Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.318
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(12): 3072-3089.e20, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38781967

RESUMEN

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.


Asunto(s)
Matriz Extracelular , Mucosa Intestinal , Animales , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Matriz Extracelular/metabolismo , Miosina Tipo II/metabolismo , Mesodermo/metabolismo , Mesodermo/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Morfogénesis , Metaloproteinasas de la Matriz/metabolismo
2.
Annu Rev Cell Dev Biol ; 37: 285-310, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34314591

RESUMEN

Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division.


Asunto(s)
Citoesqueleto , Miosina Tipo II , Citoesqueleto de Actina/metabolismo , Movimiento Celular/genética , Citoesqueleto/metabolismo , Miosina Tipo II/química , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Transducción de Señal
3.
Cell ; 177(4): 925-941.e17, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982601

RESUMEN

The synchronous cleavage divisions of early embryogenesis require coordination of the cell-cycle oscillator, the dynamics of the cytoskeleton, and the cytoplasm. Yet, it remains unclear how spatially restricted biochemical signals are integrated with physical properties of the embryo to generate collective dynamics. Here, we show that synchronization of the cell cycle in Drosophila embryos requires accurate nuclear positioning, which is regulated by the cell-cycle oscillator through cortical contractility and cytoplasmic flows. We demonstrate that biochemical oscillations are initiated by local Cdk1 inactivation and spread through the activity of phosphatase PP1 to generate cortical myosin II gradients. These gradients cause cortical and cytoplasmic flows that control proper nuclear positioning. Perturbations of PP1 activity and optogenetic manipulations of cortical actomyosin disrupt nuclear spreading, resulting in loss of cell-cycle synchrony. We conclude that mitotic synchrony is established by a self-organized mechanism that integrates the cell-cycle oscillator and embryo mechanics.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclo Celular/fisiología , División del Núcleo Celular/fisiología , Proteínas de Drosophila/metabolismo , Actomiosina/metabolismo , Animales , Núcleo Celular/metabolismo , Citocinesis/fisiología , Citoplasma , Citoesqueleto/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/fisiología , Microtúbulos/metabolismo , Mitosis , Miosina Tipo II/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo
4.
Cell ; 176(4): 757-774.e23, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30712866

RESUMEN

ROCK-Myosin II drives fast rounded-amoeboid migration in cancer cells during metastatic dissemination. Analysis of human melanoma biopsies revealed that amoeboid melanoma cells with high Myosin II activity are predominant in the invasive fronts of primary tumors in proximity to CD206+CD163+ tumor-associated macrophages and vessels. Proteomic analysis shows that ROCK-Myosin II activity in amoeboid cancer cells controls an immunomodulatory secretome, enabling the recruitment of monocytes and their differentiation into tumor-promoting macrophages. Both amoeboid cancer cells and their associated macrophages support an abnormal vasculature, which ultimately facilitates tumor progression. Mechanistically, amoeboid cancer cells perpetuate their behavior via ROCK-Myosin II-driven IL-1α secretion and NF-κB activation. Using an array of tumor models, we show that high Myosin II activity in tumor cells reprograms the innate immune microenvironment to support tumor growth. We describe an unexpected role for Myosin II dynamics in cancer cells controlling myeloid function via secreted factors.


Asunto(s)
Movimiento Celular/fisiología , Miosina Tipo II/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular/inmunología , Proteínas del Citoesqueleto , Femenino , Humanos , Interleucina-1alfa/metabolismo , Masculino , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Persona de Mediana Edad , FN-kappa B/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Fosforilación , Proteómica , Receptor Cross-Talk/fisiología , Transducción de Señal , Microambiente Tumoral/inmunología
5.
EMBO J ; 43(13): 2715-2732, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769437

RESUMEN

Microtubules regulate cell polarity and migration via local activation of focal adhesion turnover, but the mechanism of this process is insufficiently understood. Molecular complexes containing KANK family proteins connect microtubules with talin, the major component of focal adhesions. Here, local optogenetic activation of KANK1-mediated microtubule/talin linkage promoted microtubule targeting to an individual focal adhesion and subsequent withdrawal, resulting in focal adhesion centripetal sliding and rapid disassembly. This sliding is preceded by a local increase of traction force due to accumulation of myosin-II and actin in the proximity of the focal adhesion. Knockdown of the Rho activator GEF-H1 prevented development of traction force and abolished sliding and disassembly of focal adhesions upon KANK1 activation. Other players participating in microtubule-driven, KANK-dependent focal adhesion disassembly include kinases ROCK, PAK, and FAK, as well as microtubules/focal adhesion-associated proteins kinesin-1, APC, and αTAT. Based on these data, we develop a mathematical model for a microtubule-driven focal adhesion disruption involving local GEF-H1/RhoA/ROCK-dependent activation of contractility, which is consistent with experimental data.


Asunto(s)
Adhesiones Focales , Cinesinas , Microtúbulos , Factores de Intercambio de Guanina Nucleótido Rho , Adhesiones Focales/metabolismo , Microtúbulos/metabolismo , Humanos , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Miosina Tipo II/metabolismo , Talina/metabolismo , Talina/genética , Animales
6.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38639390

RESUMEN

The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.


Asunto(s)
División Celular , Polaridad Celular , Drosophila melanogaster , Células Epiteliales , Metafase , Huso Acromático , Estrés Mecánico , Animales , Metafase/fisiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Huso Acromático/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/citología , Polaridad Celular/fisiología , Tipificación del Cuerpo , Miosina Tipo II/metabolismo , Embrión no Mamífero/citología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Gastrulación/fisiología
7.
PLoS Biol ; 22(4): e3002611, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683880

RESUMEN

As tissues grow and change shape during animal development, they physically pull and push on each other, and these mechanical interactions can be important for morphogenesis. During Drosophila gastrulation, mesoderm invagination temporally overlaps with the convergence and extension of the ectodermal germband; the latter is caused primarily by Myosin II-driven polarised cell intercalation. Here, we investigate the impact of mesoderm invagination on ectoderm extension, examining possible mechanical and mechanotransductive effects on Myosin II recruitment and polarised cell intercalation. We find that the germband ectoderm is deformed by the mesoderm pulling in the orthogonal direction to germband extension (GBE), showing mechanical coupling between these tissues. However, we do not find a significant change in Myosin II planar polarisation in response to mesoderm invagination, nor in the rate of junction shrinkage leading to neighbour exchange events. We conclude that the main cellular mechanism of axis extension, polarised cell intercalation, is robust to the mesoderm invagination pull. We find, however, that mesoderm invagination slows down the rate of anterior-posterior cell elongation that contributes to axis extension, counteracting the tension from the endoderm invagination, which pulls along the direction of GBE.


Asunto(s)
Drosophila melanogaster , Ectodermo , Gastrulación , Mesodermo , Miosina Tipo II , Animales , Mesodermo/embriología , Mesodermo/citología , Gastrulación/fisiología , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Miosina Tipo II/metabolismo , Drosophila melanogaster/embriología , Polaridad Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero , Morfogénesis , Tipificación del Cuerpo/fisiología , Drosophila/embriología
8.
PLoS Genet ; 20(6): e1011326, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38857279

RESUMEN

The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.


Asunto(s)
Adhesión Celular , Movimiento Celular , Proteínas Hedgehog , Miosina Tipo II , Transducción de Señal , Animales , Ratones , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Adhesión Celular/genética , Miosina Tipo II/metabolismo , Miosina Tipo II/genética , Movimiento Celular/genética , Epitelio/metabolismo , Morfogénesis/genética , Diente/metabolismo , Diente/crecimiento & desarrollo , Células Epiteliales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Regulación del Desarrollo de la Expresión Génica
9.
PLoS Genet ; 20(10): e1011422, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39374304

RESUMEN

Complex organ structures are formed with high reproducibility. To achieve such intricate morphologies, the responsible epithelium undergoes multiple simultaneous shape changes, such as elongation and folding. However, these changes have typically been assessed separately. In this study, we revealed how distinct shape changes are controlled during internal organ morphogenesis. The Drosophila embryonic hindgut undergoes left-right asymmetric rotation and anteroposterior elongation in a tissue-autonomous manner driven by cell sliding and convergent extension, respectively, in the hindgut epithelia. However, the regulation of these processes remains unclear. Through genetic analysis and live imaging, we demonstrated that cell sliding and convergent extension are independently regulated by Myosin1D and E-cadherin, and Par-3, respectively, whereas both require MyosinII activity. Using a mathematical model, we demonstrated that independently regulated cellular dynamics can simultaneously cause shape changes in a single mechanical system using anisotropic edge contraction. Our findings indicate that distinct cellular dynamics sharing a common apparatus can be independently and simultaneously controlled to form complex organ shapes. This suggests that such a mechanism may be a general strategy during complex tissue morphogenesis.


Asunto(s)
Cadherinas , Proteínas de Drosophila , Drosophila melanogaster , Morfogénesis , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cadherinas/metabolismo , Cadherinas/genética , Morfogénesis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/embriología , Miosina Tipo II/metabolismo , Miosina Tipo II/genética , Miosinas/metabolismo , Miosinas/genética , Tipificación del Cuerpo/genética , Rotación , Regulación del Desarrollo de la Expresión Génica , Embrión no Mamífero/metabolismo , Epitelio/metabolismo , Epitelio/embriología
10.
Proc Natl Acad Sci U S A ; 121(39): e2407083121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39292751

RESUMEN

Ovulation is critical for sexual reproduction and consists of the process of liberating fertilizable oocytes from their somatic follicle capsules, also known as follicle rupture. The mechanical force for oocyte expulsion is largely unknown in many species. Our previous work demonstrated that Drosophila ovulation, as in mammals, requires the proteolytic degradation of the posterior follicle wall and follicle rupture to release the mature oocyte from a layer of somatic follicle cells. Here, we identified actomyosin contraction in somatic follicle cells as the major mechanical force for follicle rupture. Filamentous actin (F-actin) and nonmuscle myosin II (NMII) are highly enriched in the cortex of follicle cells upon stimulation with octopamine (OA), a monoamine critical for Drosophila ovulation. Pharmacological disruption of F-actin polymerization prevented follicle rupture without interfering with the follicle wall breakdown. In addition, we demonstrated that OA induces Rho1 guanosine triphosphate (GTP)ase activation in the follicle cell cortex, which activates Ras homolog (Rho) kinase to promote actomyosin contraction and follicle rupture. All these results led us to conclude that OA signaling induces actomyosin cortex enrichment and contractility, which generates the mechanical force for follicle rupture during Drosophila ovulation. Due to the conserved nature of actomyosin contraction, this work could shed light on the mechanical force required for follicle rupture in other species including humans.


Asunto(s)
Actomiosina , Proteínas de Drosophila , Octopamina , Folículo Ovárico , Ovulación , Animales , Actomiosina/metabolismo , Ovulación/fisiología , Folículo Ovárico/metabolismo , Folículo Ovárico/fisiología , Femenino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Octopamina/metabolismo , Actinas/metabolismo , Drosophila melanogaster/fisiología , Miosina Tipo II/metabolismo , Epitelio/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Oocitos/metabolismo , Drosophila/fisiología
11.
J Cell Sci ; 137(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277157

RESUMEN

S100A11 is a small Ca2+-activatable protein known to localize along stress fibers (SFs). Analyzing S100A11 localization in HeLa and U2OS cells further revealed S100A11 enrichment at focal adhesions (FAs). Strikingly, S100A11 levels at FAs increased sharply, yet transiently, just before FA disassembly. Elevating intracellular Ca2+ levels with ionomycin stimulated both S100A11 recruitment and subsequent FA disassembly. However, pre-incubation with the non-muscle myosin II (NMII) inhibitor blebbistatin or with an inhibitor of the stretch-activatable Ca2+ channel Piezo1 suppressed S100A11 recruitment, implicating S100A11 in an actomyosin-driven FA recruitment mechanism involving Piezo1-dependent Ca2+ influx. Applying external forces on peripheral FAs likewise recruited S100A11 to FAs even if NMII activity was inhibited, corroborating the mechanosensitive recruitment mechanism of S100A11. However, extracellular Ca2+ and Piezo1 function were indispensable, indicating that NMII contraction forces act upstream of Piezo1-mediated Ca2+ influx, in turn leading to S100A11 activation and FA recruitment. S100A11-knockout cells display enlarged FAs and had delayed FA disassembly during cell membrane retraction, consistent with impaired FA turnover in these cells. Our results thus demonstrate a novel function for S100A11 in promoting actomyosin contractility-driven FA disassembly.


Asunto(s)
Actomiosina , Adhesiones Focales , Humanos , Adhesiones Focales/metabolismo , Actomiosina/metabolismo , Calcio/metabolismo , Proteínas del Citoesqueleto/metabolismo , Miosina Tipo II/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo
12.
J Cell Sci ; 137(13)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38899547

RESUMEN

The Rho family of GTPases plays a crucial role in cellular mechanics by regulating actomyosin contractility through the parallel induction of actin and myosin assembly and function. Using exocytosis of large vesicles in the Drosophila larval salivary gland as a model, we followed the spatiotemporal regulation of Rho1, which in turn creates distinct organization patterns of actin and myosin. After vesicle fusion, low levels of activated Rho1 reach the vesicle membrane and drive actin nucleation in an uneven, spread-out pattern. Subsequently, the Rho1 activator RhoGEF2 distributes as an irregular meshwork on the vesicle membrane, activating Rho1 in a corresponding punctate pattern and driving local myosin II recruitment, resulting in vesicle constriction. Vesicle membrane buckling and subsequent crumpling occur at local sites of high myosin II concentrations. These findings indicate that distinct thresholds for activated Rho1 create a biphasic mode of actomyosin assembly, inducing anisotropic membrane crumpling during exocrine secretion.


Asunto(s)
Proteínas de Drosophila , Exocitosis , Miosina Tipo II , Proteínas de Unión al GTP rho , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Miosina Tipo II/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Exocitosis/fisiología , Drosophila melanogaster/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Larva/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/citología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Vesículas Secretoras/metabolismo
13.
Nature ; 588(7838): 515-520, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268888

RESUMEN

Myosin-2 is essential for processes as diverse as cell division and muscle contraction. Dephosphorylation of its regulatory light chain promotes an inactive, 'shutdown' state with the filament-forming tail folded onto the two heads1, which prevents filament formation and inactivates the motors2. The mechanism by which this happens is unclear. Here we report a cryo-electron microscopy structure of shutdown smooth muscle myosin with a resolution of 6 Å in the head region. A pseudo-atomic model, obtained by flexible fitting of crystal structures into the density and molecular dynamics simulations, describes interaction interfaces at the atomic level. The N-terminal extension of one regulatory light chain interacts with the tail, and the other with the partner head, revealing how the regulatory light chains stabilize the shutdown state in different ways and how their phosphorylation would allow myosin activation. Additional interactions between the three segments of the coiled coil, the motor domains and the light chains stabilize the shutdown molecule. The structure of the lever in each head is competent to generate force upon activation. This shutdown structure is relevant to all isoforms of myosin-2 and provides a framework for understanding their disease-causing mutations.


Asunto(s)
Microscopía por Crioelectrón , Miosina Tipo II/química , Miosina Tipo II/ultraestructura , Animales , Activación Enzimática , Estabilidad de Enzimas , Modelos Moleculares , Músculo Liso/química , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/metabolismo , Cadenas Ligeras de Miosina/ultraestructura , Miosina Tipo II/metabolismo , Fosforilación , Dominios Proteicos , Pavos
14.
Bioessays ; 46(10): e2400055, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39093597

RESUMEN

In textbook illustrations of migrating cells, actomyosin contractility is typically depicted as the contraction force necessary for cell body retraction. This dogma has been transformed by the molecular clutch model, which acknowledges that actomyosin traction forces also generate and transmit biomechanical signals at the leading edge, enabling cells to sense and shape their migratory path in mechanically complex environments. To fulfill these complementary functions, the actomyosin system assembles a gradient of contractile energy along the front-rear axis of migratory cells. Here, we highlight the hierarchic assembly and self-regulatory network structure of the actomyosin system and explain how the kinetics of different nonmuscle myosin II (NM II) paralogs synergize during contractile force generation. Our aim is to emphasize how protrusion formation, cell adhesion, contraction, and retraction are spatiotemporally integrated during different modes of migration, including chemotaxis and durotaxis. Finally, we hypothesize how different NM II paralogs might tune aspects of migration in vivo, highlighting future research directions.


Asunto(s)
Actomiosina , Movimiento Celular , Actomiosina/metabolismo , Movimiento Celular/fisiología , Animales , Humanos , Adhesión Celular/fisiología , Miosina Tipo II/metabolismo , Quimiotaxis/fisiología , Fenómenos Biomecánicos
15.
Dev Biol ; 515: 7-17, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38942110

RESUMEN

In most mollusks (conchiferans), the early tissue responsible for shell development, namely, the shell field, shows a common process of invagination during morphogenesis. Moreover, lines of evidence indicated that shell field invagination is not an independent event, but an integrated output reflecting the overall state of shell field morphogenesis. Nevertheless, the underlying mechanisms of this conserved process remain largely unknown. We previously found that actomyosin networks (regularly organized filamentous actin (F-actin) and myosin) may play essential roles in this process by revealing the evident aggregation of F-actin in the invaginated region and demonstrating that nonmuscle myosin II (NM II) is required for invagination in the gastropod Lottia peitaihoensis (= Lottia goshimai). Here, we investigated the roles of the Rho family of small GTPases (RhoA, Rac1, and Cdc42) to explore the upstream regulators of actomyosin networks. Functional assays using small molecule inhibitors suggested that Cdc42 modulates key events of shell field morphogenesis, including invagination and cell rearrangements, while the roles of RhoA and Rac1 may be nonspecific or negligible. Further investigations revealed that the Cdc42 protein was concentrated on the apical side of shell field cells and colocalized with F-actin aggregation. The aggregation of these two molecules could be prevented by treatment with Cdc42 inhibitors. These findings suggest a possible regulatory cascade of shell field morphogenesis in which Cdc42 recruits F-actin (actomyosin networks) on the apical side of shell field cells, which then generates resultant mechanical forces that mediate correct shell field morphogenesis (cell shape changes, invagination and cell rearrangement). Our results emphasize the roles of the cytoskeleton in early shell development and provide new insights into molluscan shell evolution.


Asunto(s)
Actinas , Actomiosina , Exoesqueleto , Gastrópodos , Morfogénesis , Proteína de Unión al GTP cdc42 , Animales , Gastrópodos/embriología , Gastrópodos/metabolismo , Exoesqueleto/metabolismo , Exoesqueleto/crecimiento & desarrollo , Exoesqueleto/embriología , Actinas/metabolismo , Actomiosina/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Miosina Tipo II/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
16.
J Biol Chem ; 300(6): 107385, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759730

RESUMEN

Non-muscle myosin 2 (NM2) is known to play an important role in myofibroblast transdifferentiation, a hallmark of fibrotic disorders. In a recent JBC article, Southern et al. demonstrate that endogenous S100A4, a calcium- and NM2-binding protein acts as a mechanoeffector in this process. Since extracellular S100A4 is also involved in fibrogenesis by triggering the inflammatory response, this small protein appears to contribute to fibrosis via at least two distinct mechanisms.


Asunto(s)
Fibrosis , Proteína de Unión al Calcio S100A4 , Proteínas S100 , Humanos , Proteína de Unión al Calcio S100A4/metabolismo , Proteína de Unión al Calcio S100A4/genética , Fibrosis/metabolismo , Animales , Proteínas S100/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Transdiferenciación Celular , Ratones , Miosina Tipo II/metabolismo
17.
J Biol Chem ; 300(8): 107539, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971309

RESUMEN

Force generation and motility by actomyosin in nonmuscle cells are spatially regulated by ∼40 tropomyosin (Tpm) isoforms. The means by which Tpms are targeted to specific cellular regions and the mechanisms that result in differential activity of myosin paralogs are unknown. We show that Tpm3.1 and Tpm1.7 inhibit Myosin-IC (Myo1C), with Tpm1.7 more effectively reducing the number of gliding filaments than Tpm3.1. Strikingly, cosedimentation and fluorescence microscopy assays revealed that Tpm3.1 is displaced from actin by Myo1C and not by myosin-II. In contrast, Tpm1.7 is only weakly displaced by Myo1C. Unlike other characterized myosins, Myo1C motility is inhibited by Tpm when the Tpm-actin filament is activated by myosin-II. These results point to a mechanism for the exclusion of myosin-I paralogs from cellular Tpm-decorated actin filaments that are activated by other myosins. Additionally, our results suggest a potential mechanism for myosin-induced Tpm sorting in cells.


Asunto(s)
Citoesqueleto de Actina , Miosina Tipo I , Isoformas de Proteínas , Tropomiosina , Tropomiosina/metabolismo , Miosina Tipo I/metabolismo , Miosina Tipo I/genética , Isoformas de Proteínas/metabolismo , Humanos , Citoesqueleto de Actina/metabolismo , Animales , Actinas/metabolismo , Miosina Tipo II/metabolismo , Ratones
18.
J Cell Sci ; 136(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37309190

RESUMEN

Spatial organization within an organ is essential and needs to be maintained during development. This is largely implemented via compartment boundaries that serve as barriers between distinct cell types. Biased accumulation of junctional non-muscle Myosin II along the interface between differently fated groups of cells contributes to boundary integrity and maintains its shape via increased tension. Here, using the Drosophila wing imaginal disc, we tested whether interfacial tension driven by accumulation of Myosin is responsible for the elimination of aberrantly specified cells that would otherwise compromise compartment organization. To this end, we genetically reduced Myosin II levels in three different patterns: in both wild-type and misspecified cells, only in misspecified cells, and specifically at the interface between wild-type and aberrantly specified cells. We found that the recognition and elimination of aberrantly specified cells do not strictly rely on tensile forces driven by interfacial Myosin cables. Moreover, apical constriction of misspecified cells and their separation from wild-type neighbours occurred even when Myosin levels were greatly reduced. Thus, we conclude that the forces that drive elimination of aberrantly specified cells are largely independent of Myosin II accumulation.


Asunto(s)
Miosina Tipo II , Animales , Células Clonales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Morfogénesis , Miosina Tipo II/metabolismo , Discos Imaginales/metabolismo
19.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36052670

RESUMEN

In common with other actomyosin contractile cellular machineries, actin turnover is required for normal function of the cytokinetic contractile ring. Cofilin is an actin-binding protein contributing to turnover by severing actin filaments, required for cytokinesis by many organisms. In fission yeast cofilin mutants, contractile rings suffer bridging instabilities in which segments of the ring peel away from the plasma membrane, forming straight bridges whose ends remain attached to the membrane. The origin of bridging instability is unclear. Here, we used molecularly explicit simulations of contractile rings to examine the role of cofilin. Simulations reproduced the experimentally observed cycles of bridging and reassembly during constriction, and the occurrence of bridging in ring segments with low density of the myosin II protein Myo2. The lack of cofilin severing produced ∼2-fold longer filaments and, consequently, ∼2-fold higher ring tensions. Simulations identified bridging as originating in the boosted ring tension, which increased centripetal forces that detached actin from Myo2, which was anchoring actin to the membrane. Thus, cofilin serves a critical role in cytokinesis by providing protection from bridging, the principal structural threat to contractile rings.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Citocinesis , Proteínas de Microfilamentos/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
20.
Development ; 149(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35451459

RESUMEN

Apical constriction, or a reduction in size of the apical domain, underlies many morphogenetic events during development. Actomyosin complexes play an essential role in apical constriction; however, the detailed analysis of molecular mechanisms is still pending. Here, we show that Lim domain only protein 7 (Lmo7), a multidomain adaptor at apical junctions, promotes apical constriction in the Xenopus superficial ectoderm, whereas apical domain size increases in Lmo7-depleted cells. Lmo7 is primarily localized at apical junctions and promotes the formation of the dense circumferential actomyosin belt. Strikingly, Lmo7 binds non-muscle myosin II (NMII) and recruits it to apical junctions and the apical cortex. This NMII recruitment is essential for Lmo7-mediated apical constriction. Lmo7 knockdown decreases NMIIA localization at apical junctions and delays neural tube closure in Xenopus embryos. Our findings suggest that Lmo7 serves as a scaffold that regulates actomyosin contractility and apical domain size.


Asunto(s)
Actomiosina , Ectodermo , Actomiosina/metabolismo , Animales , Ectodermo/metabolismo , Morfogénesis/fisiología , Cadenas Pesadas de Miosina , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Xenopus laevis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA