Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(9): 5119-5134, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32282906

RESUMEN

Reactive oxygen species generate the genotoxic 8-oxoguanine (oxoG) and 8-oxoadenine (oxoA) as major oxidative lesions. The mutagenicity of oxoG is attributed to the lesion's ability to evade the geometric discrimination of DNA polymerases by adopting Hoogsteen base pairing with adenine in a Watson-Crick-like geometry. Compared with oxoG, the mutagenesis mechanism of oxoA, which preferentially induces A-to-C mutations, is poorly understood. In the absence of protein contacts, oxoA:G forms a wobble conformation, the formation of which is suppressed in the catalytic site of most DNA polymerases. Interestingly, human DNA polymerase η (polη) proficiently incorporates dGTP opposite oxoA, suggesting the nascent oxoA:dGTP overcomes the geometric discrimination of polη. To gain insights into oxoA-mediated mutagenesis, we determined crystal structures of polη bypassing oxoA. When paired with dGTP, oxoA adopted a syn-conformation and formed Hoogsteen pairing while in a wobble geometry, which was stabilized by Gln38-mediated minor groove contacts to oxoA:dGTP. Gln38Ala mutation reduced misinsertion efficiency ∼55-fold, indicating oxoA:dGTP misincorporation was promoted by minor groove interactions. Also, the efficiency of oxoA:dGTP insertion by the X-family polß decreased ∼380-fold when Asn279-mediated minor groove contact to dGTP was abolished. Overall, these results suggest that, unlike oxoG, oxoA-mediated mutagenesis is greatly induced by minor groove interactions.


Asunto(s)
Adenina/análogos & derivados , ADN Polimerasa Dirigida por ADN/química , Mutagénesis , Adenina/química , Emparejamiento Base , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxiguanina/química , Nucleótidos de Desoxiguanina/metabolismo , Humanos , Cinética , Mutación , Nucleótidos de Timina/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(19): 9333-9339, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31019074

RESUMEN

Deoxynucleotide triphosphohydrolases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools. While the vast majority of these enzymes display broad activity toward canonical dNTPs, such as the dNTPase SAMHD1 that blocks reverse transcription of retroviruses in macrophages by maintaining dNTP pools at low levels, Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. However, the mechanism behind dGTP selectivity is unclear. Here we present the free-, ligand (dGTP)- and inhibitor (GTP)-bound structures of hexameric Ec-dGTPase, including an X-ray free-electron laser structure of the free Ec-dGTPase enzyme to 3.2 Å. To obtain this structure, we developed a method that applied UV-fluorescence microscopy, video analysis, and highly automated goniometer-based instrumentation to map and rapidly position individual crystals randomly located on fixed target holders, resulting in the highest indexing rates observed for a serial femtosecond crystallography experiment. Our structures show a highly dynamic active site where conformational changes are coupled to substrate (dGTP), but not inhibitor binding, since GTP locks dGTPase in its apo- form. Moreover, despite no sequence homology, Ec-dGTPase and SAMHD1 share similar active-site and HD motif architectures; however, Ec-dGTPase residues at the end of the substrate-binding pocket mimic Watson-Crick interactions providing guanine base specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP bases, abolishing nucleotide-type discrimination. Furthermore, the structures shed light on the mechanism by which long distance binding (25 Å) of single-stranded DNA in an allosteric site primes the active site by conformationally "opening" a tyrosine gate allowing enhanced substrate binding.


Asunto(s)
Nucleótidos de Desoxiguanina/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , GTP Fosfohidrolasas/química , Sitio Alostérico , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Nucleótidos de Desoxiguanina/química , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Modelos Moleculares , Proteína 1 que Contiene Dominios SAM y HD/química , Proteína 1 que Contiene Dominios SAM y HD/genética , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Especificidad por Sustrato
3.
Biochemistry ; 60(5): 373-380, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33475337

RESUMEN

DNA polymerases play vital roles in the maintenance and replication of genomic DNA by synthesizing new nucleotide polymers using nucleoside triphosphates as substrates. Deoxynucleoside triphosphates (dNTPs) are the canonical substrates for DNA polymerases; however, some bacterial polymerases have been demonstrated to insert deoxynucleoside diphosphates (dNDPs), which lack a third phosphate group, the γ-phosphate. Whether eukaryotic polymerases can efficiently incorporate dNDPs has not been investigated, and much about the chemical or structural role played by the γ-phosphate of dNTPs remains unknown. Using the model mammalian polymerase (Pol) ß, we examine how Pol ß incorporates a substrate lacking a γ-phosphate [deoxyguanosine diphosphate (dGDP)] utilizing kinetic and crystallographic approaches. Using single-turnover kinetics, we determined dGDP insertion across a templating dC by Pol ß to be drastically impaired when compared to dGTP insertion. We found the most significant impairment in the apparent insertion rate (kpol), which was reduced 32000-fold compared to that of dGTP insertion. X-ray crystal structures revealed similar enzyme-substrate contacts for both dGDP and dGTP. These findings suggest the insertion efficiency of dGDP is greatly decreased due to impairments in polymerase chemistry. This work is the first instance of a mammalian polymerase inserting a diphosphate nucleotide and provides insight into the nature of polymerase mechanisms by highlighting how these enzymes have evolved to use triphosphate nucleotide substrates.


Asunto(s)
ADN Polimerasa beta/química , Nucleótidos de Desoxiguanina/química , ADN/química , ADN Polimerasa beta/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Desoxiguanosina/química , Difosfatos/química , Humanos , Cinética , Especificidad por Sustrato
4.
Biochemistry ; 60(21): 1682-1698, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33988981

RESUMEN

SAMHD1 is a fundamental regulator of cellular dNTPs that catalyzes their hydrolysis into 2'-deoxynucleoside and triphosphate, restricting the replication of viruses, including HIV-1, in CD4+ myeloid lineage and resting T-cells. SAMHD1 mutations are associated with the autoimmune disease Aicardi-Goutières syndrome (AGS) and certain cancers. More recently, SAMHD1 has been linked to anticancer drug resistance and the suppression of the interferon response to cytosolic nucleic acids after DNA damage. Here, we probe dNTP hydrolysis and inhibition of SAMHD1 using the Rp and Sp diastereomers of dNTPαS nucleotides. Our biochemical and enzymological data show that the α-phosphorothioate substitution in Sp-dNTPαS but not Rp-dNTPαS diastereomers prevents Mg2+ ion coordination at both the allosteric and catalytic sites, rendering SAMHD1 unable to form stable, catalytically active homotetramers or hydrolyze substrate dNTPs at the catalytic site. Furthermore, we find that Sp-dNTPαS diastereomers competitively inhibit dNTP hydrolysis, while Rp-dNTPαS nucleotides stabilize tetramerization and are hydrolyzed with similar kinetic parameters to cognate dNTPs. For the first time, we present a cocrystal structure of SAMHD1 with a substrate, Rp-dGTPαS, in which an Fe-Mg-bridging water species is poised for nucleophilic attack on the Pα. We conclude that it is the incompatibility of Mg2+, a hard Lewis acid, and the α-phosphorothioate thiol, a soft Lewis base, that prevents the Sp-dNTPαS nucleotides coordinating in a catalytically productive conformation. On the basis of these data, we present a model for SAMHD1 stereospecific hydrolysis of Rp-dNTPαS nucleotides and for a mode of competitive inhibition by Sp-dNTPαS nucleotides that competes with formation of the enzyme-substrate complex.


Asunto(s)
Desoxirribonucleótidos/química , Proteína 1 que Contiene Dominios SAM y HD/antagonistas & inhibidores , Proteína 1 que Contiene Dominios SAM y HD/química , Regulación Alostérica , Catálisis , Dominio Catalítico , Cristalografía por Rayos X/métodos , Nucleótidos de Desoxiguanina/química , Desoxirribonucleótidos/metabolismo , Humanos , Hidrólisis , Cinética , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Replicación Viral/fisiología
5.
J Biol Chem ; 295(6): 1613-1622, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31892517

RESUMEN

During oxidative stress, inflammation, or environmental exposure, ribo- and deoxyribonucleotides are oxidatively modified. 8-Oxo-7,8-dihydro-2'-guanosine (8-oxo-G) is a common oxidized nucleobase whose deoxyribonucleotide form, 8-oxo-dGTP, has been widely studied and demonstrated to be a mutagenic substrate for DNA polymerases. Guanine ribonucleotides are analogously oxidized to r8-oxo-GTP, which can constitute up to 5% of the rGTP pool. Because ribonucleotides are commonly misinserted into DNA, and 8-oxo-G causes replication errors, we were motivated to investigate how the oxidized ribonucleotide is utilized by DNA polymerases. To do this, here we employed human DNA polymerase ß (pol ß) and characterized r8-oxo-GTP insertion with DNA substrates containing either a templating cytosine (nonmutagenic) or adenine (mutagenic). Our results show that pol ß has a diminished catalytic efficiency for r8-oxo-GTP compared with canonical deoxyribonucleotides but that r8-oxo-GTP is inserted mutagenically at a rate similar to those of other common DNA replication errors (i.e. ribonucleotide and mismatch insertions). Using FRET assays to monitor conformational changes of pol ß with r8-oxo-GTP, we demonstrate impaired pol ß closure that correlates with a reduced insertion efficiency. X-ray crystallographic analyses revealed that, similar to 8-oxo-dGTP, r8-oxo-GTP adopts an anti conformation opposite a templating cytosine and a syn conformation opposite adenine. However, unlike 8-oxo-dGTP, r8-oxo-GTP did not form a planar base pair with either templating base. These results suggest that r8-oxo-GTP is a potential mutagenic substrate for DNA polymerases and provide structural insights into how r8-oxo-GTP is processed by DNA polymerases.


Asunto(s)
ADN Polimerasa beta/metabolismo , ADN/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Ribonucleótidos/metabolismo , ADN/química , Nucleótidos de Desoxiguanina/química , Humanos , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Estrés Oxidativo , Ribonucleótidos/química
6.
Nature ; 517(7536): 635-9, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25409153

RESUMEN

Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol ß, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.


Asunto(s)
Citotoxinas/metabolismo , Daño del ADN , ADN Polimerasa beta/química , ADN Polimerasa beta/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Nucleótidos de Desoxiguanina/toxicidad , Mutagénesis , Adenina/química , Adenina/metabolismo , Emparejamiento Base , Dominio Catalítico , Cristalografía por Rayos X , Citosina/química , Citosina/metabolismo , Citotoxinas/química , Citotoxinas/toxicidad , ADN/biosíntesis , ADN/química , Reparación del ADN , Replicación del ADN , Nucleótidos de Desoxiguanina/química , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Humanos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Conformación Molecular , Neoplasias/enzimología , Neoplasias/genética , Oxidación-Reducción , Estrés Oxidativo , Electricidad Estática , Especificidad por Sustrato , Factores de Tiempo
7.
Nucleic Acids Res ; 47(6): 3197-3207, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30649431

RESUMEN

4,6-Diamino-5-formamidopyrimidine (Fapy•dG) is an abundant form of oxidative DNA damage that is mutagenic and contributes to the pathogenesis of human disease. When Fapy•dG is in its nucleotide triphosphate form, Fapy•dGTP, it is inefficiently cleansed from the nucleotide pool by the responsible enzyme in Escherichia coli MutT and its mammalian homolog MTH1. Therefore, under oxidative stress conditions, Fapy•dGTP could become a pro-mutagenic substrate for insertion into the genome by DNA polymerases. Here, we evaluated insertion kinetics and high-resolution ternary complex crystal structures of a configurationally stable Fapy•dGTP analog, ß-C-Fapy•dGTP, with DNA polymerase ß. The crystallographic snapshots and kinetic data indicate that binding of ß-C-Fapy•dGTP impedes enzyme closure, thus hindering insertion. The structures reveal that an active site residue, Asp276, positions ß-C-Fapy•dGTP so that it distorts the geometry of critical catalytic atoms. Removal of this guardian side chain permits enzyme closure and increases the efficiency of ß-C-Fapy•dG insertion opposite dC. These results highlight the stringent requirements necessary to achieve a closed DNA polymerase active site poised for efficient nucleotide incorporation and illustrate how DNA polymerase ß has evolved to hinder Fapy•dGTP insertion.


Asunto(s)
ADN Polimerasa beta/química , Nucleótidos de Desoxiguanina/química , Estrés Oxidativo/efectos de los fármacos , Conformación Proteica , Dominio Catalítico/genética , Cristalografía por Rayos X , Daño del ADN/genética , ADN Polimerasa beta/genética , Replicación del ADN/genética , Nucleótidos de Desoxiguanina/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Humanos , Cinética , Mutagénesis/efectos de los fármacos , Pirofosfatasas/química
8.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525366

RESUMEN

MTH1 is an enzyme that hydrolyzes 8-oxo-dGTP, which is an oxidatively damaged nucleobase, into 8-oxo-dGMP in nucleotide pools to prevent its mis-incorporation into genomic DNA. Selective and potent MTH1-binding molecules have potential as biological tools and drug candidates. We recently developed 8-halogenated 7-deaza-dGTP as an 8-oxo-dGTP mimic and found that it was not hydrolyzed, but inhibited enzyme activity. To further increase MTH1 binding, we herein designed and synthesized 7,8-dihalogenated 7-deaza-dG derivatives. We successfully synthesized multiple derivatives, including substituted nucleosides and nucleotides, using 7-deaza-dG as a starting material. Evaluations of the inhibition of MTH1 activity revealed the strong inhibitory effects on enzyme activity of the 7,8-dihalogenated 7-deaza-dG derivatives, particularly 7,8-dibromo 7-daza-dGTP. Based on the results obtained on kinetic parameters and from computational docking simulating studies, these nucleotide analogs interacted with the active site of MTH1 and competitively inhibited the substrate 8-oxodGTP. Therefore, novel properties of repair enzymes in cells may be elucidated using new compounds.


Asunto(s)
Enzimas Reparadoras del ADN/química , Nucleótidos de Desoxiguanina/química , Nucleótidos de Desoxiguanina/síntesis química , Diseño de Fármacos , Monoéster Fosfórico Hidrolasas/química , Sitios de Unión , Daño del ADN , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Nucleótidos de Desoxiguanina/farmacología , Pruebas de Enzimas , Halogenación , Humanos , Hidrólisis , Cinética , Simulación del Acoplamiento Molecular , Imitación Molecular , Estrés Oxidativo , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Especificidad por Sustrato
9.
Biochemistry ; 59(5): 694-703, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31934749

RESUMEN

Plasmodium falciparum thymidylate kinase (PfTMK) is an essential enzyme for the growth of the organism because of its critical role in the de novo synthesis of deoxythymidine 5'-diphosphate (TDP), a precursor for TTP that is required for DNA replication and repair. The kinetics, thermodynamic parameters, and substrate binding properties of PfTMK for TMP, dGMP, ADP, and ATP were measured and characterized by steady-state kinetics and a combination of isothermal titration calorimetry, tryptophan fluorescence titration, and NMR. Mutational studies were performed to investigate residues that contribute to the unique ability of PfTMK to also utilize dGMP as a substrate. Isothermal titration calorimetry experiments revealed that dGMP binding exhibits a unique half-site binding mechanism. The occlusion of the empty site in the dGMP complex is supported by molecular mechanics calculations. Relaxation dispersion experiments show that the dGMP and enzyme complex is more dynamic at the dimer interface than the TMP complex on the µs-ms time scale. The unique properties of dGMP binding need to be considered in the design of guanosine-based PfTMK-specific inhibitors.


Asunto(s)
Nucleótidos de Desoxiguanina/metabolismo , Nucleósido-Fosfato Quinasa/metabolismo , Plasmodium falciparum/enzimología , Sitios de Unión , Cristalografía por Rayos X , Nucleótidos de Desoxiguanina/química , Dimerización , Cinética , Modelos Moleculares , Estructura Molecular , Nucleósido-Fosfato Quinasa/química , Nucleósido-Fosfato Quinasa/aislamiento & purificación , Plasmodium falciparum/metabolismo
10.
Biochemistry ; 59(8): 955-963, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31999437

RESUMEN

The human DNA polymerase (pol) ß cancer variant K289M has altered polymerase activity in vitro, and the structure of wild-type pol ß reveals that the K289 side chain contributes to a network of stabilizing interactions in a C-terminal region of the enzyme distal to the active site. Here, we probed the capacity of the K289M variant to tolerate strain introduced within the C-terminal region and active site. Strain was imposed by making use of a dGTP analogue containing a CF2 group substitution for the ß-γ bridging oxygen atom. The ternary complex structure of the K289M variant displays an alteration in the C-terminal region, whereas the structure of wild-type pol ß is not altered in the presence of the dGTP CF2 analogue. The alteration in the K289M variant impacts the active site, because the enzyme in the ternary complex fails to adopt the normal open to closed conformational change and assembly of the catalytically competent active site. These results reveal the importance of the K289-mediated stabilizing network in the C-terminal region of pol ß and suggest an explanation for why the K289M cancer variant is deficient in polymerase activity even though the position 289 side chain is distal to the active site.


Asunto(s)
ADN Polimerasa beta/metabolismo , Dominio Catalítico/genética , Cristalografía por Rayos X , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , Nucleótidos de Desoxiguanina/química , Nucleótidos de Desoxiguanina/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Dominios Proteicos
11.
Nucleic Acids Res ; 46(20): 10888-10904, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30304478

RESUMEN

Nucleotides in the free pool are more susceptible to nonenzymatic methylation than those protected in the DNA double helix. Methylated nucleotides like O6-methyl-dGTP can be mutagenic and toxic if incorporated into DNA. Removal of methylated nucleotides from the nucleotide pool may therefore be important to maintain genome integrity. We show that MutT homologue 1 (MTH1) efficiently catalyzes the hydrolysis of O6-methyl-dGTP with a catalytic efficiency similar to that for 8-oxo-dGTP. O6-methyl-dGTP activity is exclusive to MTH1 among human NUDIX proteins and conserved through evolution but not found in bacterial MutT. We present a high resolution crystal structure of human and zebrafish MTH1 in complex with O6-methyl-dGMP. By microinjecting fertilized zebrafish eggs with O6-methyl-dGTP and inhibiting MTH1 we demonstrate that survival is dependent on active MTH1 in vivo. O6-methyl-dG levels are higher in DNA extracted from zebrafish embryos microinjected with O6-methyl-dGTP and inhibition of O6-methylguanine-DNA methyl transferase (MGMT) increases the toxicity of O6-methyl-dGTP demonstrating that O6-methyl-dGTP is incorporated into DNA. MTH1 deficiency sensitizes human cells to the alkylating agent Temozolomide, a sensitization that is more pronounced upon MGMT inhibition. These results expand the cellular MTH1 function and suggests MTH1 also is important for removal of methylated nucleotides from the nucleotide pool.


Asunto(s)
Enzimas Reparadoras del ADN/fisiología , Nucleótidos de Desoxiguanina/química , Monoéster Fosfórico Hidrolasas/fisiología , Animales , Dominio Catalítico , Cristalografía por Rayos X , Metilasas de Modificación del ADN/química , Enzimas Reparadoras del ADN/química , Perros , Escherichia coli/genética , Células HL-60 , Humanos , Hidrólisis , Cinética , Ratones , Nucleótidos , Monoéster Fosfórico Hidrolasas/química , Pirofosfatasas/química , Especificidad de la Especie , Porcinos , Temozolomida/farmacología , Proteínas Supresoras de Tumor/química , Pez Cebra
12.
Biochemistry ; 58(7): 887-899, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30614695

RESUMEN

Arabidopsis thaliana NUDT1 (AtNUDT1) belongs to the Nudix family of proteins, which have a diverse range of substrates, including oxidized nucleotides such as 8-oxo-dGTP. The hydrolysis of oxidized dNTPs is highly important as it prevents their incorporation into DNA, thus preventing mutations and DNA damage. AtNUDT1 is the sole Nudix enzyme from A. thaliana shown to have activity against 8-oxo-dGTP. We present the structure of AtNUDT1 in complex with 8-oxo-dGTP. Structural comparison with bacterial and human homologues reveals a conserved overall fold. Analysis of the 8-oxo-dGTP binding mode shows that the residues Asn76 and Ser89 interact with the O8 atom of the substrate, a feature not observed in structures of protein homologues solved to date. Kinetic analysis of wild-type and mutant AtNUDT1 confirmed that these active site residues influence 8-oxo-dGTP hydrolysis. A recent study showed that AtNUDT1 is also able to hydrolyze terpene compounds. The diversity of reactions catalyzed by AtNUDT1 suggests that this Nudix enzyme from higher plants has evolved in a manner distinct to those from other organisms.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Proteínas de Arabidopsis/genética , Dominio Catalítico , Cristalografía por Rayos X , Nucleótidos de Desoxiguanina/química , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Mutación , Conformación Proteica , Pirofosfatasas/genética , Especificidad por Sustrato , Terpenos/química , Terpenos/metabolismo
13.
Nucleic Acids Res ; 45(11): 6589-6599, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28498974

RESUMEN

Guanine-rich (G-rich) homopurine-homopyrimidine nucleotide sequences can block transcription with an efficiency that depends upon their orientation, composition and length, as well as the presence of negative supercoiling or breaks in the non-template DNA strand. We report that a G-rich sequence in the non-template strand reduces the yield of T7 RNA polymerase transcription by more than an order of magnitude when positioned close (9 bp) to the promoter, in comparison to that for a distal (∼250 bp) location of the same sequence. This transcription blockage is much less pronounced for a C-rich sequence, and is not significant for an A-rich sequence. Remarkably, the blockage is not pronounced if transcription is performed in the presence of RNase H, which specifically digests the RNA strands within RNA-DNA hybrids. The blockage also becomes less pronounced upon reduced RNA polymerase concentration. Based upon these observations and those from control experiments, we conclude that the blockage is primarily due to the formation of stable RNA-DNA hybrids (R-loops), which inhibit successive rounds of transcription. Our results could be relevant to transcription dynamics in vivo (e.g. transcription 'bursting') and may also have practical implications for the design of expression vectors.


Asunto(s)
ADN/genética , Regiones Promotoras Genéticas , Transcripción Genética , Secuencia de Bases , ADN/química , ARN Polimerasas Dirigidas por ADN/química , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxiguanina/química , Secuencia Rica en GC , Proteínas Virales/química
14.
J Struct Biol ; 204(3): 449-456, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30312643

RESUMEN

Mis-incorporation of modified nucleotides, such as 5-methyl-dCTP or 8-oxo-dGTP, in DNA can be detrimental to genomic integrity. MutT proteins are sanitization enzymes which function by hydrolyzing such nucleotides and regulating the pool of free nucleotides in the cytoplasm. Mycobacterial genomes have a set of four MutT homologs, namely, MutT1, MutT2, MutT3 and MutT4. Mycobacterial MutT2 hydrolyzes 5 m-dCTP and 8-oxo-dGTP to their respective monophosphate products. Additionally, it can hydrolyze canonical nucleotides dCTP and CTP, with a suggested role in sustaining their optimal levels in the nucleotide pool. The structures of M. smegmatis MutT2 and its complexes with cytosine derivatives have been determined at resolutions ranging from 1.10 Što 1.73 Å. The apo enzyme and its complexes with products (dCMP, CMP and 5 m-dCMP) crystallize in space group P21212, while those involving substrates (dCTP, CTP and 5 m-dCTP) crystallize in space group P21. The molecule takes an α/ß/α sandwich fold arrangement, as observed in other MutT homologs. The nucleoside moiety of the ligands is similarly located in all the complexes, while the location of the remaining tail exhibits variability. This is the first report of a MutT2-type protein in complex with ligands. A critical interaction involving Asp116 confers the specificity of the enzyme towards cytosine moieties. A conserved set of enzyme-ligand interactions along with concerted movements of important water molecules provide insights into the mechanism of action.


Asunto(s)
Proteínas Bacterianas/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Mycobacterium/enzimología , Pirofosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxiguanina/química , Hidrólisis , Mycobacterium/genética , Mycobacterium/metabolismo , Mycobacterium smegmatis/química , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Pirofosfatasas/química , Pirofosfatasas/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
15.
Inorg Chem ; 57(10): 6124-6134, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29722534

RESUMEN

Given the potent anticancer properties of cis-diamminedichloroplatinum(II) and knowing its mode of action, we synthesized four new cis-[PtCl2(N^N)] organoplatinum complexes, two with N-substituted pbi ligands (pbiR = 1-R-2-(2-pyridyl)benzimidazole) (namely, 1 and 2) and two more with 4,4'-disubstituted bpy ligands (bpy = 2,2'-bipyridine) (namely, 3 and 4). We explored their cytotoxicity and ability to bind to deoxyguanosine monophosphate (dGMP), DNA, and albumin models. By 1H NMR and UV-vis spectroscopies, circular dichroism, agarose gel electrophoresis, differential scanning calorimetry measurements, and density functional theory calculations, we verified that only 3 can form aquacomplex species after dimethyl sulfoxide solvation; surprisingly, 1, 2, and 3 can bind covalently to DNA, whereas 4 can form a noncovalent complex. Interestingly, only complexes 1 and 4 exhibit good cytotoxicity against human ovarian carcinoma (HeLa) cell line, whereas 2 and 3 are inactive. Although lung carcinoma (A549) cells are more resistant to the four platinum complexes than HeLa cells, when the protein concentration in the extracellular media is lower, the cytotoxicity becomes substantially enhanced. By native electrophoresis of bovine seroalbumin (BSA) and inductively coupled plasma mass spectrometry uptake studies we bear out, on one hand, that 2 and 3 can interact strongly with BSA and its cellular uptake is negligible and, on the other hand, that 1 and 4 can interact with BSA only weakly, its cellular uptake being higher by several orders. These results point up the important role of the protein binding features on their biological activity and cellular uptake of cis-"PtCl2" derivatives. Our results are valuable in the future rational design of new platinum complexes with improved biological properties, as they expose the importance not only of their DNA binding abilities but also of additional factors such as protein binding.


Asunto(s)
Complejos de Coordinación/química , Platino (Metal)/química , Albúmina Sérica Bovina/química , Células A549 , Rastreo Diferencial de Calorimetría , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Complejos de Coordinación/toxicidad , ADN/química , Nucleótidos de Desoxiguanina/química , Estabilidad de Medicamentos , Células HeLa , Humanos , Ligandos , Estructura Molecular , Unión Proteica
16.
Bioorg Med Chem ; 26(12): 3254-3260, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29731311

RESUMEN

The 9-hydroxy-1,3-diazaphenoxazine-2-one unit was conjugated with the Eu3+-cyclen complex through a linker. This diazaphenoxazine group was expected as an antenna unit for the excitation of europium ion, and a selective recognition site for 8-oxo-dGTP base. Among the synthesized three derivatives, the highest fluorescence emission was obtained by the complex constructed of an ethylene linker and the cyclen unit with three N,N-dimethylacetamide groups. The Eu3+-cyclen complex exhibited a selective response to the 8-oxo-dGTP in aqueous media by a time-resolved fluorescence assay.


Asunto(s)
Nucleótidos de Desoxiguanina/análisis , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia , Acetamidas/química , Complejos de Coordinación/química , Ciclamas , Nucleótidos de Desoxiguanina/química , Europio/química , Compuestos Heterocíclicos/química , Mediciones Luminiscentes
17.
Phys Chem Chem Phys ; 20(3): 1938-1952, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29297910

RESUMEN

In the context of the origin of life, phyllosilicate surfaces might favor the adsorption, concentration and reactivity of otherwise diluted prebiotic molecules. The primitive oceanic seafloor was certainly rich in Fe-Mg-rich phyllosilicates. The salinity of the primitive seawater remains largely unknown. Values ranging from 1 to 15 times modern salinity have been proposed and the salt composition of the primitive ocean also remains elusive although it may have played a role in the interactions between nucleotides and mineral surfaces. Therefore we studied the adsorption of 5'-monophosphate deoxyguanosine (dGMP) as a model nucleotide onto a Fe-rich swelling clay, i.e. nontronite, and an Al-rich phyllosilicate, i.e. pyrophyllite, for comparison. Experiments were carried out at atmospheric pressure, 25 °C and natural pH, with a series of salts NaCl, MgCl2, CaCl2, MgSO4, NaH2PO4 and LaCl3 in order to evaluate the effect of cations and anions on dGMP adsorption. The present study shows that nucleotides are adsorbed on both phyllosilicates via a ligand exchange mechanism. The phosphate group of the nucleotide is adsorbed on the lateral metal hydroxyls of the broken edges of phyllosilicates. The presence of divalent cations or molecular anions, such as phosphate or sulfate, tends to inhibit this interaction on mineral surfaces. However, in the presence of divalent cations, cationic bridging on the basal surfaces of the swelling clay also occurs and could induce a higher retention capacity of the swelling clays compared to non-swelling phyllosilicates in primitive and modern natural environments.


Asunto(s)
Silicatos de Aluminio/química , Nucleótidos/química , Adsorción , Cationes Bivalentes/química , Arcilla , Nucleótidos de Desoxiguanina/química , Concentración de Iones de Hidrógeno , Sales (Química)/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
18.
Biochemistry ; 56(13): 1841-1853, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28290677

RESUMEN

DNA can be damaged by many compounds in our environment, and the resulting damaged DNA is commonly replicated by translesion synthesis (TLS) polymerases. Because the mechanism and efficiency of TLS are affected by the type of DNA damage, obtaining information for a variety of DNA adducts is critical. However, there is no structural information for the insertion of a dNTP opposite an O6-dG adduct, which is a particularly harmful class of DNA lesions. We used molecular dynamics (MD) simulations to investigate structural and energetic parameters that dictate preferred dNTP insertion opposite O6-benzyl-guanine (Bz-dG) by DNA polymerase IV, a prototypical TLS polymerase. Specifically, MD simulations were completed on all possible ternary insertion complexes and ternary -1 base deletion complexes with different Bz-dG conformations. Our data suggests that the purines are unlikely to be inserted opposite anti- or syn-Bz-dG, and dTTP is unlikely to be inserted opposite syn-Bz-dG, because of changes in the active site conformation, including critical hydrogen-bonding interactions and/or reaction-ready parameters compared to natural dG replication. In contrast, a preserved active site conformation suggests that dCTP can be inserted opposite either anti- or syn-Bz-dG and dTTP can be inserted opposite anti-Bz-dG. This is the first structural explanation for the experimentally observed preferential insertion of dCTP and misincorporation of dTTP opposite Bz-dG. Furthermore, we provide atomic level insight into why Bz-dG replication does not lead to deletion mutations, which is in contrast with the replication outcomes of other adducts. These findings provide a basis for understanding the replication of related O6-dG adducts.


Asunto(s)
Compuestos de Bencilo/síntesis química , Aductos de ADN/química , ADN Polimerasa beta/química , Reparación del ADN , Replicación del ADN , Nucleótidos de Desoxiguanina/química , Proteínas de Escherichia coli/química , Guanina/síntesis química , Dominio Catalítico , Daño del ADN , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxiadenina/metabolismo , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Escherichia coli/química , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanina/análogos & derivados , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutagénesis , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Nucleótidos de Timina/química , Nucleótidos de Timina/metabolismo
19.
J Biol Chem ; 291(12): 6456-70, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26797125

RESUMEN

Replicative DNA polymerases (DNAPs) require divalent metal cations for phosphodiester bond formation in the polymerase site and for hydrolytic editing in the exonuclease site. Me(2+) ions are intimate architectural components of each active site, where they are coordinated by a conserved set of amino acids and functional groups of the reaction substrates. Therefore Me(2+) ions can influence the noncovalent transitions that occur during each nucleotide addition cycle. Using a nanopore, transitions in individual Φ29 DNAP complexes are resolved with single-nucleotide spatial precision and sub-millisecond temporal resolution. We studied Mg(2+) and Mn(2+), which support catalysis, and Ca(2+), which supports deoxynucleoside triphosphate (dNTP) binding but not catalysis. We examined their effects on translocation, dNTP binding, and primer strand transfer between the polymerase and exonuclease sites. All three metals cause a concentration-dependent shift in the translocation equilibrium, predominantly by decreasing the forward translocation rate. Me(2+) also promotes an increase in the backward translocation rate that is dependent upon the primer terminal 3'-OH group. Me(2+) modulates the translocation rates but not their response to force, suggesting that Me(2+) does not affect the distance to the transition state of translocation. Absent Me(2+), the primer strand transfer pathway between the polymerase and exonuclease sites displays additional kinetic states not observed at >1 mm Me(2+). Complementary dNTP binding is affected by Me(2+) identity, with Ca(2+) affording the highest affinity, followed by Mn(2+), and then Mg(2+). Both Ca(2+) and Mn(2+) substantially decrease the dNTP dissociation rate relative to Mg(2+), while Ca(2+) also increases the dNTP association rate.


Asunto(s)
Cloruro de Calcio/química , Cloruros/química , ADN Polimerasa Dirigida por ADN/química , Cloruro de Magnesio/química , Compuestos de Manganeso/química , Proteínas Virales/química , Sustitución de Aminoácidos , Bacteriófagos/enzimología , Biocatálisis , Replicación del ADN , Desoxicitidina Monofosfato/química , Nucleótidos de Desoxiguanina/química , Cinética , Polimerizacion , Unión Proteica
20.
Nucleic Acids Res ; 43(16): 8089-99, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26220180

RESUMEN

8-Oxo-7,8,-dihydro-2'-deoxyguanosine triphosphate (8-oxo-dGTP) is a major product of oxidative damage in the nucleotide pool. It is capable of mispairing with adenosine (dA), resulting in futile, mutagenic cycles of base excision repair. Therefore, it is critical that DNA polymerases discriminate against 8-oxo-dGTP at the insertion step. Because of its roles in oxidative DNA damage repair and non-homologous end joining, DNA polymerase lambda (Pol λ) may frequently encounter 8-oxo-dGTP. Here, we have studied the mechanisms of 8-oxo-dGMP incorporation and discrimination by Pol λ. We have solved high resolution crystal structures showing how Pol λ accommodates 8-oxo-dGTP in its active site. The structures indicate that when mispaired with dA, the oxidized nucleotide assumes the mutagenic syn-conformation, and is stabilized by multiple interactions. Steady-state kinetics reveal that two residues lining the dNTP binding pocket, Ala(510) and Asn(513), play differential roles in dNTP selectivity. Specifically, Ala(510) and Asn(513) facilitate incorporation of 8-oxo-dGMP opposite dA and dC, respectively. These residues also modulate the balance between purine and pyrimidine incorporation. Our results shed light on the mechanisms controlling 8-oxo-dGMP incorporation in Pol λ and on the importance of interactions with the incoming dNTP to determine selectivity in family X DNA polymerases.


Asunto(s)
ADN Polimerasa beta/química , Nucleótidos de Desoxiguanina/química , Alanina/química , Asparagina/química , Dominio Catalítico , ADN Polimerasa beta/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Desoxirribonucleótidos/metabolismo , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/química , Guanosina Monofosfato/metabolismo , Humanos , Cinética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA