion. Our data revealed, for the first time, multiple E. bieneusi genotypes of zoonotic significance circulating in Thai bats and demonstrated that bat guano fertilizer may be a vehicle for disease transmission.


Asunto(s)
Quirópteros , Enterocytozoon , Genotipo , Microsporidiosis , Filogenia , Quirópteros/parasitología , Quirópteros/microbiología , Animales , Tailandia/epidemiología , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , Enterocytozoon/clasificación , Microsporidiosis/veterinaria , Microsporidiosis/epidemiología , Microsporidiosis/microbiología , Prevalencia , Humanos , Análisis de Secuencia de ADN , Zoonosis/parasitología , ADN Espaciador Ribosómico/genética , ADN de Hongos/genética
14.
Int J Environ Health Res ; 34(5): 2180-2196, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37266992

RESUMEN

This study aimed to assess the global status and genetic diversity of Microsporidia infection in different birds. An online search was conducted in international databases from 1 January 1990 to 30 June 2022. A total of 34 articles (including 37 datasets) were included for the final meta-analysis. The pooled global prevalence of Microsporidia infection in birds was 14.6% (95% CI: 11.6-18.1). The highest prevalence of Microsporidia was found in wild waterfowl which was 54.5% (28.1-78.6). In terms of detection methods, the pooled prevalence was estimated to be 21.2% (95% CI: 12.1-34.4) and 13.4% (95% CI: 10.3-17.3) for using microscopic and molecular detection methods, respectively. Enterocytozoon bieneusi was the most common pathogen (24/31; 77.42% of the studies) according to PCR-based methods, and genotype D was the highest reported genotype (nine studies). In conclusion, designing strategies for the control and prevention of Microsporidia infection in birds should be recommended.


Asunto(s)
Enterocytozoon , Microsporidios , Microsporidiosis , Animales , Aves , Enterocytozoon/genética , Heces , Genotipo , Microsporidios/genética , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Microsporidiosis/diagnóstico , Filogenia , Prevalencia
15.
BMC Microbiol ; 23(1): 334, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951859

RESUMEN

BACKGROUND: Enterocytozoon bieneusi, Encephalitozoon spp., Cryptosporidium spp., and Giardia duodenalis (G. intestinalis) are enteric pathogens that cause diarrhea in pigs. This study aimed to determine the prevalence of these enteric parasites and their coinfection with E. bieneusi in diarrheic pigs in Southwest China (Chongqing and Sichuan) using nested polymerase chain reaction (nPCR) based methods. RESULTS: A total of 514 fecal samples were collected from diarrheic pigs from 14 pig farms in Chongqing (five farms) and Sichuan (nine farms) Provinces. The prevalence of Encephalitozoon spp., Cryptosporidium spp. and G. duodenalis was 16.14% (83/514), 0% (0/514), and 8.95% (46/514), respectively. Nested PCR revealed 305 mono-infections of E. bieneusi, six of E. cuniculi, two of E. hellem, and nine of G. duodenalis and 106 concurrent infections of E. bieneusi with the other enteric pathogens. No infections of E. intestinalis and Cryptosporidium species were detected. The highest coinfection was detected between E. bieneusi and E. cuniculi (10.5%, 54/514), followed by E. bieneusi and G. duodenalis (5.8%, 30/514) and E. bieneusi and E. hellem (2.9%, 15/514). E. bieneusi was the most frequently detected enteric pathogen, followed by E. cuniculi, G. duodenalis and E. hellem. There was a significant age-related difference in the prevalence of E. cuniculi in fattening pigs (χ2 = 15.266, df = 3, P = 0.002) and G. duodenalis in suckling pigs (χ2 = 11.92, df = 3, P = 0.008) compared with the other age groups. Sequence analysis of the ITS region of Encephalitozoon species showed two genotypes (II and III) for E. cuniculi and one (TURK1B) for E. hellem. Only G. duodenalis assemblage A was identified in all nested PCR-positive samples. E. bieneusi was found more often than other enteric pathogens. CONCLUSIONS: This study showed that E. bieneusi, Encephalitozoon spp. [E. cuniculi and E. hellem] and G. duodenalis were common enteric parasites in diarrheic pigs in Chongqing and Sichuan Provinces. In case of both mono-infection and coinfection, E. bieneusi was the most common enteric pathogen in diarrheic pigs. Thus, it may be a significant cause of diarrhea in pigs. Precautions should be taken to prevent the spread of these enteric parasites.


Asunto(s)
Coinfección , Criptosporidiosis , Cryptosporidium , Encephalitozoon , Enterocytozoon , Giardia lamblia , Giardiasis , Microsporidiosis , Animales , Porcinos , Giardia lamblia/genética , Giardiasis/epidemiología , Giardiasis/veterinaria , Giardiasis/parasitología , Enterocytozoon/genética , Criptosporidiosis/epidemiología , Criptosporidiosis/parasitología , Cryptosporidium/genética , Coinfección/epidemiología , Coinfección/veterinaria , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , China/epidemiología , Genotipo , Heces/parasitología , Diarrea/epidemiología , Diarrea/veterinaria
16.
Med Mycol ; 61(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36746434

RESUMEN

The phylum Microsporidia encompasses a diverse group of obligate, intracellular, and spore-forming organisms able to infect a wide range of animal hosts. Among them, Enterocytozoon bieneusi is the most frequently reported species in humans and animals. Little is known about the presence and epidemiology of E. bieneusi in wildlife. We investigated E. bieneusi occurrence and genetic diversity in wild and domestic mammals, through molecular-detection methods, from different regions across Portugal. A total of 756 samples were collected from 288, 242, and 226 wild carnivores, wild ungulates, and domestic animals, respectively. Overall, eight specimens were E. bieneusi-positive (1.1%, 8/756) obtained from five wild (Iberian lynx, Iberian wolf, red fox, stone marten, and wild boar) and one domestic (sheep) host. Nucleotide sequence analysis identified four genotypes of E. bieneusi, Type IV, Wildboar3, BEB6, and PtEbIX. Three of those genotypes belong to Groups 1 (Type IV and Wildboar3) and 2 (BEB6), which are known to contain genotypes capable of infecting a variety of hosts, including humans, highlighting their public health importance. PtEbIX belongs to the dog-specific Group 11. This study represents the first, largest, and most comprehensive molecular-based epidemiology survey carried out in Portugal in wild and domestic animals to date and the first worldwide identification of E. bieneusi in wolf species. Our study showed that wild carnivores and ungulates may act as reservoirs of zoonotic genotypes of E. bieneusi, establishing their role in maintaining the sylvatic cycle of this parasite while representing a potential source of infection for humans and domestic animals.


The identification of human-pathogenic genotypes of fungi-related Enterocytozoon bieneusi in wild carnivores and ungulates in Portugal suggests cross-species infection events and overlapping of the sylvatic and domestic transmission cycles, demonstrating a potential transmission risk to humans.


Asunto(s)
Enfermedades de los Perros , Enterocytozoon , Microsporidiosis , Enfermedades de las Ovejas , Enfermedades de los Porcinos , Humanos , Porcinos , Animales , Perros , Ovinos , Animales Domésticos , Enterocytozoon/genética , Portugal , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Filogenia , Sus scrofa , Genotipo , China/epidemiología , Prevalencia , Heces , Zoonosis/epidemiología , Enfermedades de las Ovejas/epidemiología
17.
J Invertebr Pathol ; 199: 107951, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37307943

RESUMEN

Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is a disease of utmost concern in almost all shrimp growing countries. The pathogen was characterized by ultramicrography, histopathology and phylogenetic analysis of 18srDNA. A total of 183 biological samples were collected from all major shrimp growing states of the country.The histology technique could be used very well in identifying the site of infection and can aid in diagnosis of EHP. Wet mount and Ultramicrography were employed to observe the structure of spores. A single step PCR based method was developed for detecting the pathogen from variety of DNA samples including shrimp and non-shrimp sources.The developed PCR assay proved to be a robust and reliable technique to detect EHP in shrimps and environmental samples and for assessing the distribution of pathogen within geographical zones, thus aid in mitigating the disease. The PCR primers was also used to generate DIG labelled probe which was successful in binding to the EHP infected cells in HP of shrimp. The presence of pathogen was confirmed from many non-shrimp environmental samples suggests that they could act as reservoirs for recurrent infection in shrimp ponds. Proper control of these reservoirs will be the first step in recovering an EHP affected pond back to normal.


Asunto(s)
Decápodos , Enterocytozoon , Microsporidiosis , Penaeidae , Animales , Filogenia , Enterocytozoon/genética , Microsporidiosis/diagnóstico , Microsporidiosis/veterinaria
18.
Parasitol Res ; 123(1): 7, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38053002

RESUMEN

Enterocytozoon bieneusi is responsible for opportunistic infections leading to gastrointestinal diseases in humans and animals worldwide. A total of 334 fresh fecal samples were collected from wild Altai marmots (Marmota baibacina) in Xinjiang, China, and E. bieneusi was screened via PCR amplification of the internal transcribed spacer (ITS) region of the small submit ribosomal RNA (SSU rRNA). The results indicated that 22.8% (76/334) of the wild Altai marmot fecal samples were positive for E. bieneusi, and the highest positive rate was detected in Akqi (51.9%, 27/52), with a significant difference from other sampling sites (p < 0.01). Four known genotypes (BEB6, CHG3, GX2, and YAK1) and three novel genotypes (XJHT2 to XJHT4) were identified in the present study. Genotype XJHT3 was dominant and detected in 48 fecal samples. In the phylogenetic analysis, the novel genotypes XJHT2 and XJHT3 were clustered in Group 1 together with the known genotype YAK1, while genotypes CHG3 and BEB6 were clustered in Group 2. The novel genotype XJHT4 was clustered together with other rodent-derived genotypes and generated a novel Group 14. These data confirmed the host specificity and adaptation of E. bieneusi in rodents. These findings enrich our understanding of the prevalence and genetic diversity of E. bieneusi in wild Altai marmots in Xinjiang, China.


Asunto(s)
Enterocytozoon , Microsporidiosis , Animales , Humanos , Análisis de Secuencia de ADN , Marmota , Enterocytozoon/genética , ADN Espaciador Ribosómico/genética , Especificidad del Huésped , Filogenia , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Genotipo , China/epidemiología , Heces , Prevalencia
19.
Parasitol Res ; 122(11): 2729-2735, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37707609

RESUMEN

The phylum Microsporidia includes obligate intracellular parasites that can infect humans and various animals. To date, 17 different species within the phylum have been reported to infect humans. Among them, Enterocytozoon bieneusi (E. bieneusi) is one of the most frequently detected species in humans. Identification of E. bieneusi as well as its genotypes in humans and animals is important to reveal their role in transmission to each other. Cats are blamed as the source of E. bieneusi transmission to humans. In this study, we aimed to genotype 170 E. bieneusi positive samples isolated from stool of stray cats living in Izmir province of Türkiye. According to the results, 47 samples were amplified by nested PCR protocol targeting ITS region and successfully sequenced. The phylogenetic analysis showed the presence of zoonotic genotype D and type IV in stray cats, which are also frequently detected in humans. Among the E. bieneusi genotypes detected, the prevalence of type IV (93.6%; 44/47) was very high compared to genotype D. Overall, the identification of zoonotic genotypes of E. bieneusi supports that stray cats can play an important role in the transmission of E. bieneusi to humans in Izmir.


Asunto(s)
Enterocytozoon , Microsporidios , Microsporidiosis , Humanos , Animales , Gatos , Genotipo , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Microsporidiosis/parasitología , Filogenia , Prevalencia , Heces/parasitología , China/epidemiología , Zoonosis/epidemiología
20.
Parasitol Res ; 122(1): 333-340, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36394671

RESUMEN

Enterocytozoon bieneusi is an obligate intracellular pathogen that infects livestock, companion animals, and wildlife and has the potential to cause severe diarrhea especially in immunocompromised humans. In the underlying study, fecal samples from 177 calves with diarrhea and 174 adult cows originating from 70 and 18 farms, respectively, in Austria were examined for the presence of E. bieneusi by polymerase chain reaction targeting the Internal Transcribed Spacer 1 (ITS1) region. All positive samples were further sequenced for genotype determination. Overall, sixteen of the 351 (4.6%) samples were positive for E. bieneusi, two of the 174 samples from cows (1.2%) and 14 of the 177 samples from calves (7.9%). In total, four genotypes, J (n = 2), I (n = 12), BEB4 (n = 3), and BEB8 (n = 1), were identified. The uncorrected p-distance between the four ITS1 lineages (344 bp) ranges from 0.3% to 2.9%. The lineages differ by 1 bp (I and J), 2 bp (J and BEB4), and 3 bp (I and BEB4), respectively, and BEB8 differs by 7 to 10 bp from the latter three lineages. Two of the E. bieneusi-positive calves showed an infection with two different genotypes. E. bieneusi occurred significantly more often in calves > 3 weeks (8/59) than in calves ≤ 3 weeks (6/118), respectively (p = 0.049). Calves with a known history of antimicrobial treatment (50 of 177 calves) shed E. bieneusi significantly more often than untreated calves (p = 0.012). There was no statistically significant difference in E. bieneusi shedding in calves with or without a medical history of antiparasitic treatment (p = 0.881). Calves showing a co-infection with Eimeria spp. shed E. bieneusi significantly more often than uninfected calves (p = 0.003). To our knowledge, this is the first report of E. bieneusi in cattle in Austria. Cattle should be considered as a reservoir for human infection since potentially zoonotic E. bieneusi genotypes were detected.


Asunto(s)
Enfermedades de los Bovinos , Enterocytozoon , Microsporidiosis , Humanos , Femenino , Animales , Bovinos , Enterocytozoon/genética , Austria/epidemiología , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/parasitología , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Microsporidiosis/parasitología , Heces/parasitología , Genotipo , Diarrea/epidemiología , Diarrea/veterinaria , Filogenia , China , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA