Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 907
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(3): 622-633, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25892222

RESUMEN

Breathing is essential for survival and under precise neural control. The vagus nerve is a major conduit between lung and brain required for normal respiration. Here, we identify two populations of mouse vagus nerve afferents (P2ry1, Npy2r), each a few hundred neurons, that exert powerful and opposing effects on breathing. Genetically guided anatomical mapping revealed that these neurons densely innervate the lung and send long-range projections to different brainstem targets. Npy2r neurons are largely slow-conducting C fibers, while P2ry1 neurons are largely fast-conducting A fibers that contact pulmonary endocrine cells (neuroepithelial bodies). Optogenetic stimulation of P2ry1 neurons acutely silences respiration, trapping animals in exhalation, while stimulating Npy2r neurons causes rapid, shallow breathing. Activating P2ry1 neurons did not impact heart rate or gastric pressure, other autonomic functions under vagal control. Thus, the vagus nerve contains intermingled sensory neurons constituting genetically definable labeled lines with different anatomical connections and physiological roles.


Asunto(s)
Respiración , Células Receptoras Sensoriales/fisiología , Nervio Vago/citología , Animales , Tronco Encefálico/fisiología , Pulmón/inervación , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/citología , Nervio Vago/fisiología
2.
Nature ; 630(8017): 695-703, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692285

RESUMEN

The body-brain axis is emerging as a principal conductor of organismal physiology. It senses and controls organ function1,2, metabolism3 and nutritional state4-6. Here we show that a peripheral immune insult strongly activates the body-brain axis to regulate immune responses. We demonstrate that pro-inflammatory and anti-inflammatory cytokines communicate with distinct populations of vagal neurons to inform the brain of an emerging inflammatory response. In turn, the brain tightly modulates the course of the peripheral immune response. Genetic silencing of this body-brain circuit produced unregulated and out-of-control inflammatory responses. By contrast, activating, rather than silencing, this circuit affords neural control of immune responses. We used single-cell RNA sequencing, combined with functional imaging, to identify the circuit components of this neuroimmune axis, and showed that its selective manipulation can effectively suppress the pro-inflammatory response while enhancing an anti-inflammatory state. The brain-evoked transformation of the course of an immune response offers new possibilities in the modulation of a wide range of immune disorders, from autoimmune diseases to cytokine storm and shock.


Asunto(s)
Encéfalo , Citocinas , Inflamación , Neuroinmunomodulación , Animales , Femenino , Masculino , Ratones , Encéfalo/citología , Encéfalo/inmunología , Encéfalo/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Ratones Endogámicos C57BL , Neuroinmunomodulación/inmunología , Neuroinmunomodulación/fisiología , Neuronas/fisiología , Nervio Vago/citología , Nervio Vago/fisiología , Análisis de Expresión Génica de una Sola Célula
3.
Nature ; 631(8021): 601-609, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987587

RESUMEN

Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.


Asunto(s)
Alérgenos , Tronco Encefálico , Hiperreactividad Bronquial , Dopamina beta-Hidroxilasa , Pulmón , Neuronas , Animales , Femenino , Masculino , Ratones , Alérgenos/inmunología , Asma/inmunología , Asma/fisiopatología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Interleucina-4/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/inervación , Pulmón/fisiopatología , Mastocitos/inmunología , Neuronas/enzimología , Neuronas/fisiología , Norepinefrina/antagonistas & inhibidores , Norepinefrina/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Nervio Vago/citología , Nervio Vago/fisiología , Bulbo Raquídeo/citología , Bulbo Raquídeo/efectos de los fármacos , Ganglios Autónomos/citología , Dopamina beta-Hidroxilasa/metabolismo
4.
Nature ; 623(7986): 387-396, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914931

RESUMEN

Visceral sensory pathways mediate homeostatic reflexes, the dysfunction of which leads to many neurological disorders1. The Bezold-Jarisch reflex (BJR), first described2,3 in 1867, is a cardioinhibitory reflex that is speculated to be mediated by vagal sensory neurons (VSNs) that also triggers syncope. However, the molecular identity, anatomical organization, physiological characteristics and behavioural influence of cardiac VSNs remain mostly unknown. Here we leveraged single-cell RNA-sequencing data and HYBRiD tissue clearing4 to show that VSNs that express neuropeptide Y receptor Y2 (NPY2R) predominately connect the heart ventricular wall to the area postrema. Optogenetic activation of NPY2R VSNs elicits the classic triad of BJR responses-hypotension, bradycardia and suppressed respiration-and causes an animal to faint. Photostimulation during high-resolution echocardiography and laser Doppler flowmetry with behavioural observation revealed a range of phenotypes reflected in clinical syncope, including reduced cardiac output, cerebral hypoperfusion, pupil dilation and eye-roll. Large-scale Neuropixels brain recordings and machine-learning-based modelling showed that this manipulation causes the suppression of activity across a large distributed neuronal population that is not explained by changes in spontaneous behavioural movements. Additionally, bidirectional manipulation of the periventricular zone had a push-pull effect, with inhibition leading to longer syncope periods and activation inducing arousal. Finally, ablating NPY2R VSNs specifically abolished the BJR. Combined, these results demonstrate a genetically defined cardiac reflex that recapitulates characteristics of human syncope at physiological, behavioural and neural network levels.


Asunto(s)
Corazón , Reflejo , Células Receptoras Sensoriales , Síncope , Nervio Vago , Humanos , Área Postrema , Bradicardia/complicaciones , Bradicardia/fisiopatología , Gasto Cardíaco Bajo/complicaciones , Gasto Cardíaco Bajo/fisiopatología , Ecocardiografía , Corazón/fisiología , Frecuencia Cardíaca , Hipotensión/complicaciones , Hipotensión/fisiopatología , Flujometría por Láser-Doppler , Red Nerviosa , Reflejo/fisiología , Células Receptoras Sensoriales/fisiología , Análisis de Expresión Génica de una Sola Célula , Síncope/complicaciones , Síncope/etiología , Nervio Vago/citología , Nervio Vago/fisiología
5.
Nature ; 602(7897): 468-474, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35082448

RESUMEN

Ingested food and water stimulate sensory systems in the oropharyngeal and gastrointestinal areas before absorption1,2. These sensory signals modulate brain appetite circuits in a feed-forward manner3-5. Emerging evidence suggests that osmolality sensing in the gut rapidly inhibits thirst neurons upon water intake. Nevertheless, it remains unclear how peripheral sensory neurons detect visceral osmolality changes, and how they modulate thirst. Here we use optical and electrical recording combined with genetic approaches to visualize osmolality responses from sensory ganglion neurons. Gut hypotonic stimuli activate a dedicated vagal population distinct from mechanical-, hypertonic- or nutrient-sensitive neurons. We demonstrate that hypotonic responses are mediated by vagal afferents innervating the hepatic portal area (HPA), through which most water and nutrients are absorbed. Eliminating sensory inputs from this area selectively abolished hypotonic but not mechanical responses in vagal neurons. Recording from forebrain thirst neurons and behavioural analyses show that HPA-derived osmolality signals are required for feed-forward thirst satiation and drinking termination. Notably, HPA-innervating vagal afferents do not sense osmolality itself. Instead, these responses are mediated partly by vasoactive intestinal peptide secreted after water ingestion. Together, our results reveal visceral hypoosmolality as an important vagal sensory modality, and that intestinal osmolality change is translated into hormonal signals to regulate thirst circuit activity through the HPA pathway.


Asunto(s)
Intestinos , Saciedad , Células Receptoras Sensoriales , Sed , Ganglios Sensoriales/citología , Intestinos/citología , Intestinos/inervación , Concentración Osmolar , Presión Osmótica , Saciedad/fisiología , Células Receptoras Sensoriales/citología , Sed/fisiología , Nervio Vago/citología , Nervio Vago/fisiología , Agua/metabolismo
6.
Nature ; 610(7933): 722-730, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36070796

RESUMEN

The perception of fat evokes strong appetitive and consummatory responses1. Here we show that fat stimuli can induce behavioural attraction even in the absence of a functional taste system2,3. We demonstrate that fat acts after ingestion via the gut-brain axis to drive preference for fat. Using single-cell data, we identified the vagal neurons responding to intestinal delivery of fat, and showed that genetic silencing of this gut-to-brain circuit abolished the development of fat preference. Next, we compared the gut-to-brain pathways driving preference for fat versus sugar4, and uncovered two parallel systems, one functioning as a general sensor of essential nutrients, responding to intestinal stimulation with sugar, fat and amino acids, whereas the other is activated only by fat stimuli. Finally, we engineered mice lacking candidate receptors to detect the presence of intestinal fat, and validated their role as the mediators of gut-to-brain fat-evoked responses. Together, these findings reveal distinct cells and receptors that use the gut-brain axis as a fundamental conduit for the development of fat preference.


Asunto(s)
Eje Cerebro-Intestino , Encéfalo , Preferencias Alimentarias , Intestinos , Neuronas , Animales , Ratones , Aminoácidos/metabolismo , Encéfalo/citología , Encéfalo/fisiología , Neuronas/metabolismo , Azúcares/metabolismo , Nervio Vago/citología , Nervio Vago/fisiología , Preferencias Alimentarias/fisiología , Análisis de la Célula Individual , Eje Cerebro-Intestino/genética , Eje Cerebro-Intestino/fisiología , Intestinos/inervación , Intestinos/metabolismo
7.
J Physiol ; 601(10): 1881-1896, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36975145

RESUMEN

Circadian regulation of autonomic reflex pathways pairs physiological function with the daily light cycle. The brainstem nucleus of the solitary tract (NTS) is a key candidate for rhythmic control of the autonomic nervous system. Here we investigated circadian regulation of NTS neurotransmission and synaptic throughput using patch-clamp electrophysiology in brainstem slices from mice. We found that spontaneous quantal glutamate release onto NTS neurons showed strong circadian rhythmicity, with the highest rate of release during the light phase and the lowest in the dark, that were sufficient to drive day/night differences in constitutive postsynaptic action potential firing. In contrast, afferent evoked action potential throughput was enhanced during the dark and diminished in the light. Afferent-driven synchronous release pathways showed a similar decrease in release probability that did not explain the enhanced synaptic throughput during the night. However, analysis of postsynaptic membrane properties revealed diurnal changes in conductance, which, when coupled with the circadian changes in glutamate release pathways, tuned synaptic throughput between the light and dark phases. These coordinated pre-/postsynaptic changes encode nuanced control over synaptic performance and pair NTS action potential firing and vagal throughput with time of day. KEY POINTS: Vagal afferent neurons relay information from peripheral organs to the brainstem nucleus of the solitary tract (NTS) to initiate autonomic reflex pathways as well as providing important controls of food intake, digestive function and energy balance. Vagally mediated reflexes and behaviours are under strong circadian regulation. Diurnal fluctuations in presynaptic vesicle release pathways and postsynaptic membrane conductances provide nuanced control over NTS action potential firing and vagal synaptic throughput. Coordinated pre-/postsynaptic changes represent a fundamental mechanism mediating daily changes in vagal afferent signalling and autonomic function.


Asunto(s)
Ritmo Circadiano , Ácido Glutámico , Núcleo Solitario , Sinapsis , Ritmo Circadiano/fisiología , Ácido Glutámico/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Sinapsis/metabolismo , Neuronas Aferentes/metabolismo , Nervio Vago/citología , Nervio Vago/fisiología , Potenciales de Acción , Masculino , Animales , Ratones , Ganglio Nudoso/metabolismo , Transducción de Señal , Conductividad Eléctrica , Técnicas de Placa-Clamp
8.
Nature ; 544(7648): 88-91, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28321127

RESUMEN

The enteric nervous system of jawed vertebrates arises primarily from vagal neural crest cells that migrate to the foregut and subsequently colonize and innervate the entire gastrointestinal tract. Here we examine development of the enteric nervous system in the basal jawless vertebrate the sea lamprey (Petromyzon marinus) to gain insight into its evolutionary origin. Surprisingly, we find no evidence for the existence of a vagally derived enteric neural crest population in the lamprey. Rather, labelling with the lipophilic dye DiI shows that late-migrating cells, originating from the trunk neural tube and associated with nerve fibres, differentiate into neurons within the gut wall and typhlosole. We propose that these trunk-derived neural crest cells may be homologous to Schwann cell precursors, recently shown in mammalian embryos to populate post-embryonic parasympathetic ganglia, including enteric ganglia. Our results suggest that neural-crest-derived Schwann cell precursors made an important contribution to the ancient enteric nervous system of early jawless vertebrates, a role that was largely subsumed by vagal neural crest cells in early gnathostomes.


Asunto(s)
Evolución Biológica , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/embriología , Cresta Neural/citología , Neuronas/citología , Petromyzon/embriología , Torso/embriología , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Ganglios/citología , Ganglios/embriología , Fibras Nerviosas , Cresta Neural/embriología , Tubo Neural/citología , Tubo Neural/embriología , Células de Schwann/citología , Nervio Vago/citología , Nervio Vago/embriología
9.
J Neurosci ; 40(37): 7054-7064, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32817248

RESUMEN

Leptin signaling within the nucleus of the solitary tract (NTS) contributes to the control of food intake, and injections of leptin into the NTS reduce meal size and increase the efficacy of vagus-mediated satiation signals. Leptin receptors (LepRs) are expressed by vagal afferents as well as by a population of NTS neurons. However, the electrophysiological properties of LepR-expressing NTS neurons have not been well characterized, and it is unclear how leptin might act on these neurons to reduce food intake. To address this question, we recorded from LepR-expressing neurons in horizontal brain slices containing the NTS from male and female LepR-Cre X Rosa-tdTomato mice. We found that the vast majority of NTS LepR neurons received monosynaptic innervation from vagal afferent fibers and LepR neurons exhibited large synaptic NMDA receptor (NMDAR)-mediated currents compared with non-LepR neurons. During high-frequency stimulation of vagal afferents, leptin increased the size of NMDAR-mediated currents, but not AMPAR-mediated currents. Leptin also increased the size of evoked EPSPs and the ability of low-intensity solitary tract stimulation to evoke action potentials in LepR neurons. These effects of leptin were blocked by bath applying a competitive NMDAR antagonist (DCPP-ene) or by an NMDAR channel blocker applied through the recording pipette (MK-801). Last, feeding studies using male rats demonstrate that intra-NTS injections of DCPP-ene attenuate reduction of overnight food intake following intra-NTS leptin injection. Our results suggest that leptin acts in the NTS to reduce food intake by increasing NMDAR-mediated currents, thus enhancing NTS sensitivity to vagal inputs.SIGNIFICANCE STATEMENT Leptin is a hormone that critically impacts food intake and energy homeostasis. The nucleus of the solitary tract (NTS) is activated by vagal afferents from the gastrointestinal tract, which promotes termination of a meal. Injection of leptin into the NTS inhibits food intake, while knockdown of leptin receptors (LepRs) in NTS neurons increases food intake. However, little was known about how leptin acts in the NTS neurons to inhibit food intake. We found that leptin increases the sensitivity of LepR-expressing neurons to vagal inputs by increasing NMDA receptor-mediated synaptic currents and that NTS NMDAR activation contributes to leptin-induced reduction of food intake. These findings suggest a novel mechanism by which leptin, acting in the NTS, could potentiate gastrointestinal satiation signals.


Asunto(s)
Potenciales Postsinápticos Excitadores , Leptina/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Solitario/metabolismo , Nervio Vago/metabolismo , Animales , Maleato de Dizocilpina/farmacología , Ingestión de Alimentos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/fisiología , Prolina/análogos & derivados , Prolina/farmacología , Piridinas/farmacología , Ratas , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Nervio Vago/citología , Nervio Vago/fisiología
10.
J Neurophysiol ; 125(1): 86-104, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33085556

RESUMEN

Biophysically based computational models of nerve fibers are important tools for designing electrical stimulation therapies, investigating drugs that affect ion channels, and studying diseases that affect neurons. Although peripheral nerves are primarily composed of unmyelinated axons (i.e., C-fibers), most modeling efforts focused on myelinated axons. We implemented the single-compartment model of vagal afferents from Schild et al. (1994) (Schild JH, Clark JW, Hay M, Mendelowitz D, Andresen MC, Kunze DL. J Neurophysiol 71: 2338-2358, 1994) and extended the model into a multicompartment axon, presenting the first cable model of a C-fiber vagal afferent. We also implemented the updated parameters from the Schild and Kunze (1997) model (Schild JH, Kunze DL. J Neurophysiol 78: 3198-3209, 1997). We compared the responses of these novel models with those of three published models of unmyelinated axons (Rattay F, Aberham M. IEEE Trans Biomed Eng 40: 1201-1209, 1993; Sundt D, Gamper N, Jaffe DB. J Neurophysiol 114: 3140-3153, 2015; Tigerholm J, Petersson ME, Obreja O, Lampert A, Carr R, Schmelz M, Fransén E. J Neurophysiol 111: 1721-1735, 2014) and with experimental data from single-fiber recordings. Comparing the two models by Schild et al. (1994, 1997) revealed that differences in rest potential and action potential shape were driven by changes in maximum conductances rather than changes in sodium channel dynamics. Comparing the five model axons, the conduction speeds and strength-duration responses were largely within expected ranges, but none of the models captured the experimental threshold recovery cycle-including a complete absence of late subnormality in the models-and their action potential shapes varied dramatically. The Tigerholm et al. (2014) model best reproduced the experimental data, but these modeling efforts make clear that additional data are needed to parameterize and validate future models of autonomic C-fibers.NEW & NOTEWORTHY Peripheral nerves are primarily composed of unmyelinated axons, and there is growing interest in electrical stimulation of the autonomic nervous system to treat various diseases. We present the first cable model of an unmyelinated vagal nerve fiber and compare its ion channel isoforms and conduction responses with other published models of unmyelinated axons, establishing important tools for advancing modeling of autonomic nerves.


Asunto(s)
Potenciales de Acción , Axones/fisiología , Modelos Neurológicos , Fibras Nerviosas Amielínicas/fisiología , Animales , Neuronas Aferentes/fisiología , Nervio Vago/citología , Nervio Vago/fisiología
11.
J Neurophysiol ; 125(1): 199-210, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296617

RESUMEN

Vagal afferent fibers contact neurons in the nucleus of the solitary tract (NTS) and release glutamate via three distinct release pathways: synchronous, asynchronous, and spontaneous. The presence of TRPV1 in vagal afferents is predictive of activity-dependent asynchronous glutamate release along with temperature-sensitive spontaneous vesicle fusion. However, pharmacological blockade or genetic deletion of TRPV1 does not eliminate the asynchronous profile and only attenuates the temperature-dependent spontaneous release at high temperatures (>40°C), indicating additional temperature-sensitive calcium conductance(s) contributing to these release pathways. The transient receptor potential cation channel melastatin subtype 3 (TRPM3) is a calcium-selective channel that functions as a thermosensor (30-37°C) in somatic primary afferent neurons. We predict that TRPM3 is expressed in vagal afferent neurons and contributes to asynchronous and spontaneous glutamate release pathways. We investigated these hypotheses via measurements on cultured nodose neurons and in brainstem slice preparations containing vagal afferent to NTS synaptic contacts. We found histological and genetic evidence that TRPM3 is highly expressed in vagal afferent neurons. The TRPM3-selective agonist, pregnenolone sulfate, rapidly and reversibly activated the majority (∼70%) of nodose neurons; most of which also contained TRPV1. We confirmed the role of TRPM3 with pharmacological blockade and genetic deletion. In the brain, TRPM3 signaling strongly controlled both basal and temperature-driven spontaneous glutamate release. Surprisingly, genetic deletion of TRPM3 did not alter synchronous or asynchronous glutamate release. These results provide convergent evidence that vagal afferents express functional TRPM3 that serves as an additional temperature-sensitive calcium conductance involved in controlling spontaneous glutamate release onto neurons in the NTS.NEW & NOTEWORTHY Vagal afferent signaling coordinates autonomic reflex function and informs associated behaviors. Thermosensitive transient receptor potential (TRP) channels detect temperature and nociceptive stimuli in somatosensory afferent neurons, however their role in vagal signaling remains less well understood. We report that the TRPM3 ion channel provides a major thermosensitive point of control over vagal signaling and synaptic transmission. We conclude that TRPM3 translates physiological changes in temperature to neurophysiological outputs and can serve as a cellular integrator in vagal afferent signaling.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas Aferentes/metabolismo , Canales Catiónicos TRPM/metabolismo , Nervio Vago/metabolismo , Potenciales de Acción , Animales , Potenciales Postsinápticos Excitadores , Exocitosis , Calor , Masculino , Neuronas Aferentes/fisiología , Pregnenolona/farmacología , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/genética , Nervio Vago/citología , Nervio Vago/fisiología
12.
Proc Natl Acad Sci U S A ; 115(21): E4843-E4852, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735654

RESUMEN

The nervous system maintains physiological homeostasis through reflex pathways that modulate organ function. This process begins when changes in the internal milieu (e.g., blood pressure, temperature, or pH) activate visceral sensory neurons that transmit action potentials along the vagus nerve to the brainstem. IL-1ß and TNF, inflammatory cytokines produced by immune cells during infection and injury, and other inflammatory mediators have been implicated in activating sensory action potentials in the vagus nerve. However, it remains unclear whether neural responses encode cytokine-specific information. Here we develop methods to isolate and decode specific neural signals to discriminate between two different cytokines. Nerve impulses recorded from the vagus nerve of mice exposed to IL-1ß and TNF were sorted into groups based on their shape and amplitude, and their respective firing rates were computed. This revealed sensory neural groups responding specifically to TNF and IL-1ß in a dose-dependent manner. These cytokine-mediated responses were subsequently decoded using a Naive Bayes algorithm that discriminated between no exposure and exposures to IL-1ß and TNF (mean successful identification rate 82.9 ± 17.8%, chance level 33%). Recordings obtained in IL-1 receptor-KO mice were devoid of IL-1ß-related signals but retained their responses to TNF. Genetic ablation of TRPV1 neurons attenuated the vagus neural signals mediated by IL-1ß, and distal lidocaine nerve block attenuated all vagus neural signals recorded. The results obtained in this study using the methodological framework suggest that cytokine-specific information is present in sensory neural signals within the vagus nerve.


Asunto(s)
Interleucina-1beta/farmacología , Receptores Tipo I de Interleucina-1/fisiología , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPV/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Nervio Vago/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Teorema de Bayes , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/efectos de los fármacos , Nervio Vago/citología , Nervio Vago/efectos de los fármacos
13.
Dev Biol ; 446(1): 22-33, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30448439

RESUMEN

The enteric nervous system is mostly derived from vagal neural crest (NC) cells adjacent to somites (s)1-7. We used in ovo focal fluorescent vital dyes and focal electroporation of fluorophore-encoding plasmids in quail embryos to investigate NC cell migration to the foregut initially and later throughout the entire gut. NC cells of different somite-level origins were largely separate until reaching the foregut at about QE2.5, when all routes converged. By QE3.5, NC cells of different somite-levels became mixed, although s1-s2 NC cells were mainly confined to rostral foregut. Mid-vagal NC-derived cells (s3 and s4 level) arrived earliest at the foregut, and occurred in greatest number. By QE6.5 ENS was present from foregut to hindgut. Mid-vagal NC-derived cells occurred in greatest numbers from foregut to distal hindgut. NC-derived cells of s2, s5, and s6 levels were fewer and were widely distributed but were never observed in the distal hindgut. Rostro-vagal (s1) and caudo-vagal (s7) levels were few and restricted to the foregut. Single somite levels of quail neural tube/NC from s1 to s8 were combined with chick aneural ChE4.5 midgut and hindgut and the ensemble was grown on the chorio-allantoic membrane for 6 days. This tests ENS-forming competence in the absence of intra-segmental competition between NC cells, of differential influences of segmental paraxial tissues, and of positional advantage. All vagal NC-levels, but not s8 level, furnished enteric plexuses in the recipient gut, but the density of both ENS cells in total and neurons was highest from mid-vagal level donors, as was the length colonised. We conclude that the fate and competence for ENS formation of vagal NC sub-levels is not uniform over the vagal level but is biased to favour mid-vagal levels. Overviewing this and prior studies suggests the vagal region is, as in its traditional sense, a natural unit but with complex sub-divisions.


Asunto(s)
Sistema Nervioso Entérico/embriología , Cresta Neural/embriología , Somitos/embriología , Nervio Vago/embriología , Animales , Tipificación del Cuerpo , Diferenciación Celular , Movimiento Celular , Embrión de Pollo , Pollos , Coturnix , Sistema Digestivo/citología , Sistema Digestivo/embriología , Sistema Digestivo/metabolismo , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/metabolismo , Intestinos/citología , Intestinos/embriología , Intestinos/inervación , Cresta Neural/citología , Cresta Neural/metabolismo , Neuronas/citología , Neuronas/metabolismo , Somitos/citología , Somitos/metabolismo , Nervio Vago/citología , Nervio Vago/metabolismo
14.
Proc Natl Acad Sci U S A ; 114(45): 11980-11985, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078343

RESUMEN

Most of the enteric nervous system derives from the "vagal" neural crest, lying at the level of somites 1-7, which invades the digestive tract rostro-caudally from the foregut to the hindgut. Little is known about the initial phase of this colonization, which brings enteric precursors into the foregut. Here we show that the "vagal crest" subsumes two populations of enteric precursors with contrasted origins, initial modes of migration, and destinations. Crest cells adjacent to somites 1 and 2 produce Schwann cell precursors that colonize the vagus nerve, which in turn guides them into the esophagus and stomach. Crest cells adjacent to somites 3-7 belong to the crest streams contributing to sympathetic chains: they migrate ventrally, seed the sympathetic chains, and colonize the entire digestive tract thence. Accordingly, enteric ganglia, like sympathetic ones, are atrophic when deprived of signaling through the tyrosine kinase receptor ErbB3, while half of the esophageal ganglia require, like parasympathetic ones, the nerve-associated form of the ErbB3 ligand, Neuregulin-1. These dependencies might bear relevance to Hirschsprung disease, with which alleles of Neuregulin-1 are associated.


Asunto(s)
Sistema Nervioso Entérico/citología , Ganglios Simpáticos/citología , Tracto Gastrointestinal/embriología , Cresta Neural/citología , Neurregulina-1/genética , Receptor ErbB-3/genética , Células de Schwann/citología , Animales , Embrión de Pollo , Tracto Gastrointestinal/inervación , Enfermedad de Hirschsprung/genética , Ratones , Neurregulina-1/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Receptor ErbB-3/metabolismo , Nervio Vago/citología
15.
J Physiol ; 597(7): 2007-2019, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30793318

RESUMEN

KEY POINTS: Sphingosine-1-phosphate (S1P) strongly activates mouse vagal C-fibres in the airways. Airway-specific nodose and jugular C-fibre neurons express mRNA coding for the S1P receptor S1PR3. S1P activation of nodose C-fibres is inhibited by a S1PR3 antagonist. S1P activation of nodose C-fibres does not occur in S1PR3 knockout mice. ABSTRACT: We evaluated the effect of sphingosine-1-phosphate (S1P), a lipid that is elevated during airway inflammatory conditions like asthma, for its ability to stimulate vagal afferent C-fibres in mouse lungs. Single cell RT-PCR on lung-specific vagal afferent neurons revealed that both TRPV1-expressing and TRPV1-non-expressing nodose neurons express mRNA coding for the S1P receptor S1PR3. TRPV1-expressing airway-specific jugular ganglion neurons also express S1PR3 mRNA. S1PR1 and S1PR2 mRNAs were also found to be expressed but only in a limited subset (32% and 22%, respectively) of airway-specific vagal sensory neurons; whereas S1PR4 and S1PR5 were rarely expressed. We used large scale two-photon imaging of the nodose ganglia from our ex vivo preparation isolated from Pirt-Cre;R26-GCaMP6s transgenic mice, which allows for simultaneous monitoring of calcium transients in ∼1000 neuronal cell bodies in the ganglia during tracheal perfusion with S1P (10 µM). We found that S1P in the lungs strongly activated 81.5% of nodose fibres, 70% of which were also activated by capsaicin. Single fibre electrophysiological recordings confirmed that S1P evoked action potential (AP) generation in a concentration-dependent manner (0.1-10 µM). Action potential generation by S1P in nodose C-fibres was effectively inhibited by the S1PR3 antagonist TY 52156 (10 µM). Finally, in S1PR3 knockout mice, S1P was not able to activate any of the airway nodose C-fibres analysed. These results support the hypothesis that S1P may play a role in evoking C-fibre-mediated airway sensations and reflexes that are associated with airway inflammatory diseases.


Asunto(s)
Lisofosfolípidos/farmacología , Células Receptoras Sensoriales/fisiología , Receptores de Esfingosina-1-Fosfato/fisiología , Esfingosina/análogos & derivados , Nervio Vago/citología , Animales , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato/genética
16.
Am J Physiol Endocrinol Metab ; 316(4): E568-E577, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753113

RESUMEN

Deletion of the leptin receptor from vagal afferent neurons (VAN) using a conditional deletion (Nav1.8/LepRfl/fl) results in an obese phenotype with increased food intake and lack of exogenous cholecystokinin (CCK)-induced satiation in male mice. Female mice are partially protected from weight gain and increased food intake in response to ingestion of high-fat (HF) diets. However, whether the lack of leptin signaling in VAN leads to an obese phenotype or disruption of hypothalamic-pituitary-gonadal axis function in female mice is unclear. Here, we tested the hypothesis that leptin signaling in VAN is essential to maintain estrogen signaling and control of food intake, energy expenditure, and adiposity in female mice. Female Nav1.8/LepRfl/fl mice gained more weight, had increased gonadal fat mass, increased meal number in the dark phase, and increased total food intake compared with wild-type controls. Resting energy expenditure was unaffected. The decrease in food intake produced by intraperitoneal injection of CCK (3 µg/kg body wt) was attenuated in female Nav1.8/LepRfl/fl mice compared with wild-type controls. Intraperitoneal injection of ghrelin (100 µg/kg body wt) increased food intake in Nav1.8/LepRfl/fl mice but not in wild-type controls. Ovarian steroidogenesis was suppressed, resulting in decreased plasma estradiol, which was accompanied by decreased expression of estrogen receptor-1 (Esr1) in VAN but not in the hypothalamic arcuate nucleus. These data suggest that the absence of leptin signaling in VAN is accompanied by disruption of estrogen signaling in female mice, leading to an obese phenotype possibly via altered control of feeding behavior.


Asunto(s)
Ingestión de Alimentos/genética , Conducta Alimentaria/fisiología , Neuronas Aferentes/metabolismo , Obesidad/genética , Receptores de Leptina/genética , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Peso Corporal/genética , Colecistoquinina/farmacología , Dieta Alta en Grasa , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético , Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Conducta Alimentaria/efectos de los fármacos , Femenino , Ghrelina/farmacología , Ratones , Obesidad/metabolismo , Saciedad , Nervio Vago/citología , Aumento de Peso/genética
17.
J Neurosci ; 37(1): 47-57, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28053029

RESUMEN

α-Synuclein overexpression (ASOX) drives the formation of toxic aggregates in neurons vulnerable in Parkinson's disease (PD), including dopaminergic neurons of the substantia nigra (SN) and cholinergic neurons of the dorsal motor nucleus of the vagus (DMV). Just as these populations differ in when they exhibit α-synucleinopathies during PD pathogenesis, they could also differ in their physiological responses to ASOX. An ASOX-mediated hyperactivity of SN dopamine neurons, which was caused by oxidative dysfunction of Kv4.3 potassium channels, was recently identified in transgenic (A53T-SNCA) mice overexpressing mutated human α-synuclein. Noting that DMV neurons display extensive α-synucleinopathies earlier than SN dopamine neurons while exhibiting milder cell loss in PD, we aimed to define the electrophysiological properties of DMV neurons in A53T-SNCA mice. We found that DMV neurons maintain normal firing rates in response to ASOX. Moreover, Kv4.3 channels in DMV neurons exhibit no oxidative dysfunction in the A53T-SNCA mice, which could only be recapitulated in wild-type mice by glutathione dialysis. Two-photon imaging of redox-sensitive GFP corroborated the finding that mitochondrial oxidative stress was diminished in DMV neurons in the A53T-SNCA mice. This reduction in oxidative stress resulted from a transcriptional downregulation of voltage-activated (Cav) calcium channels in DMV neurons, which led to a reduction in activity-dependent calcium influx via Cav channels. Thus, ASOX induces a homeostatic remodeling with improved redox signaling in DMV neurons, which could explain the differential vulnerability of SN dopamine and DMV neurons in PD and could promote neuroprotective strategies that emulate endogenous homeostatic responses to ASOX (e.g., stressless pacemaking) in DMV neurons. SIGNIFICANCE STATEMENT: Overexpression of mutant α-synuclein causes Parkinson's disease, presumably by driving neurodegeneration in vulnerable neuronal target populations. However, the extent of α-synuclein pathology (e.g., Lewy bodies) is not directly related to the degree of neurodegeneration across various vulnerable neuronal populations. Here, we show that, in contrast to dopamine neurons in the substantia nigra, vagal motoneurons do not enhance their excitability and oxidative load in response to chronic mutant α-synuclein overexpression. Rather, by downregulating their voltage-activated calcium channels, vagal motoneurons acquire a stressless form of pacemaking that diminishes mitochondrial and cytosolic oxidative stress. Emulating this endogenous adaptive response to α-synuclein overexpression could lead to novel strategies to protect dopamine neurons and perhaps delay the onset of Parkinson's disease.


Asunto(s)
Relojes Biológicos , Neuronas Motoras , Enfermedad de Parkinson/fisiopatología , Nervio Vago/fisiología , alfa-Sinucleína/biosíntesis , alfa-Sinucleína/genética , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio/genética , Neuronas Dopaminérgicas/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Estrés Oxidativo , Canales de Potasio Shal/metabolismo , Transducción de Señal/genética , Sustancia Negra/citología , Sustancia Negra/fisiología , Nervio Vago/citología
18.
J Neurosci ; 35(2): 776-85, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25589770

RESUMEN

Severe autonomic dysfunction, including the loss of control of the cardiovascular, respiratory, and gastrointestinal systems, is a common comorbidity of stroke and other bleeding head injuries. Previous studies suggest that this collapse of autonomic control may be caused by thrombin acting on astrocytic protease-activated receptors (PAR1) in the hindbrain. Using calcium imaging and electrophysiological techniques, we evaluated the mechanisms by which astrocytic PAR1s modulate the activity of presynaptic vagal afferent terminals and postsynaptic neurons in the rat nucleus of the solitary tract (NST). Our calcium-imaging data show that astrocytic and neuronal calcium levels increase after brain slices are treated with the PAR1 agonist SFLLRN-NH2. This increase in activity is blocked by pretreating the slices with the glial metabolic blocker fluorocitrate. In addition, PAR1-activated astrocytes communicate directly with NST neurons by releasing glutamate. Calcium responses to SFLLRN-NH2 in the astrocytes and neurons significantly increase after bath application of the excitatory amino acid transporter blocker DL-threo-ß-benzyloxyaspartic acid (TBOA) and significantly decrease after bath application of the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (DL-AP5). Furthermore, astrocytic glutamate activates neuronal GluN2B-containing NMDA receptors. Voltage-clamp recordings of miniature EPSCs (mEPSCs) from NST neurons show that astrocytes control presynaptic vagal afferent excitability directly under resting and activated conditions. Fluorocitrate significantly decreases mEPSC frequency and SFLLRN-NH2 significantly increases mEPSC frequency. These data show that astrocytes act within a tripartite synapse in the NST, controlling the excitability of both postsynaptic NST neurons and presynaptic vagal afferent terminals.


Asunto(s)
Astrocitos/metabolismo , Neuronas Aferentes/fisiología , Receptor PAR-1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Solitario/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Ácido Aspártico/farmacología , Astrocitos/efectos de los fármacos , Calcio/metabolismo , Citratos/farmacología , Antagonistas de Aminoácidos Excitadores , Potenciales Postsinápticos Excitadores , Femenino , Ácido Glutámico/metabolismo , Masculino , Potenciales Postsinápticos Miniatura , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Fragmentos de Péptidos/farmacología , Ratas , Ratas Long-Evans , Receptor PAR-1/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Núcleo Solitario/citología , Núcleo Solitario/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología , Nervio Vago/citología , Nervio Vago/metabolismo , Nervio Vago/fisiología
19.
J Physiol ; 594(21): 6241-6254, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27444212

RESUMEN

KEY POINTS: Heart Failure (HF) is accompanied by reduced ventricular function, activation of compensatory neurohormonal mechanisms and marked autonomic dysfunction characterized by exaggerated sympathoexcitation and reduced parasympathetic activity. With 6 weeks of exercise training, HF-related loss of choline acetyltransferase (ChAT)-positive vagal preganglionic neurones is avoided, restoring the parasympathetic tonus to the heart, and the immunoreactivity of dopamine ß-hydroxylase-positive premotor neurones that drive sympathetic outflow to the heart is reduced. Training-induced correction of autonomic dysfunction occurs even with the persistence of abnormal ventricular function. Strong positive correlation between improved parasympathetic tonus to the heart and increased ChAT immunoreactivity in vagal preganglionic neurones after training indicates this is a crucial mechanism to restore autonomic function in heart failure. ABSTRACT: Exercise training is an efficient tool to attenuate sympathoexcitation, a hallmark of heart failure (HF). Although sympathetic modulation in HF is widely studied, information regarding parasympathetic control is lacking. We examined the combined effects of sympathetic and vagal tonus to the heart in sedentary (Sed) and exercise trained (ET) HF rats and the contribution of respective premotor and preganglionic neurones. Wistar rats submitted to coronary artery ligation or sham surgery were assigned to training or sedentary protocols for 6 weeks. After haemodynamic, autonomic tonus (atropine and atenolol i.v.) and ventricular function determinations, brains were collected for immunoreactivity assays (choline acetyltransferase, ChATir; dopamine ß-hydroxylase, DBHir) and neuronal counting in the dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA) and rostroventrolateral medulla (RVLM). HF-Sed vs. SHAM-Sed exhibited decreased exercise capacity, reduced ejection fraction, increased left ventricle end diastolic pressure, smaller positive and negative dP/dt, decreased intrinsic heart rate (IHR), lower parasympathetic and higher sympathetic tonus, reduced preganglionic vagal neurones and ChATir in the DMV/NA, and increased RVLM DBHir. Training increased treadmill performance, normalized autonomic tonus and IHR, restored the number of DMV and NA neurones and corrected ChATir without affecting ventricular function. There were strong positive correlations between parasympathetic tonus and ChATir in NA and DMV. RVLM DBHir was also normalized by training, but there was no change in neurone number and no correlation with sympathetic tonus. Training-induced preservation of preganglionic vagal neurones is crucial to normalize parasympathetic activity and restore autonomic balance to the heart even in the persistence of cardiac dysfunction.


Asunto(s)
Fibras Autónomas Preganglionares/fisiología , Insuficiencia Cardíaca/fisiopatología , Neuronas/fisiología , Condicionamiento Físico Animal , Nervio Vago/fisiología , Animales , Presión Sanguínea , Corazón/inervación , Frecuencia Cardíaca , Masculino , Ratas , Ratas Wistar , Nervio Vago/citología
20.
J Neurophysiol ; 116(4): 1705-1714, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27440241

RESUMEN

Prior immunohistochemical studies have demonstrated that at early postnatal time points, central vagal neurons receive both glycinergic and GABAergic inhibitory inputs. Functional studies have demonstrated, however, that adult vagal efferent motoneurons receive only inhibitory GABAergic synaptic inputs, suggesting loss of glycinergic inhibitory neurotransmission during postnatal development. The purpose of the present study was to test the hypothesis that the loss of glycinergic inhibitory synapses occurs in the immediate postnatal period. Whole cell patch-clamp recordings were made from dorsal motor nucleus of the vagus (DMV) neurons from postnatal days 1-30, and the effects of the GABAA receptor antagonist bicuculline (1-10 µM) and the glycine receptor antagonist strychnine (1 µM) on miniature inhibitory postsynaptic current (mIPSC) properties were examined. While the baseline frequency of mIPSCs was not altered by maturation, perfusion with bicuculline either abolished mIPSCs altogether or decreased mIPSC frequency and decay constant in the majority of neurons at all time points. In contrast, while strychnine had no effect on mIPSC frequency, its actions to increase current decay time declined during postnatal maturation. These data suggest that in early postnatal development, DMV neurons receive both GABAergic and glycinergic synaptic inputs. Glycinergic neurotransmission appears to decline by the second postnatal week, and adult neurons receive principally GABAergic inhibitory inputs. Disruption of this developmental switch from GABA-glycine to purely GABAergic transmission in response to early life events may, therefore, lead to adverse consequences in vagal efferent control of visceral functions.


Asunto(s)
Potenciales Postsinápticos Inhibidores/fisiología , Bulbo Raquídeo/crecimiento & desarrollo , Bulbo Raquídeo/metabolismo , Potenciales Postsinápticos Miniatura/fisiología , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Glicinérgicos/farmacología , Inmunohistoquímica , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Bulbo Raquídeo/citología , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Receptores de Glicina/antagonistas & inhibidores , Receptores de Glicina/metabolismo , Estricnina/farmacología , Técnicas de Cultivo de Tejidos , Nervio Vago/citología , Nervio Vago/crecimiento & desarrollo , Nervio Vago/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA