RESUMEN
BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS: Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS: Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS: The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.
Asunto(s)
Músculo Liso Vascular , Lesiones del Sistema Vascular , Ratones , Animales , Hiperplasia/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Proliferación Celular , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Constricción Patológica/metabolismo , Constricción Patológica/patología , Factores de Transcripción/metabolismo , Fenotipo , Neointima/genética , Neointima/metabolismo , Neointima/patología , Miocitos del Músculo Liso/metabolismo , Células Cultivadas , Movimiento CelularRESUMEN
The transcription factor BTB and CNC homology 1(BACH1) has been linked to coronary artery disease risk by human genome-wide association studies, but little is known about the role of BACH1 in vascular smooth muscle cell (VSMC) phenotype switching and neointima formation following vascular injury. Therefore, this study aims to explore the role of BACH1 in vascular remodeling and its underlying mechanisms. BACH1 was highly expressed in human atherosclerotic plaques and has high transcriptional factor activity in VSMCs of human atherosclerotic arteries. VSMC-specific loss of Bach1 in mice inhibited the transformation of VSMC from contractile to synthetic phenotype and VSMC proliferation and attenuated the neointimal hyperplasia induced by wire injury. Mechanistically, BACH1 suppressed chromatin accessibility at the promoters of VSMC marker genes via recruiting histone methyltransferase G9a and cofactor YAP and maintaining the H3K9me2 state, thereby repressing VSMC marker genes expression in human aortic smooth muscle cells (HASMCs). BACH1-induced repression of VSMC marker genes was abolished by the silencing of G9a or YAP. Thus, these findings demonstrate a crucial regulatory role of BACH1 in VSMC phenotypic transition and vascular homeostasis and shed light on potential future protective vascular disease intervention via manipulation of BACH1.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Cromatina , Músculo Liso Vascular , Neointima , Fenotipo , Animales , Humanos , Ratones , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Cromatina/genética , Cromatina/metabolismo , Homeostasis , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Neointima/genética , Neointima/metabolismo , Neointima/patología , Neointima/prevención & control , Placa AteroscleróticaRESUMEN
Krüppel-like factor 13 (KLF13), a zinc finger transcription factor, is considered as a potential regulator of cardiomyocyte differentiation and proliferation during heart morphogenesis. However, its precise role in the dedifferentiation of vascular smooth muscle cells (VSMCs) during atherosclerosis and neointimal formation after injury remains poorly understood. In this study, we investigated the relationship between KLF13 and SM22α expression in normal and atherosclerotic plaques by bioanalysis, and observed a significant increase in KLF13 levels in the atherosclerotic plaques of both human patients and ApoE-/- mice. Knockdown of KLF13 was found to ameliorate intimal hyperplasia following carotid artery injury. Furthermore, we discovered that KLF13 directly binds to the SM22α promoter, leading to the phenotypic dedifferentiation of VSMCs. Remarkably, we observed a significant inhibition of platelet-derived growth factor BB-induced VSMCs dedifferentiation, proliferation, and migration when knocked down KLF13 in VSMCs. This inhibitory effect of KLF13 knockdown on VCMC function was, at least in part, mediated by the inactivation of p-AKT signaling in VSMCs. Overall, our findings shed light on a potential therapeutic target for treating atherosclerotic lesions and restenosis after vascular injury.
Asunto(s)
Desdiferenciación Celular , Proliferación Celular , Factores de Transcripción de Tipo Kruppel , Proteínas de Microfilamentos , Proteínas Musculares , Músculo Liso Vascular , Miocitos del Músculo Liso , Proteínas Represoras , Animales , Humanos , Masculino , Ratones , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/metabolismo , Traumatismos de las Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética , Células Cultivadas , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Neointima/metabolismo , Neointima/patología , Neointima/genética , Fenotipo , Placa Aterosclerótica/patología , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/genética , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas de Ciclo Celular , Proteínas de Microfilamentos/genéticaRESUMEN
BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS: An IPâLCâMS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS: The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION: Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.
Asunto(s)
Glucosafosfato Deshidrogenasa , Músculo Liso Vascular , Canal Aniónico 1 Dependiente del Voltaje , Humanos , Hiperplasia/metabolismo , Hiperplasia/patología , Becaplermina/genética , Becaplermina/metabolismo , Proliferación Celular , Proteína X Asociada a bcl-2/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Músculo Liso Vascular/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Neointima/genética , Neointima/metabolismo , Neointima/patología , Apoptosis , Miocitos del Músculo Liso/metabolismo , Movimiento Celular/genética , Células Cultivadas , FenotipoRESUMEN
The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of neointima formation in vascular restenosis. This study aims to explore the function of the long noncoding RNA H19 in neointima formation. A mouse carotid ligation model was established, and human vascular smooth muscle cells (VSMCs) were used as a cell model. lncRNA H19 overexpression promoted VSMC proliferation and migration. Moreover, miR-125a-3p potentially bound to lncRNA H19, and Fms-like tyrosine kinase-1 (FLT1) might be a direct target of miR-125a-3p in VSMCs. Upregulation of miR-125a-3p alleviated lncRNA H19-enhanced VSMC proliferation and migration. Furthermore, rescue experiments showed that enhanced expression of miR-125a-3p attenuated lncRNA H19-induced FLT1 expression in VSMCs. In addition, the overexpression of lncRNA H19 significantly exacerbated neointima formation in a mouse carotid ligation model. In summary, lncRNA H19 stimulates VSMC proliferation and migration by acting as a competing endogenous RNA (ceRNA) of miR-125a-3p. lncRNA H19 may be a therapeutic target for restenosis.
Asunto(s)
Movimiento Celular , Proliferación Celular , MicroARNs , Músculo Liso Vascular , Neointima , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , MicroARNs/genética , MicroARNs/metabolismo , Neointima/patología , Neointima/metabolismo , Neointima/genética , Humanos , Proliferación Celular/genética , Movimiento Celular/genética , Ratones , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/citología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones Endogámicos C57BL , Masculino , Células CultivadasRESUMEN
Excessive neointimal hyperplasia (NIH) of coronary vessels in patients is the main cause of restenosis (RS) after percutaneous coronary intervention (PCI). This study aimed to identify the regulatory genes related to NIH in a rat carotid artery balloon injury model.We established a rat model and performed RNA sequencing to identify differentially expressed long non-coding RNAs (DElncRNAs) and differentially expressed message RNAs (DEmRNAs). Immune cells were analyzed using a murine Microenvironment Cell Population counter. The Pearson correlation between DEmRNAs, DElncRNAs, and immune cells was analyzed, followed by function enrichment analysis. Core DEmRNA was identified using Cytoscape. Next, a core lncRNAs-mRNAs-immune cell regulatory network was constructed. NIH-related gene sets from the Gene Expression Omnibus and GeneCards databases were used for validation.A total of 2,165 DEmRNAs and 705 DElncRNAs were identified in rat carotid artery tissue. Four key immune cells were screened out, including mast cells, vessels, endothelial cells, and fibroblasts. Based on the Pearson correlation between DEmRNAs, DElncRNAs and 4 key immune cells, 246 DEmRNAs and 93 DElncRNAs were obtained. DEmRNAs that interact with lncRNAs were mainly involved in the cell cycle, MAPK signaling pathway, and PI3K-Akt signaling pathway. A core lncRNA-mRNA-immune cell regulatory network was constructed, including 9 mRNAs, 4 lncRNAs, and fibroblasts. External datasets validation confirmed the significant correlation of both these mRNAs and lncRNAs with NIH.In this study, an lncRNA-mRNA-immune cell regulatory network related to NIH was constructed, which provided clues for exploring the potential mechanism of RS in cardiovascular diseases.
Asunto(s)
Traumatismos de las Arterias Carótidas , Modelos Animales de Enfermedad , Redes Reguladoras de Genes , Hiperplasia , Neointima , ARN Largo no Codificante , ARN Mensajero , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/inmunología , Ratas , Neointima/patología , Neointima/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Masculino , Ratas Sprague-Dawley , Arterias Carótidas/patología , Arterias Carótidas/metabolismoRESUMEN
Angiogenic factor AGGF1 (AngioGenic factor with G-patch and FHA (Forkhead-Associated) domain 1) blocks neointimal formation (formation of a new or thickened layer of arterial intima) after vascular injury by regulating phenotypic switching of vascular smooth muscle cells (VSMCs). However, the AGGF1 receptor on VSMCs and the underlying molecular mechanisms of its action are unknown. In this study, we used functional analysis of serial AGGF1 deletions to reveal the critical AGGF1 domain involved in VSMC phenotypic switching. This domain was required for VSMC phenotypic switching, proliferation, cell cycle regulation, and migration, as well as the regulation of cell cycle inhibitors cyclin D, p27, and p21. This domain also contains an RDDAPAS motif via which AGGF1 interacts with integrin α7 (ITGA7), but not α8. In addition, we show that AGGF1 enhanced the expression of contractile markers MYH11, α-SMA, and SM22 and inhibited MEK1/2, ERK1/2, and ELK phosphorylation in VSMCs, and that these effects were inhibited by knockdown of ITGA7, but not by knockdown of ITGA8. In vivo, deletion of the VSMC phenotypic switching domain in mice with vascular injury inhibited the functions of AGGF1 in upregulating α-SMA and SM22, inhibiting MEK1/2, ERK1/2, and ELK phosphorylation, in VSMC proliferation, and in blocking neointimal formation. Finally, we show the inhibitory effect of AGGF1 on neointimal formation was blocked by lentivirus-delivered shRNA targeting ITGA7. Our data demonstrate that AGGF1 interacts with its receptor integrin α7 on VSMCs, and this interaction is required for AGGF1 signaling in VSMCs and for attenuation of neointimal formation after vascular injury.
Asunto(s)
Músculo Liso Vascular , Lesiones del Sistema Vascular , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Antígenos CD/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Cadenas alfa de Integrinas/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/genética , Neointima/metabolismo , Lesiones del Sistema Vascular/metabolismoRESUMEN
Jumonji domain-containing protein-3 (JMJD3), a histone H3 lysine 27 (H3K27) demethylase, promotes endothelial regeneration, but its function in neointimal hyperplasia (NIH) of arteriovenous fistulas (AVFs) has not been explored. In this study, we examined the contribution of endothelial JMJD3 to NIH of AVFs and the mechanisms underlying JMJD3 expression during kidney failure. We found that endothelial JMJD3 expression was negatively associated with NIH of AVFs in patients with kidney failure. JMJD3 expression in endothelial cells (ECs) was also downregulated in the vasculature of chronic kidney disease (CKD) mice. In addition, specific knockout of endothelial JMJD3 delayed EC regeneration, enhanced endothelial mesenchymal transition, impaired endothelial barrier function as determined by increased Evans blue staining and inflammatory cell infiltration, and accelerated neointima formation in AVFs created by venous end to arterial side anastomosis in CKD mice. Mechanistically, JMJD3 expression was downregulated via binding of transforming growth factor beta 1-mediated Hes family transcription factor Hes1 to its gene promoter. Knockdown of JMJD3 enhanced H3K27 methylation, thereby inhibiting transcriptional activity at promoters of EC markers and reducing migration and proliferation of ECs. Furthermore, knockdown of endothelial JMJD3 decreased endothelial nitric oxide synthase expression and nitric oxide production, leading to the proliferation of vascular smooth muscle cells. In conclusion, we demonstrate that decreased expression of endothelial JMJD3 impairs EC regeneration and function and accelerates neointima formation in AVFs. We propose increasing the expression of endothelial JMJD3 could represent a new strategy for preventing endothelial dysfunction, attenuating NIH, and improving AVF patency in patients with kidney disease.
Asunto(s)
Fístula Arteriovenosa , Histona Demetilasas con Dominio de Jumonji/genética , Insuficiencia Renal Crónica , Animales , Fístula Arteriovenosa/genética , Fístula Arteriovenosa/patología , Regulación hacia Abajo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Hiperplasia/genética , Hiperplasia/patología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Neointima/genéticaRESUMEN
BACKGROUND: In-stent restenosis hardly limits the therapeutic effect of the percutaneous vascular intervention. Although the restenosis is significantly ameliorated after the application of new drug-eluting stents, the incidence of restenosis remains at a high level. OBJECTIVE: Vascular adventitial fibroblasts (AFs) play an important role in intimal hyperplasia and subsequent restenosis. The current study was aimed to investigate the role of nuclear receptor subfamily 1, group D, member 1 (NR1D1) in the vascular intimal hyperplasia. METHODS AND RESULTS: We observed increased expression of NR1D1 after the transduction of adenovirus carrying Nr1d1 gene (Ad-Nr1d1) in AFs. Ad-Nr1d1 transduction significantly reduced the numbers of total AFs, Ki-67-positive AFs, and the migration rate of AFs. NR1D1 overexpression decreased the expression level of ß-catenin and attenuated the phosphorylation of the effectors of mammalian target of rapamycin complex 1 (mTORC1), including mammalian target of rapamycin (mTOR) and 4E binding protein 1 (4EBP1). Restoration of ß-catenin by SKL2001 abolished the inhibitory effects of NR1D1 overexpression on the proliferation and migration of AFs. Surprisingly, the restoration of mTORC1 activity by insulin could also reverse the decreased expression of ß-catenin, attenuated proliferation, and migration in AFs induced by NR1D1 overexpression. In vivo, we found that SR9009 (an agonist of NR1D1) ameliorated the intimal hyperplasia at days 28 after injury of carotid artery. We further observed that SR9009 attenuated the increased Ki-67-positive AFs, an essential part of vascular restenosis at days 7 after injury to the carotid artery. CONCLUSION: These data suggest that NR1D1 inhibits intimal hyperplasia by suppressing the proliferation and migration of AFs in a mTORC1/ß-catenin-dependent manner.
Asunto(s)
Músculo Liso Vascular , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , beta Catenina , beta Catenina/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Fibroblastos , Hiperplasia/metabolismo , Hiperplasia/patología , Antígeno Ki-67/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Miocitos del Músculo Liso , Neointima/genética , Neointima/metabolismo , Neointima/patología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix-cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with the mechanical microenvironment in large blood vessels to maintain the integrity of the vessel wall are not fully understood. Here, we identified the matricellular protein thrombospondin-1 (Thbs1) as an extracellular mediator of matrix mechanotransduction that acts via integrin αvß1 to establish focal adhesions and promotes nuclear shuttling of Yes-associated protein (YAP) in response to high strain of cyclic stretch. Thbs1-mediated YAP activation depends on the small GTPase Rap2 and Hippo pathway and is not influenced by alteration of actin fibers. Deletion of Thbs1 in mice inhibited Thbs1/integrin ß1/YAP signaling, leading to maladaptive remodeling of the aorta in response to pressure overload and inhibition of neointima formation upon carotid artery ligation, exerting context-dependent effects on the vessel wall. We thus propose a mechanism of matrix mechanotransduction centered on Thbs1, connecting mechanical stimuli to YAP signaling during vascular remodeling in vivo.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Integrina beta1/genética , Trombospondina 1/genética , Factores de Transcripción/genética , Remodelación Vascular/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Aorta/crecimiento & desarrollo , Aorta/metabolismo , Arterias Carótidas/crecimiento & desarrollo , Arterias Carótidas/metabolismo , Microambiente Celular/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Adhesiones Focales/genética , Vía de Señalización Hippo , Humanos , Integrina beta1/metabolismo , Mecanotransducción Celular , Ratones , Neointima/genética , Neointima/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Trombospondina 1/metabolismo , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP , Proteínas de Unión al GTP rap/genéticaRESUMEN
In response to injury, vascular smooth muscle cells (VSMCs) of the arterial wall dedifferentiate into a proliferative and migratory phenotype, leading to intimal hyperplasia. The ERK1/2 pathway participates in cellular proliferation and migration, while dual-specificity phosphatase 6 (DUSP6, also named MKP3) can dephosphorylate activated ERK1/2. We showed that DUSP6 was expressed in low baseline levels in normal arteries; however, arterial injury significantly increased DUSP6 levels in the vessel wall. Compared with wild-type mice, Dusp6-deficient mice had smaller neointima. In vitro, IL-1ß induced DUSP6 expression and increased VSMC proliferation and migration. Lack of DUSP6 reduced IL-1ß-induced VSMC proliferation and migration. DUSP6 deficiency did not affect IL-1ß-stimulated ERK1/2 activation. Instead, ERK1/2 inhibitor U0126 prevented DUSP6 induction by IL-1ß, indicating that ERK1/2 functions upstream of DUSP6 to regulate DUSP6 expression in VSMCs rather than downstream as a DUSP6 substrate. IL-1ß decreased the levels of cell cycle inhibitor p27 and cell-cell adhesion molecule N-cadherin in VSMCs, whereas lack of DUSP6 maintained their high levels, revealing novel functions of DUSP6 in regulating these two molecules. Taken together, our results indicate that lack of DUSP6 attenuated neointima formation following arterial injury by reducing VSMC proliferation and migration, which were likely mediated via maintaining p27 and N-cadherin levels.
Asunto(s)
Fosfatasas de Especificidad Dual , Neointima , Lesiones del Sistema Vascular , Animales , Ratones , Cadherinas , Movimiento Celular , Proliferación Celular , Células Cultivadas , Fosfatasas de Especificidad Dual/genética , Hiperplasia , Ratones Endogámicos C57BL , Miocitos del Músculo Liso , Neointima/genética , Neointima/prevención & control , Lesiones del Sistema Vascular/genéticaRESUMEN
The underlying mechanism of neointima formation remains unclear. Ubiquitin-specific peptidase 10 (USP10) is a deubiquitinase that plays a major role in cancer development and progression. However, the function of USP10 in arterial restenosis is unknown. Herein, USP10 expression was detected in mouse arteries and increased after carotid ligation. The inhibition of USP10 exhibited thinner neointima in the model of mouse carotid ligation. In vitro data showed that USP10 deficiency reduced proliferation and migration of rat thoracic aorta smooth muscle cells (A7r5) and human aortic smooth muscle cells (HASMCs). Mechanically, USP10 can bind to Skp2 and stabilize its protein level by removing polyubiquitin on Skp2 in the cytoplasm. The overexpression of Skp2 abrogated cell cycle arrest induced by USP10 inhibition. Overall, the current study demonstrated that USP10 is involved in vascular remodeling by directly promoting VSMC proliferation and migration via stabilization of Skp2 protein expression.
Asunto(s)
Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Línea Celular , Movimiento Celular , Proliferación Celular , Humanos , Neointima/genética , Estabilidad Proteica , Proteínas Quinasas Asociadas a Fase-S/genética , Ubiquitina Tiolesterasa/genéticaRESUMEN
OBJECTIVE: Vascular smooth muscle cell (SMC) proliferation contributes to neointima formation following vascular injury. Circular RNA-a novel type of noncoding RNA with closed-loop structure-exhibits cell- and tissue-specific expression patterns. However, the role of circular RNA in SMC proliferation and neointima formation is largely unknown. The objective of this study is to investigate the role and mechanism of circSOD2 in SMC proliferation and neointima formation. Approach and Results: Circular RNA profiling of human aortic SMCs revealed that PDGF (platelet-derived growth factor)-BB up- and downregulated numerous circular RNAs. Among them, circSOD2, derived from back-splicing event of SOD2 (superoxide dismutase 2), was significantly enriched. Knockdown of circSOD2 by short hairpin RNA blocked PDGF-BB-induced SMC proliferation. Inversely, circSOD2 ectopic expression promoted SMC proliferation. Mechanistically, circSOD2 acted as a sponge for miR-206, leading to upregulation of NOTCH3 (notch receptor 3) and NOTCH3 signaling, which regulates cyclin D1 and CDK (cyclin-dependent kinase) 4/6. In vivo studies showed that circSOD2 was induced in neointima SMCs in balloon-injured rat carotid arteries. Importantly, knockdown of circSOD2 attenuated injury-induced neointima formation along with decreased neointimal SMC proliferation. CONCLUSIONS: CircSOD2 is a novel regulator mediating SMC proliferation and neointima formation following vascular injury. Therefore, circSOD2 could be a potential therapeutic target for inhibiting the development of proliferative vascular diseases.
Asunto(s)
Traumatismos de las Arterias Carótidas/genética , Músculo Liso Vascular/metabolismo , Neointima/genética , Superóxido Dismutasa/genética , Remodelación Vascular/genética , Animales , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Masculino , Músculo Liso Vascular/patología , Neointima/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Superóxido Dismutasa/biosíntesisRESUMEN
Increasing evidence has suggested a critical role for endothelial-to-mesenchymal transition (EndoMT) in a variety of pathological conditions. MicroRNA-200c-3p (miR-200c-3p) has been implicated in epithelial-to-mesenchymal transition. However, the functional role of miR-200c-3p in EndoMT and neointimal hyperplasia in artery bypass grafts remains largely unknown. Here we demonstrated a critical role for miR-200c-3p in EndoMT. Proteomics and luciferase activity assays revealed that fermitin family member 2 (FERM2) is the functional target of miR-200c-3p during EndoMT. FERMT2 gene inactivation recapitulates the effect of miR-200c-3p overexpression on EndoMT, and the inhibitory effect of miR-200c-3p inhibition on EndoMT was reversed by FERMT2 knockdown. Further mechanistic studies revealed that FERM2 suppresses smooth muscle gene expression by preventing serum response factor nuclear translocation and preventing endothelial mRNA decay by interacting with Y-box binding protein 1. In a model of aortic grafting using endothelial lineage tracing, we observed that miR-200c-3p expression was dramatically up-regulated, and that EndoMT contributed to neointimal hyperplasia in grafted arteries. MiR-200c-3p inhibition in grafted arteries significantly up-regulated FERM2 gene expression, thereby preventing EndoMT and reducing neointimal formation. Importantly, we found a high level of EndoMT in human femoral arteries with atherosclerotic lesions, and that miR-200c-3p expression was significantly increased, while FERMT2 expression levels were dramatically decreased in diseased human arteries. Collectively, we have documented an unexpected role for miR-200c-3p in EndoMT and neointimal hyperplasia in grafted arteries. Our findings offer a novel therapeutic opportunity for treating vascular diseases by specifically targeting the miR-200c-3p/FERM2 regulatory axis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Asunto(s)
Hiperplasia/genética , Proteínas de la Membrana/metabolismo , MicroARNs/genética , Neointima/genética , Proteínas de Neoplasias/metabolismo , Animales , Células Endoteliales/patología , Transición Epitelial-Mesenquimal , Femenino , Humanos , Hiperplasia/patología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Neointima/patología , Proteínas de Neoplasias/genética , Regulación hacia Arriba , Injerto VascularRESUMEN
Endothelial progenitor cells (EPCs) are involved in vascular repair and modulate properties of smooth muscle cells (SMCs) relevant for their contribution to neointima formation following injury. Considering the relevant role of the CXCL12-CXCR4 axis in vascular homeostasis and the potential of EPCs and SMCs to release CXCL12 and express CXCR4, we analyzed the engagement of the CXCL12-CXCR4 axis in various modes of EPC-SMC interaction relevant for injury- and lipid-induced atherosclerosis. We now demonstrate that the expression and release of CXCL12 is synergistically increased in a CXCR4-dependent mechanism following EPC-SMC interaction during co-cultivation or in response to recombinant CXCL12, thus establishing an amplifying feedback loop Additionally, mechanical injury of SMCs induces increased release of CXCL12, resulting in enhanced CXCR4-dependent recruitment of EPCs to SMCs. The CXCL12-CXCR4 axis is crucially engaged in the EPC-triggered augmentation of SMC migration and the attenuation of SMC apoptosis but not in the EPC-mediated increase in SMC proliferation. Compared to EPCs alone, the alliance of EPC-SMC is superior in promoting the CXCR4-dependent proliferation and migration of endothelial cells. When direct cell-cell contact is established, EPCs protect the contractile phenotype of SMCs via CXCL12-CXCR4 and reverse cholesterol-induced transdifferentiation toward a synthetic, macrophage-like phenotype. In conclusion we show that the interaction of EPCs and SMCs unleashes a CXCL12-CXCR4-based autoregulatory feedback loop promoting regenerative processes and mediating SMC phenotype control to potentially guard vascular homeostasis.
Asunto(s)
Vasos Sanguíneos/metabolismo , Quimiocina CXCL12/metabolismo , Células Progenitoras Endoteliales/metabolismo , Homeostasis , Miocitos del Músculo Liso/metabolismo , Receptores CXCR4/metabolismo , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores , Movimiento Celular , Células Cultivadas , Quimiocina CXCL12/genética , Expresión Génica , Humanos , Neointima/genética , Neointima/metabolismo , Fenotipo , Unión Proteica , Receptores CXCR4/genética , Transducción de SeñalRESUMEN
Microfibrillar-associated proteins (MFAPs) are extracellular matrix glycoproteins, which play a role in microfibril assembly, elastinogenesis, and tissue homeostasis. MFAPs consist of five subfamily members, including MFAP1, MFAP2, MFAP3, MFAP4, and MFAP5. Among these, MFAP2 and MFAP5 are most closely related, and exhibit very limited amino acid sequence homology with MFAP1, MFAP3, and MFAP4. Gene expression profiling analysis reveals that MFAP2, MFAP5, and MFAP4 are specifically expressed in osteoblastic like cells, whereas MFAP1 and MFAP3 are more ubiquitously expressed, indicative of their diverse role in the tropism of tissues. Molecular structural analysis shows that each MFAP family member has distinct features, and functional evidence reveals discrete purposes of individual MFAPs. Animal studies indicate that MFAP2-deficient mice exhibit progressive osteopenia with elevated receptor activator of NF-κB ligand (RANKL) expression, whereas MFAP5-deficient mice are neutropenic, and MFAP4-deficient mice displayed emphysema-like pathology and the impaired formation of neointimal hyperplasia. Emerging data also suggest that MFAPs are involved in cancer progression and fat metabolism. Further understanding of tissue-specific pathophysiology of MFAPs might offer potential novel therapeutic targets for related diseases, such as skeletal and metabolic disorders, and cancers.
Asunto(s)
Enfermedades Metabólicas/genética , Neoplasias/genética , Factores de Empalme de ARN/genética , Secuencia de Aminoácidos , Animales , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , Hiperplasia/genética , Neointima/genéticaRESUMEN
Adventitial abnormalities including enhanced vasa vasorum malformation are associated with development and vulnerability of atherosclerotic plaque. However, the mechanisms of vasa vasorum malformation and its role in vascular remodeling have not been fully clarified. We recently reported that ninjurin-1 (Ninj1) is a crucial adhesion molecule for pericytes to form matured neovessels. The purpose is to examine if Ninj1 regulates adventitial angiogenesis and affects the vascular remodeling of injured vessels using pericyte-specific Ninj1 deletion mouse model. Mouse femoral arteries were injured by insertion of coiled wire. Four weeks after vascular injury, fixed arteries were decolorized. Vascular remodeling, including intimal hyperplasia and adventitial microvessel formation were estimated in a three-dimensional view. Vascular fragility, including blood leakiness was estimated by extravasation of fluorescein isothiocyanate (FITC)-lectin or FITC-dextran from microvessels. Ninj1 expression was increased in pericytes in response to vascular injury. NG2-CreER/Ninj1loxp mice were treated with tamoxifen (Tam) to induce deletion of Ninj1 in pericyte (Ninj1 KO). Tam-treated NG2-CreER or Tam-nontreated NG2-CreER/Ninj1loxp mice were used as controls. Intimal hyperplasia was significantly enhanced in Ninj1 KO compared with controls. Vascular leakiness was significantly enhanced in Ninj1 KO. In Ninj1 KO, the number of infiltrated macrophages in adventitia was increased, along with the expression of inflammatory cytokines. In conclusion, deletion of Ninj1 in pericytes induces the immature vasa vasorum formation of injured vasculature and exacerbates adventitial inflammation and intimal hyperplasia. Thus, Ninj1 contributes to the vasa vasorum maturation in response to vascular injury and to reduction of vascular remodeling.NEW & NOTEWORTHY Although abnormalities of adventitial vasa vasorum are associated with vascular remodeling such as atherosclerosis, the mechanisms of vasa vasorum malformation and its role in vascular remodeling have not been fully clarified. The present study provides a line of novel evidence that ninjurin-1 contributes to adventitial microvascular maturation during vascular injury and regulates vascular remodeling.
Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Arteria Femoral/metabolismo , Neointima/genética , Factores de Crecimiento Nervioso/genética , Pericitos/metabolismo , Vasa Vasorum/metabolismo , Remodelación Vascular/genética , Adventicia/metabolismo , Adventicia/patología , Animales , Arteria Femoral/lesiones , Arteria Femoral/patología , Técnicas de Inactivación de Genes , Hiperplasia/genética , Inflamación/genética , Inflamación/metabolismo , Macrófagos/patología , Ratones , Neointima/patología , Neovascularización Fisiológica/genética , Transcriptoma , Túnica Íntima/metabolismo , Túnica Íntima/patología , Vasa Vasorum/patología , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patologíaRESUMEN
RATIONALE: TEAD (TEA domain transcription factor) 1-a major effector of the Hippo signaling pathway-acts as an oncoprotein in a variety of tumors. However, the function of TEAD1 in vascular smooth muscle cells (VSMCs) remains unclear. OBJECTIVE: To assess the role of TEAD1 in vascular injury-induced smooth muscle proliferation and delineate the mechanisms underlying its action. METHODS AND RESULTS: We found that TEAD1 expression is enhanced in mouse femoral artery after wire injury and correlates with the activation of mTORC1 (mechanistic target of rapamycin complex 1) signaling in vivo. Using an inducible smooth muscle-specific Tead1 KO (knockout) mouse model, we found that specific deletion of Tead1 in adult VSMCs is sufficient to attenuate arterial injury-induced neointima formation due to inhibition of mTORC1 activation and VSMC proliferation. Furthermore, we found that TEAD1 plays a unique role in VSMCs, where it not only downregulates VSMC differentiation markers but also activates mTORC1 signaling, leading to enhanced VSMC proliferation. Using whole-transcriptome sequencing analysis, we identified Slc1a5 (solute carrier family 1 member 5)-a key glutamine transporter-as a novel TEAD1 target gene. SLC1A5 overexpression mimicked TEAD1 in promoting mTORC1 activation and VSMC proliferation. Moreover, depletion of SLC1A5 by silencing RNA or blocking SLC1A5-mediated glutamine uptake attenuated TEAD1-dependent mTORC1 activation and VSMC proliferation. CONCLUSIONS: Our study unravels a novel mechanism by which TEAD1 promotes VSMC proliferation via transcriptional induction of SLC1A5, thereby activating mTORC1 signaling and promoting neointima formation.
Asunto(s)
Sistema de Transporte de Aminoácidos ASC/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Glutamina/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Miocitos del Músculo Liso/metabolismo , Factores de Transcripción/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Animales , Transporte Biológico/genética , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor/genética , Neointima/genética , Neointima/metabolismo , Interferencia de ARN , Transducción de Señal , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Activación Transcripcional , Regulación hacia ArribaRESUMEN
In response to vascular injury, vascular smooth muscle cells (VSMCs) may switch from a contractile to a proliferative phenotype thereby contributing to neointima formation. Previous studies showed that the long noncoding RNA (lncRNA) NEAT1 is critical for paraspeckle formation and tumorigenesis by promoting cell proliferation and migration. However, the role of NEAT1 in VSMC phenotypic modulation is unknown. Herein we showed that NEAT1 expression was induced in VSMCs during phenotypic switching in vivo and in vitro. Silencing NEAT1 in VSMCs resulted in enhanced expression of SM-specific genes while attenuating VSMC proliferation and migration. Conversely, overexpression of NEAT1 in VSMCs had opposite effects. These in vitro findings were further supported by in vivo studies in which NEAT1 knockout mice exhibited significantly decreased neointima formation following vascular injury, due to attenuated VSMC proliferation. Mechanistic studies demonstrated that NEAT1 sequesters the key chromatin modifier WDR5 (WD Repeat Domain 5) from SM-specific gene loci, thereby initiating an epigenetic "off" state, resulting in down-regulation of SM-specific gene expression. Taken together, we demonstrated an unexpected role of the lncRNA NEAT1 in regulating phenotypic switching by repressing SM-contractile gene expression through an epigenetic regulatory mechanism. Our data suggest that NEAT1 is a therapeutic target for treating occlusive vascular diseases.
Asunto(s)
Regulación de la Expresión Génica , Miocitos del Músculo Liso/metabolismo , ARN Largo no Codificante/genética , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Células Cultivadas , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/citología , Neointima/genética , Neointima/metabolismo , Fenotipo , Interferencia de ARN , Ratas , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patologíaRESUMEN
Matrix metalloproteinase 9 (MMP-9) expression is upregulated in vascular inflammation and participates in vascular remodeling, including aneurysm dilatation and arterial neointima development. Neointima at the arteriovenous (AV) fistula anastomosis site primarily causes AV fistula stenosis and failure; however, the effects of MMP-9 on perioperative AV fistula remodeling remain unknown. Therefore, we created AV fistulas (end-to-side anastomosis) in wild-type (WT) and MMP-9 knockout mice with chronic kidney disease to further clarify this. Neointima progressively developed in the AV fistula venous segment of WT mice during the four-week postoperative course, and MMP-9 knockout increased the lumen area and attenuated neointima size by reducing smooth muscle cell and collagen components. Early perioperative AV fistula mRNA sequencing data revealed that inflammation-related gene sets were negatively enriched in AV fistula of MMP-9 knockout mice compared to that in WT mice. qPCR results also showed that inflammatory genes, including tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), were downregulated. In addition, Western blot results showed that MMP-9 knockout reduced CD44 and RAC-alpha serine/threonine-protein kinase (Akt) and extracellular signal-regulated kinases (ERK) phosphorylation. In vitro, MMP-9 addition enhanced IL-6 and MCP-1 expression in vascular smooth muscle cells, as well as cell migration, which was reversed by an MMP-9 inhibitor. In conclusion, MMP-9 knockout attenuated AV fistula stenosis by reducing perioperative vascular inflammation.