Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.164
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunol Rev ; 321(1): 33-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688390

RESUMEN

Neuropathic pain is a common and debilitating modality of chronic pain induced by a lesion or disease of the somatosensory nervous system. Albeit the elucidation of numerous pathophysiological mechanisms and the development of potential treatment compounds, safe and reliable therapies of neuropathic pain remain poor. Multiple stress/cell death pathways have been shown to be implicated in neuroinflammation during neuropathic pain. Here, we summarize the current knowledge of stress/cell death pathways and present an overview of the roles and molecular mechanisms of stress/cell death pathways in neuroinflammation during neuropathic pain, covering intrinsic and extrinsic apoptosis, autophagy, mitophagy, ferroptosis, pyroptosis, necroptosis, and phagoptosis. Small molecule compounds that modulate stress/cell death pathways in alleviating neuropathic pain are discussed mainly based on preclinical neuropathic pain models. These findings will contribute to in-depth understanding of the pathological processes during neuropathic pain as well as bridge the gap between basic and translational research to uncover new neuroprotective interventions.


Asunto(s)
Neuralgia , Enfermedades Neuroinflamatorias , Humanos , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Apoptosis , Piroptosis , Autofagia
2.
Nature ; 600(7890): 759-764, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34880501

RESUMEN

The σ2 receptor has attracted intense interest in cancer imaging1, psychiatric disease2, neuropathic pain3-5 and other areas of biology6,7. Here we determined the crystal structure of this receptor in complex with the clinical candidate roluperidone2 and the tool compound PB288. These structures templated a large-scale docking screen of 490 million virtual molecules, of which 484 compounds were synthesized and tested. We identified 127 new chemotypes with affinities superior to 1 µM, 31 of which had affinities superior to 50 nM. The hit rate fell smoothly and monotonically with docking score. We optimized three hits for potency and selectivity, and achieved affinities that ranged from 3 to 48 nM, with up to 250-fold selectivity versus the σ1 receptor. Crystal structures of two ligands bound to the σ2 receptor confirmed the docked poses. To investigate the contribution of the σ2 receptor in pain, two potent σ2-selective ligands and one potent σ1/σ2 non-selective ligand were tested for efficacy in a mouse model of neuropathic pain. All three ligands showed time-dependent decreases in mechanical hypersensitivity in the spared nerve injury model9, suggesting that the σ2 receptor has a role in nociception. This study illustrates the opportunities for rapid discovery of in vivo probes through structure-based screens of ultra large libraries, enabling study of underexplored areas of biology.


Asunto(s)
Neuralgia , Receptores sigma , Animales , Ligandos , Ratones , Neuralgia/tratamiento farmacológico , Receptores sigma/metabolismo , Relación Estructura-Actividad
3.
Nature ; 597(7877): 571-576, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497422

RESUMEN

The adenosine A1 receptor (A1R) is a promising therapeutic target for non-opioid analgesic agents to treat neuropathic pain1,2. However, development of analgesic orthosteric A1R agonists has failed because of a lack of sufficient on-target selectivity as well as off-tissue adverse effects3. Here we show that [2-amino-4-(3,5-bis(trifluoromethyl)phenyl)thiophen-3-yl)(4-chlorophenyl)methanone] (MIPS521), a positive allosteric modulator of the A1R, exhibits analgesic efficacy in rats in vivo through modulation of the increased levels of endogenous adenosine that occur in the spinal cord of rats with neuropathic pain. We also report the structure of the A1R co-bound to adenosine, MIPS521 and a Gi2 heterotrimer, revealing an extrahelical lipid-detergent-facing allosteric binding pocket that involves transmembrane helixes 1, 6 and 7. Molecular dynamics simulations and ligand kinetic binding experiments support a mechanism whereby MIPS521 stabilizes the adenosine-receptor-G protein complex. This study provides proof of concept for structure-based allosteric drug design of non-opioid analgesic agents that are specific to disease contexts.


Asunto(s)
Analgesia , Receptor de Adenosina A1/metabolismo , Adenosina/química , Adenosina/metabolismo , Regulación Alostérica/efectos de los fármacos , Analgesia/métodos , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/química , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Hiperalgesia/tratamiento farmacológico , Lípidos , Masculino , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Estabilidad Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A1/química , Transducción de Señal/efectos de los fármacos
4.
Annu Rev Pharmacol Toxicol ; 63: 565-583, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662582

RESUMEN

The study of chronic pain continues to generate ever-increasing numbers of publications, but safe and efficacious treatments for chronic pain remain elusive. Recognition of sex-specific mechanisms underlying chronic pain has resulted in a surge of studies that include both sexes. A predominant focus has been on identifying sex differences, yet many newly identified cellular mechanisms and alterations in gene expression are conserved between the sexes. Here we review sex differences and similarities in cellular and molecular signals that drive the generation and resolution of neuropathic pain. The mix of differences and similarities reflects degeneracy in peripheral and central signaling processes by which neurons, immune cells, and glia codependently drive pain hypersensitivity. Recent findings identifying critical signaling nodes foreshadow the development of rationally designed, broadly applicable analgesic strategies. However, the paucity of effective, safe pain treatments compels targeted therapies as well to increase therapeutic options that help reduce the global burden of suffering.


Asunto(s)
Dolor Crónico , Neuralgia , Femenino , Humanos , Masculino , Dolor Crónico/tratamiento farmacológico , Caracteres Sexuales , Neuralgia/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Neuronas
5.
Proc Natl Acad Sci U S A ; 119(46): e2204515119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343228

RESUMEN

Peripheral nerve injury sensitizes a complex network of spinal cord dorsal horn (DH) neurons to produce allodynia and neuropathic pain. The identification of a druggable target within this network has remained elusive, but a promising candidate is the neuropeptide Y (NPY) Y1 receptor-expressing interneuron (Y1-IN) population. We report that spared nerve injury (SNI) enhanced the excitability of Y1-INs and elicited allodynia (mechanical and cold hypersensitivity) and affective pain. Similarly, chemogenetic or optogenetic activation of Y1-INs in uninjured mice elicited behavioral signs of spontaneous, allodynic, and affective pain. SNI-induced allodynia was reduced by chemogenetic inhibition of Y1-INs, or intrathecal administration of a Y1-selective agonist. Conditional deletion of Npy1r in DH neurons, but not peripheral afferent neurons prevented the anti-hyperalgesic effects of the intrathecal Y1 agonist. We conclude that spinal Y1-INs are necessary and sufficient for the behavioral symptoms of neuropathic pain and represent a promising target for future pharmacotherapeutic development of Y1 agonists.


Asunto(s)
Hiperalgesia , Neuralgia , Ratones , Animales , Hiperalgesia/tratamiento farmacológico , Neuropéptido Y/genética , Neuropéptido Y/farmacología , Neuralgia/tratamiento farmacológico , Neuronas , Médula Espinal
6.
Ann Intern Med ; 177(2): 144-154, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38224592

RESUMEN

BACKGROUND: North American and European health agencies recently warned of severe breathing problems associated with gabapentinoids, including in patients with chronic obstructive pulmonary disease (COPD), although supporting evidence is limited. OBJECTIVE: To assess whether gabapentinoid use is associated with severe exacerbation in patients with COPD. DESIGN: Time-conditional propensity score-matched, new-user cohort study. SETTING: Health insurance databases from the Régie de l'assurance maladie du Québec in Canada. PATIENTS: Within a base cohort of patients with COPD between 1994 and 2015, patients initiating gabapentinoid therapy with an indication (epilepsy, neuropathic pain, or other chronic pain) were matched 1:1 with nonusers on COPD duration, indication for gabapentinoids, age, sex, calendar year, and time-conditional propensity score. MEASUREMENTS: The primary outcome was severe COPD exacerbation requiring hospitalization. Hazard ratios (HRs) associated with gabapentinoid use were estimated in subcohorts according to gabapentinoid indication and in the overall cohort. RESULTS: The cohort included 356 gabapentinoid users with epilepsy, 9411 with neuropathic pain, and 3737 with other chronic pain, matched 1:1 to nonusers. Compared with nonuse, gabapentinoid use was associated with increased risk for severe COPD exacerbation across the indications of epilepsy (HR, 1.58 [95% CI, 1.08 to 2.30]), neuropathic pain (HR, 1.35 [CI, 1.24 to 1.48]), and other chronic pain (HR, 1.49 [CI, 1.27 to 1.73]) and overall (HR, 1.39 [CI, 1.29 to 1.50]). LIMITATION: Residual confounding, including from lack of smoking information. CONCLUSION: In patients with COPD, gabapentinoid use was associated with increased risk for severe exacerbation. This study supports the warnings from regulatory agencies and highlights the importance of considering this potential risk when prescribing gabapentin and pregabalin to patients with COPD. PRIMARY FUNDING SOURCE: Canadian Institutes of Health Research and Canadian Lung Association.


Asunto(s)
Dolor Crónico , Epilepsia , Neuralgia , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudios de Cohortes , Canadá , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Neuralgia/complicaciones
7.
Proc Natl Acad Sci U S A ; 119(30): e2122158119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858418

RESUMEN

Eicosapentaenoic acid (EPA), an omega-3 (ω-3) polyunsaturated fatty acid, is an essential nutrient that exhibits antiinflammatory, neuroprotective, and cardiovascular-protective activities. Although EPA is used as a nutrient-based pharmaceutical agent or dietary supplement, its molecular target(s) is debatable. Here, we showed that EPA and its metabolites strongly and reversibly inhibit vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and release of adenosine triphosphate (ATP) in purinergic chemical transmission. In vitro analysis showed that EPA inhibits human VNUT-mediated ATP uptake at a half-maximal inhibitory concentration (IC50) of 67 nM, acting as an allosteric modulator through competition with Cl-. EPA impaired vesicular ATP release from neurons without affecting the vesicular release of other neurotransmitters. In vivo, VNUT-/- mice showed a delay in the onset of neuropathic pain and resistance to both neuropathic and inflammatory pain. EPA potently attenuated neuropathic and inflammatory pain in wild-type mice but not in VNUT-/- mice without affecting the basal nociception. The analgesic effect of EPA was canceled by the intrathecal injection of purinoceptor agonists and was stronger than that of existing drugs used for neuropathic pain treatment, with few side effects. Neuropathic pain impaired insulin sensitivity in previous studies, which was improved by EPA in the wild-type mice but not in the VNUT-/- mice. Our results showed that VNUT is a molecular target of EPA that attenuates neuropathic and inflammatory pain and insulin resistance. EPA may represent a unique nutrient-based treatment and prevention strategy for neurological, immunological, and metabolic diseases by targeting purinergic chemical transmission.


Asunto(s)
Ácido Eicosapentaenoico , Neuralgia , Proteínas de Transporte de Nucleótidos , Adenosina Trifosfato/metabolismo , Animales , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/uso terapéutico , Humanos , Resistencia a la Insulina , Ratones , Neuralgia/tratamiento farmacológico , Neuralgia/genética , Nocicepción , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo
8.
Glia ; 72(8): 1402-1417, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38591338

RESUMEN

It is well-established that spinal microglia and peripheral macrophages play critical roles in the etiology of neuropathic pain; however, growing evidence suggests sex differences in pain hypersensitivity owing to microglia and macrophages. Therefore, it is crucial to understand sex- and androgen-dependent characteristics of pain-related myeloid cells in mice with nerve injury-induced neuropathic pain. To deplete microglia and macrophages, pexidartinib (PLX3397), an inhibitor of the colony-stimulating factor 1 receptor, was orally administered, and mice were subjected to partial sciatic nerve ligation (PSL). Following PSL induction, healthy male and female mice and male gonadectomized (GDX) mice exhibited similar levels of spinal microglial activation, peripheral macrophage accumulation, and mechanical allodynia. Treatment with PLX3397 significantly suppressed mechanical allodynia in normal males; this was not observed in female and GDX male mice. Sex- and androgen-dependent differences in the PLX3397-mediated preventive effects were observed on spinal microglia and dorsal root ganglia (DRG) macrophages, as well as in expression patterns of pain-related inflammatory mediators in these cells. Conversely, no sex- or androgen-dependent differences were detected in sciatic nerve macrophages, and inhibition of peripheral CC-chemokine receptor 5 prevented neuropathic pain in both sexes. Collectively, these findings demonstrate the presence of considerable sex- and androgen-dependent differences in the etiology of neuropathic pain in spinal microglia and DRG macrophages but not in sciatic nerve macrophages. Given that the mechanisms of neuropathic pain may differ among experimental models and clinical conditions, accumulating several lines of evidence is crucial to comprehensively clarifying the sex-dependent regulatory mechanisms of pain.


Asunto(s)
Microglía , Neuralgia , Pirroles , Caracteres Sexuales , Animales , Masculino , Femenino , Ratones , Neuralgia/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Microglía/efectos de los fármacos , Microglía/metabolismo , Pirroles/farmacología , Aminopiridinas/farmacología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Nervio Ciático/lesiones , Nervio Ciático/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/metabolismo , Modelos Animales de Enfermedad
9.
Mol Pain ; 20: 17448069241256466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716504

RESUMEN

Background: Recent studies have shown that peripheral nerve regeneration process is closely related to neuropathic pain. Toll-like receptor 4 (TLR4) signaling was involved in different types of pain and nerve regeneration. TLR4 induced the recruitment of myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB-depended transcriptional process in sensory neurons and glial cells, which produced multiple cytokines and promoted the induction and persistence of pain. Our study aimed to investigate procyanidins's effect on pain and nerve regeneration via TLR4-Myd88 signaling. Methods: Spinal nerve ligation (SNL) model was established to measure the analgesic effect of procyanidins. Anatomical measurement of peripheral nerve regeneration was measured by microscopy and growth associated protein 43 (GAP43) staining. Western blotting and/or immunofluorescent staining were utilized to detect TLR4, myeloid differentiation factor-88 adaptor protein (MyD88), ionized calcium-binding adapter molecule 1 (IBA1) and nuclear factor kappa-B-p65 (NF-κB-p65) expression, as well as the activation of astrocyte and microglia. The antagonist of TLR4 (LPS-RS-Ultra, LRU) were intrathecally administrated to assess the behavioral effects of blocking TLR4 signaling on pain and nerve regeneration. Result: Procyanidins reduced mechanical allodynia, thermal hyperalgesia and significantly suppressed the number of nerve fibers regenerated and the degree of myelination in SNL model. Compared with sham group, TLR4, MyD88, IBA1 and phosphorylation of NF-κB-p65 were upregulated in SNL rats which were reversed by procyanidins administration. Additionally, procyanidins also suppressed activation of spinal astrocytes and glial cells. Conclusion: Suppression of TLR4-MyD88 signaling contributes to the alleviation of neuropathic pain and reduction of nerve regeneration by procyanidins.


Asunto(s)
Factor 88 de Diferenciación Mieloide , Regeneración Nerviosa , Neuralgia , Proantocianidinas , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 4 , Animales , Proantocianidinas/farmacología , Receptor Toll-Like 4/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Masculino , Extracto de Semillas de Uva/farmacología , Ratas , Microglía/efectos de los fármacos , Microglía/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Nervios Espinales/efectos de los fármacos
10.
Cancer ; 130(2): 300-311, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37733286

RESUMEN

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) includes negative sensations that remain a major chronic problem for cancer survivors. Previous research demonstrated that neurofeedback (a closed-loop brain-computer interface [BCI]) was effective at treating CIPN versus a waitlist control (WLC). The authors' a priori hypothesis was that BCI would be superior to placebo feedback (placebo control [PLC]) and to WLC in alleviating CIPN and that changes in brain activity would predict symptom report. METHODS: Randomization to one of three conditions occurred between November 2014 and November 2018. Breast cancer survivors no longer in treatment were assessed at baseline, at the end of 20 treatment sessions, and 1 month later. Auditory and visual rewards were given over 20 sessions based on each patient's ability to modify their own electroencephalographic signals. The Pain Quality Assessment Scale (PQAS) at the end of treatment was the primary outcome, and changes in electroencephalographic signals and 1-month data also were examined. RESULTS: The BCI and PLC groups reported significant symptom reduction. The BCI group demonstrated larger effect size differences from the WLC group than the PLC group (mean change score: BCI vs. WLC, -2.60 vs. 0.38; 95% confidence interval, -3.67, -1.46 [p = .000; effect size, 1.07]; PLC, -2.26; 95% confidence interval, -3.33, -1.19 [p = .001 vs. WLC; effect size, 0.9]). At 1 month, symptoms continued to improve only for the BCI group. Targeted brain changes at the end of treatment predicted symptoms at 1 month for the BCI group only. CONCLUSIONS: BCI is a promising treatment for CIPN and may have a longer lasting effect than placebo (nonspecific BCI), which is an important consideration for long-term symptom relief. Although scientifically interesting, the ability to separate real from placebo treatment may not be as important as understanding the placebo effects differently from effects of the intervention. PLAIN LANGUAGE SUMMARY: Chemotherapy-induced nerve pain (neuropathy) can be disabling for cancer survivors; however, the way symptoms are felt depends on how the brain interprets the signals from nerves in the body. We determined that the perception of neuropathy can be changed by working directly with the brain. Survivors in our trial played 20 sessions of a type of video game that was designed to change the way the brain processed sensation and movement. In this, our second trial, we again observed significant improvement in symptoms that lasted after the treatment was complete.


Asunto(s)
Antineoplásicos , Interfaces Cerebro-Computador , Neoplasias de la Mama , Neuralgia , Humanos , Femenino , Neuralgia/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Sobrevivientes , Antineoplásicos/efectos adversos
11.
Biochem Biophys Res Commun ; 724: 150217, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38865809

RESUMEN

Neuropathy is a disturbance of function or a pathological change in nerves causing poor health and quality of life. A proportion of chronic pain patients in the community suffer persistent neuropathic pain symptoms because current drug therapies may be suboptimal so there is a need for new therapeutic modalities. This study investigated the neuroprotective flavonoid, 6-methoxyflavone (6MF), as a potential therapeutic agent and gabapentin as the standard comparator, against neuropathic models. Thus, neuropathic-like states were induced in Sprague-Dawley rats using sciatic nerve chronic constriction injury (CCI) mononeuropathy and systemic administration of streptozotocin (STZ) to induce polyneuropathy. Subsequent behaviors reflecting allodynia, hyperalgesia, and vulvodynia were assessed and any possible motoric side-effects were evaluated including locomotor activity, as well as rotarod discoordination and gait disruption. 6MF (25-75 mg/kg) antagonized neuropathic-like nociceptive behaviors including static- (pressure) and dynamic- (light brushing) hindpaw allodynia plus heat/cold and pressure hyperalgesia in the CCI and STZ models. 6MF also reduced static and dynamic components of vulvodynia in the STZ induced polyneuropathy model. Additionally, 6MF reversed CCI and STZ suppression of locomotor activity and rotarod discoordination, suggesting a beneficial activity on motor side effects, in contrast to gabapentin. Hence, 6MF possesses anti-neuropathic-like activity not only against different nociceptive modalities but also impairment of motoric side effects.


Asunto(s)
Flavonas , Hiperalgesia , Neuralgia , Ratas Sprague-Dawley , Animales , Ratas , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Flavonas/farmacología , Flavonas/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Gabapentina/farmacología , Gabapentina/uso terapéutico , Nocicepción/efectos de los fármacos , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Femenino , Ácido gamma-Aminobutírico/metabolismo , Aminas/farmacología , Aminas/uso terapéutico , Nervio Ciático/lesiones , Nervio Ciático/efectos de los fármacos , Vulvodinia/tratamiento farmacológico , Constricción , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Analgésicos/farmacología , Analgésicos/uso terapéutico
12.
J Neuroinflammation ; 21(1): 60, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419042

RESUMEN

BACKGROUND: The spinal inflammatory signal often spreads to distant segments, accompanied by widespread pain symptom under neuropathological conditions. Multiple cytokines are released into the cerebrospinal fluid (CSF), potentially inducing the activation of an inflammatory cascade at remote segments through CSF flow. However, the detailed alteration of CSF in neuropathic pain and its specific role in widespread pain remain obscure. METHODS: A chronic constriction injury of the infraorbital nerve (CCI-ION) model was constructed, and pain-related behavior was observed on the 7th, 14th, 21st, and 28th days post surgery, in both vibrissa pads and hind paws. CSF from CCI-ION rats was transplanted to naïve rats through intracisternal injection, and thermal and mechanical allodynia were measured in hind paws. The alteration of inflammatory cytokines in CCI-ION's CSF was detected using an antibody array and bioinformatic analysis. Pharmacological intervention targeting the changed cytokine in the CSF and downstream signaling was performed to evaluate its role in widespread pain. RESULTS: CCI-ION induced local pain in vibrissa pads together with widespread pain in hind paws. CCI-ION's CSF transplantation, compared with sham CSF, contributed to vibrissa pad pain and hind paw pain in recipient rats. Among the measured cytokines, interleukin-6 (IL-6) and leptin were increased in CCI-ION's CSF, while interleukin-13 (IL-13) was significantly reduced. Furthermore, the concentration of CSF IL-6 was correlated with nerve injury extent, which gated the occurrence of widespread pain. Both astrocytes and microglia were increased in remote segments of the CCI-ION model, while the inhibition of astrocytes in remote segments, but not microglia, significantly alleviated widespread pain. Mechanically, astroglial signal transducer and activator of transcription 3 (STAT3) in remote segments were activated by CSF IL-6, the inhibition of which significantly mitigated widespread pain in CCI-ION. CONCLUSION: IL-6 was induced in the CSF of the CCI-ION model, triggering widespread pain via activating astrocyte STAT3 signal in remote segments. Therapies targeting IL-6/STAT3 signaling might serve as a promising strategy for the widespread pain symptom under neuropathological conditions.


Asunto(s)
Interleucina-6 , Neuralgia , Ratas , Animales , Interleucina-6/metabolismo , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Gliosis/complicaciones , Constricción , Hiperalgesia/etiología , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Citocinas
13.
J Neurosci Res ; 102(1): e25285, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284865

RESUMEN

The altered activity generated by corneal neuronal injury can result in morphological and physiological changes in the architecture of synaptic connections in the nervous system. These changes can alter the sensitivity of neurons (both second-order and higher-order projection) projecting pain signals. A complex process involving different cell types, molecules, nerves, dendritic cells, neurokines, neuropeptides, and axon guidance molecules causes a high level of sensory rearrangement, which is germane to all the phases in the pathomechanism of corneal neuropathic pain. Immune cells migrating to the region of nerve injury assist in pain generation by secreting neurokines that ensure nerve depolarization. Furthermore, excitability in the central pain pathway is perpetuated by local activation of microglia in the trigeminal ganglion and alterations of the descending inhibitory modulation for corneal pain arriving from central nervous system. Corneal neuropathic pain may be facilitated by dysfunctional structures in the central somatosensory nervous system due to a lesion, altered synaptogenesis, or genetic abnormality. Understanding these important pathways will provide novel therapeutic insight.


Asunto(s)
Neuralgia , Humanos , Neuralgia/tratamiento farmacológico , Córnea , Sistema Nervioso Central , Neuronas , Orientación del Axón
14.
J Neurosci Res ; 102(1): e25269, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284851

RESUMEN

This study aimed to evaluate the effects of inhibitors of the fractalkine pathway in hyperalgesia in inflammatory and neuropathic orofacial pain in male rats and the morphological changes in microglia and satellite glial cells (SGCs). Rats were submitted to zymosan-induced arthritis of the temporomandibular joint or infraorbital nerve constriction, and treated intrathecally with a P2 X7 antagonist, a cathepsin S inhibitor or a p-38 mitogen-activated protein kinase (MAPK) inhibitor. Mechanical hyperalgesia was evaluated 4 and 6 h following arthritis induction or 7 and 14 days following nerve ligation. The expression of the receptor CX3 CR1 , phospho-p-38 MAPK, ionized calcium-binding adapter molecule-1 (Iba-1), and glutamine synthetase and the morphological changes in microglia and SGCs were evaluated by confocal microscopy. In both inflammatory and neuropathic models, untreated animals presented a higher expression of CX3 CR1 and developed hyperalgesia and up-regulation of phospho-p-38 MAPK, which was prevented by all drugs (p < .05). The number of microglial processes endpoints and the total branch length were lower in the untreated animals, but the overall immunolabeling of Iba-1 was altered only in neuropathic rats (p < .05). The mean area of SGCs per neuron was significantly altered only in the inflammatory model (p < .05). All morphological alterations were reverted by modulating the fractalkine pathway (p < .05). In conclusion, the blockage of the fractalkine pathway seemed to be a possible therapeutic strategy for inflammatory and neuropathic orofacial pain, reducing mechanical hyperalgesia by impairing the phosphorylation of p-38 MAPK and reverting morphological alterations in microglia and SGCs.


Asunto(s)
Artritis , Neuralgia , Masculino , Animales , Ratas , Hiperalgesia/tratamiento farmacológico , Quimiocina CX3CL1 , Neuroglía , Neuralgia/tratamiento farmacológico , Proteínas Quinasas Activadas por Mitógenos , Inhibidores de Proteínas Quinasas , Dolor Facial/tratamiento farmacológico , Proteínas Quinasas p38 Activadas por Mitógenos
15.
J Pharmacol Exp Ther ; 388(1): 121-133, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37918854

RESUMEN

Gabapentinoids have clinically been used for treating epilepsy, neuropathic pain, and several other neurologic disorders for >30 years; however, the definitive molecular mechanism responsible for their therapeutic actions remained uncertain. The conventional pharmacological observation regarding their efficacy in chronic pain modulation is the weakening of glutamate release at presynaptic terminals in the spinal cord. While the α2/δ-1 subunit of voltage-gated calcium channels (VGCCs) has been identified as the primary drug receptor for gabapentinoids, the lack of consistent effect of this drug class on VGCC function is indicative of a minor role in regulating this ion channel's activity. The current review targets the efficacy and mechanism of gabapentinoids in treating chronic pain. The discovery of interaction of α2/δ-1 with thrombospondins established this protein as a major synaptogenic neuronal receptor for thrombospondins. Other findings identified α2/δ-1 as a powerful regulator of N-methyl-D-aspartate receptor (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) by potentiating the synaptic expression, a putative pathophysiological mechanism of neuropathic pain. Further, the interdependent interactions between thrombospondin and α2/δ-1 contribute to chronic pain states, while gabapentinoid ligands efficaciously reverse such pain conditions. Gabapentin normalizes and even blocks NMDAR and AMPAR synaptic targeting and activity elicited by nerve injury. SIGNIFICANCE STATEMENT: Gabapentinoid drugs are used to treat various neurological conditions including chronic pain. In chronic pain states, gene expression of cacnα2/δ-1 and thrombospondins are upregulated and promote aberrant excitatory synaptogenesis. The complex trait of protein associations that involve interdependent interactions between α2/δ-1 and thrombospondins, further, association of N-methyl-D-aspartate receptor and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor with the C-tail of α2/δ-1, constitutes a macromolecular signaling complex that forms the crucial elements for the pharmacological mode of action of gabapentinoids.


Asunto(s)
Analgesia , Dolor Crónico , Neuralgia , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Glutámico , Dolor Crónico/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Trombospondinas/metabolismo , Isoxazoles
16.
Ann Neurol ; 93(4): 655-667, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36511844

RESUMEN

OBJECTIVE: Small-fiber neuropathy (SFN) is characterized by neuropathic pain due to degeneration of small-diameter nerves in the skin. Given that brain reorganization occurs following chronic neuropathic pain, this study investigated the structural and functional basis of pain-related brain changes after skin nerve degeneration. METHODS: Diffusion-weighted and resting-state functional MRI data were acquired from 53 pathologically confirmed SFN patients, and the structural and functional connectivity of the pain-related network was assessed using network-based statistic (NBS) analysis. RESULTS: Compared with age- and sex-matched controls, the SFN patients exhibited a robust and global reduction of functional connectivity, mainly across the limbic and somatosensory systems. Furthermore, lower functional connectivity was associated with skin nerve degeneration measured by reduced intraepidermal nerve fiber density and better therapeutic response to anti-neuralgia medications, particularly for the connectivity between the insula and the limbic areas including the anterior and middle cingulate cortices. Similar to the patterns of functional connectivity changes, the structural connectivity was robustly reduced among the limbic and somatosensory areas, and the cognition-integration areas including the inferior parietal lobule. There was shared reduction of structural and functional connectivity among the limbic, somatosensory, striatal, and cognition-integration systems: (1) between the middle cingulate cortex and inferior parietal lobule and (2) between the thalamus and putamen. These observations indicate the structural basis underlying altered functional connectivity in SFN. INTERPRETATION: Our findings provide imaging evidence linking structural and functional brain dysconnectivity to sensory deafferentation caused by peripheral nerve degeneration and therapeutic responses for neuropathic pain in SFN. ANN NEUROL 2023;93:655-667.


Asunto(s)
Neuralgia , Neuropatía de Fibras Pequeñas , Humanos , Imagen por Resonancia Magnética/métodos , Neuralgia/diagnóstico por imagen , Neuralgia/tratamiento farmacológico , Encéfalo , Giro del Cíngulo , Neuropatía de Fibras Pequeñas/tratamiento farmacológico , Degeneración Nerviosa
17.
Cytokine ; 174: 156468, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38101167

RESUMEN

It has been shown that AMP-activated protein kinase (AMPK) is involved in the nociceptive processing. This observation has prompted us to investigate the effects of the AMPK activator metformin on the paclitaxel-induced mechanical allodynia, a well-established model of neuropathic pain. Mechanical allodynia was induced by four intraperitoneal (i.p) injections of paclitaxel (2 mg/kg.day) in mice. Metformin was administered per os (p.o.). Naltrexoneandglibenclamide were used to investigate mechanisms mediating metformin activity. Concentrations of cytokines in the dorsal root ganglia (DRG) and thalamus were determined. After a single p.o. administration, the two highest doses of metformin (500 and 1000 mg/kg) attenuated the mechanical allodynia. This response was attenuated by all doses of metformin (250, 500 and 1000 mg/kg) when two administrations, 2 h apart, were carried out. Naltrexone (5 and 10 mg/kg, i.p.), but not glibenclamide (20 and 40 mg/kg, p.o.), attenuated metformin activity. Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and CXCL-1 in the DRG were increased after administration of paclitaxel. Metformin (1000 mg/kg) reduced concentrations of TNF-α, IL-1ß and CXCL-1 in the DRG. Concentration of IL-6, but not TNF-α, in the thalamus was increased after administration of paclitaxel. Metformin (1000 mg/kg) reduced concentration of IL-6 in the thalamus. In summary, metformin exhibits activity in the model of neuropathic pain induced by paclitaxel. This activity may be mediated by activation of opioidergic pathways and reduced production of TNF-α, IL-1ß and CXCL-1 in the DRG and IL-6 in the thalamus.


Asunto(s)
Metformina , Neuralgia , Ratones , Animales , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Paclitaxel/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Metformina/farmacología , Ganglios Espinales/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Interleucina-6/metabolismo , Citocinas/metabolismo , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Tálamo/metabolismo
18.
Cytokine ; 180: 156635, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38749277

RESUMEN

BACKGROUND: Knee osteoarthritis (KOA) is a chronic progressive osteoarthropathy. Chrysin's anti-KOA action has been demonstrated, however more research is needed to understand how chrysin contributes to KOA. METHODS: LPS/ATP-induced macrophages transfected with or without HMGB1 overexpression underwent 5 µg/mL chrysin. The cell viability and macrophage pyroptosis were examined by cell counting kit-8 and flow cytometer. In vivo experiments, rats were injected with 1 mg monosodium iodoacetate by the infrapatellar ligament of the bilateral knee joint to induce KOA. The histological damage was analyzed by Safranin O/Fast Green staining and hematoxylin and eosin staining. The PWT, PWL and inflammatory factors were analyzed via Von-Frey filaments, thermal radiometer and ELISA. Immunofluorescence assay examined the expressions of CGRP and iNOS. The levels of HMGB1/RAGE-, NLRP3-, PI3K/AKT- and neuronal ion channel-related markers were examined by qPCR and western blot. RESULTS: Chrysin alleviated macrophage pyroptosis by inhibiting HMGB1 and the repression of chrysin on HMGB1/RAGE pathway and ion channel activation was reversed by overexpressed HMGB1. HMGB1 facilitated neuronal ion channel activation through the RAGE/PI3K/AKT pathway. Chrysin could improve the pathological injury of knee joints in KOA rats. Chrysin suppressed the HMGB1-regulated RAGE/PI3K/AKT pathway, hence reducing KOA damage and peripheral sensitization. CONCLUSION: Chrysin mitigated neuropathic pain and peripheral sensitization in KOA rats by repressing the RAGE/PI3K/AKT pathway modulated by HMGB1.


Asunto(s)
Flavonoides , Proteína HMGB1 , Neuralgia , Osteoartritis de la Rodilla , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Animales , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/patología , Flavonoides/farmacología , Proteína HMGB1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal/efectos de los fármacos , Neuralgia/metabolismo , Neuralgia/tratamiento farmacológico , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Piroptosis/efectos de los fármacos
19.
BMC Cancer ; 24(1): 80, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225552

RESUMEN

BACKGROUND: For chronic pain after thoracic surgery, optimal timing of its diagnosis and effective treatment remains unresolved, although several treatment options are currently available. We examined the efficacy and safety of mirogabalin, in combination with conventional pain therapy (nonsteroidal anti-inflammatory drugs and/or acetaminophen), for treating peripheral neuropathic pain (NeP) after thoracic surgery. METHODS: In this multicenter, randomized, open-label, parallel-group study, patients with peripheral NeP were randomly assigned 1:1 to mirogabalin as add-on to conventional therapy or conventional treatment alone. RESULTS: Of 131 patients of consent obtained, 128 were randomized (mirogabalin add-on group, 63 patients; conventional treatment group, 65 patients). The least squares mean changes (95% confidence interval [CI]) in Visual Analogue Scale (VAS) score for pain intensity at rest from baseline to Week 8 (primary endpoint) were - 51.3 (- 54.9, - 47.7) mm in the mirogabalin add-on group and - 47.7 (- 51.2, - 44.2) mm in the conventional group (between-group difference: - 3.6 [95% CI: - 8.7, 1.5], P = 0.161). However, in patients with Self-administered Leeds Assessment of Neuropathic Symptoms and Signs (S-LANSS) score (used for the screening of NeP) ≥ 12 at baseline, the greater the S-LANSS score at baseline, the greater the decrease in VAS score in the mirogabalin add-on group, while no such trend was observed in the conventional treatment group (post hoc analysis). This between-group difference in trends was statistically significant (interaction P value = 0.014). Chronic pain was recorded in 7.9% vs. 16.9% of patients (P = 0.171) at Week 12 in the mirogabalin add-on vs. conventional treatment groups, respectively. Regarding activities of daily living (ADL) and quality of life (QOL), changes in Pain Disability Assessment Scale score and the EQ-5D-5L index value from baseline to Week 8 showed significant improvement in the mirogabalin add-on group vs. conventional treatment group (P < 0.001). The most common adverse events (AEs) in the mirogabalin add-on group were dizziness (12.7%), somnolence (7.9%), and urticaria (3.2%). Most AEs were mild or moderate in severity. CONCLUSIONS: Addition of mirogabalin to conventional therapy did not result in significant improvement in pain intensity based on VAS scores, but did result in significant improvement in ADL and QOL in patients with peripheral NeP after thoracic surgery. TRIAL REGISTRATION: Japan Registry of Clinical Trials jRCTs071200053 (registered 17/11/2020).


Asunto(s)
Compuestos Bicíclicos con Puentes , Dolor Crónico , Neuralgia , Cirugía Torácica , Humanos , Calidad de Vida , Actividades Cotidianas , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Resultado del Tratamiento
20.
Brain Behav Immun ; 119: 36-50, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38555991

RESUMEN

This study aimed to elucidate the opioid mechanisms underlying dexamethasone-induced pain antihypersensitive effects in neuropathic rats. Dexamethasone (subcutaneous and intrathecal) and membrane-impermeable Dex-BSA (intrathecal) administration dose-dependently inhibited mechanical allodynia and thermal hyperalgesia in neuropathic rats. Dexamethasone and Dex-BSA treatments increased expression of dynorphin A in the spinal cords and primary cultured microglia. Dexamethasone specifically enhanced dynorphin A expression in microglia but not astrocytes or neurons. Intrathecal injection of the microglial metabolic inhibitor minocycline blocked dexamethasone-stimulated spinal dynorphin A expression; intrathecal minocycline, the glucocorticoid receptor antagonist Dex-21-mesylate, dynorphin A antiserum, and κ-opioid receptor antagonist GNTI completely blocked dexamethasone-induced mechanical antiallodynia and thermal antihyperalgesia. Additionally, dexamethasone elevated spinal intracellular cAMP levels, leading to enhanced phosphorylation of PKA, p38 MAPK and CREB. The specific adenylate cyclase inhibitor DDA, PKA inhibitor H89, p38 MAPK inhibitor SB203580 and CREB inhibitor KG-501 completely blocked dexamethasone-induced anti-neuropathic pain and increased microglial dynorphin A exprression. In conclusion, this study reveal that dexamethasone mitigateds neuropathic pain through upregulation of dynorphin A in spinal microglia, likely involving the membrane glucocorticoid receptor/cAMP/PKA/p38 MAPK/CREB signaling pathway.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Dexametasona , Dinorfinas , Microglía , Neuralgia , Ratas Sprague-Dawley , Transducción de Señal , Médula Espinal , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , AMP Cíclico/metabolismo , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Masculino , Neuralgia/metabolismo , Neuralgia/tratamiento farmacológico , Dinorfinas/metabolismo , Ratas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dexametasona/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA