Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Genes Cells ; 24(6): 449-457, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30974043

RESUMEN

To study the epigenetic gene silencing, yeast is an excellent model organism. Sir proteins are required for the formation of silent heterochromatin. Sir2 couples histone deacetylation and NAD hydrolysis to generate an endogenous epigenetic metabolic small molecule, O-acetyl-ADP-ribose (AAR). AAR is involved in the conformational change of SIR complexes, modulates the formation of SIR-nucleosome preheterochromatin and contributes to the spreading of SIR complexes along the chromatin fiber to form extended silent heterochromatin regions. Here, we show that AAR is capable of enhancing the chromatin silencing effect under either an extra exogenous AAR or a defect AAR metabolic enzyme situation, but decreasing the chromatin silencing effect under a defect AAR synthetic enzyme state. Our results provide an evidence of biological function importance of AAR. It is indicated that AAR does not only function in vitro but also play a role in vivo to increase the effect of heterochromatin epigenetic gene silencing. However, further investigations of AAR are warranted to expand our knowledge of epigenetics and associated small molecules.


Asunto(s)
Cromatina/genética , O-Acetil-ADP-Ribosa/genética , O-Acetil-ADP-Ribosa/metabolismo , Cromatina/fisiología , Epigénesis Genética/genética , Epigenómica/métodos , Silenciador del Gen/fisiología , Heterocromatina/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , O-Acetil-ADP-Ribosa/fisiología , Procesamiento Proteico-Postraduccional/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
2.
Arch Biochem Biophys ; 671: 167-174, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31295433

RESUMEN

In Saccharomyces cerevisiae, Sir proteins mediate heterochromatin epigenetic gene silencing. The assembly of silent heterochromatin requires histone deacetylation by Sir2, conformational change of SIR complexes, and followed by spreading of SIR complexes along the chromatin fiber to form extended silent heterochromatin domains. Sir2 couples histone deacetylation and NAD hydrolysis to generate an epigenetic metabolic small molecule, O-acetyl-ADP-ribose (AAR). Here, we demonstrate that AAR physically associates with Sir3 and that polySir3-AAR formation has a specific and essential role in the assembly of silent SIR-nucleosome pre-heterochromatin filaments. Furthermore, we show that AAR is capable of stabilizing binding of the Sir3 BAH domain to the Sir3 carboxyl-terminal region. Our data suggests that for the assembly of SIR-nucleosome pre-heterochromatin filament, the structural rearrangement of SIR-nucleosome is important and result in creating more stable interactions of Sir3, such as the inter-molecule Sir3-Sir3 interaction, and the Sir3-nucleosome interaction within the filaments. In conclusion, our results reveal the importance of AAR, indicating that it not only affects the conformational rearrangement of SIR complexes but also might function as a critical fine-tuning modulatory component of yeast silent SIR-nucleosome pre-heterochromatin by stabilizing the intermolecular interaction between Sir3 N- and C-terminal regions.


Asunto(s)
Heterocromatina/metabolismo , Nucleosomas/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Epigénesis Genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Sirtuina 2/metabolismo
3.
Genes Dev ; 24(2): 115-22, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20080949

RESUMEN

A recent explosion of work surrounds the interactions between Sir3p (Silent Information Regulator 3) and chromatin. We review here the Sir3p functions related to its role in silencing in Saccharomyces cerevisiae. This unusual protein, which is absolutely required for silencing, is distantly related to the highly conserved replication initiator Orc1p, but is itself phylogenetically limited to "post-genome-duplicated" budding yeasts. Several recent studies revise earlier models for Sir3p action. Specifically, the N-terminal bromo-adjacent homology (BAH) domain plays a now well-defined role in silencing, and a picture is emerging in which both termini of Sir3p bind two locations on the nucleosome: (1) the loss of ribosomal DNA silencing (LRS) surface in the nucleosome core, and (2) the N-terminal histone tails for effective silencing at telomeres. We relate Sir3p structure and function, and summarize recent molecular studies of Sir3p/chromatin binding, Sir3p/Dot1p competition, and the possible role of O-Acetyl ADP ribose (O-AADPR) in Sir3p/chromatin binding. We emphasize recent genetic data that provide important new insights and settle controversies created by in vitro work. Finally, we synthesize these ideas to revise the model for how Sir3p mediates silent chromatin formation in yeast, in part through its affinity for the LRS region of the nucleosome, which must be "just right."


Asunto(s)
Silenciador del Gen , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Electricidad Estática , Telómero/genética
4.
Mol Cell ; 33(3): 323-34, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19217406

RESUMEN

At yeast telomeres and silent mating-type loci, chromatin assumes a higher-order structure that represses transcription by means of the histone deacetylase Sir2 and structural proteins Sir3 and Sir4. Here, we present a fully reconstituted system to analyze SIR holocomplex binding to nucleosomal arrays. Purified Sir2-3-4 heterotrimers bind chromatin, cooperatively yielding a stable complex of homogeneous molecular weight. Remarkably, Sir2-3-4 also binds naked DNA, reflecting the strong, albeit nonspecific, DNA-binding activity of Sir4. The binding of Sir3 to nucleosomes is sensitive to histone H4 N-terminal tail removal, while that of Sir2-4 is not. Dot1-mediated methylation of histone H3K79 reduces the binding of both Sir3 and Sir2-3-4. Additionally, a byproduct of Sir2-mediated NAD hydrolysis, O-acetyl-ADP-ribose, increases the efficiency with which Sir3 and Sir2-3-4 bind nucleosomes. Thus, in small cumulative steps, each Sir protein, unmodified histone domains, and contacts with DNA contribute to the stability of the silent chromatin complex.


Asunto(s)
Cromatina/metabolismo , Nucleosomas/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Histona Desacetilasas/aislamiento & purificación , Histona Desacetilasas/metabolismo , Modelos Biológicos , Modelos Moleculares , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/aislamiento & purificación , Sirtuina 2 , Sirtuinas/aislamiento & purificación , Sirtuinas/metabolismo
5.
Mol Cell ; 31(5): 650-9, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18775325

RESUMEN

The yeast Sir2/3/4 complex forms a heterochromatin-like structure that represses transcription. The proteins nucleate at silencers and spread distally, utilizing the Sir2 NAD(+)-dependent histone deacetylase activity and the affinity of Sir3/4 for deacetylated histone tails. A by-product of the Sir2 reaction, O-acetyl-ADP-ribose (OAADPr), is thought to aid spreading by binding one of the Sir proteins. We developed a protein chimera approach to reexamine the contributions of Sir2. We show that a Sir3 chimera-bearing Hos3, an unrelated NAD(+)-independent histone deacetylase, substitutes for Sir2 in silencing. Sir3-Hos3 operates within the Sir pathway, spreading while deacetylating histones. Moreover, the chimera represses HM loci in strains lacking all five OAADPr-producing deacetylases, indicating that OAADPr is not necessary for silencing. Repression by a Hos3 hybrid bearing the targeting motifs of Sir2 shows that targeting doesn't require the Sir2 reaction. Together, these data demonstrate that protein deacetylation is the only essential function of Sir2 in creating silenced chromatin.


Asunto(s)
Silenciador del Gen , Histona Desacetilasas/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuinas/metabolismo , Transcripción Genética , Histona Desacetilasas/genética , Modelos Moleculares , O-Acetil-ADP-Ribosa/genética , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2 , Sirtuinas/genética
6.
Cell Mol Life Sci ; 69(4): 641-50, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21796450

RESUMEN

In the cell, many small endogenous metabolic molecules are involved in distinct cellular functions such as modulation of chromatin structure and regulation of gene expression. O-acetyl-ADP-ribose (AAR) is a small metabolic molecule that is generated during NAD-dependent deacetylation by Sir2. Sir2 regulates gene expression, DNA repair, and genome stability. Here, we developed a novel chromatin affinity-precipitation (ChAP) method to detect the chromatin fragments at which small molecules interact with binding partners. We used this method to demonstrate that AAR associated with heterochromatin. Moreover, we applied the ChAP method to whole genome tiling array chips to compare the association of AAR and Sir2. We found that AAR and Sir2 displayed similar genomic binding patterns. Furthermore, we identified 312 potential association cluster regions of AAR. The ChAP assay may therefore be a generally useful strategy to study the small molecule association with chromosomal regions. Our results further suggest that the small metabolic molecule AAR associates with silent chromatin regions in a Sir2-dependent manner and provide additional support for the role of AAR in assembly of silent chromatin.


Asunto(s)
Heterocromatina/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Inmunoprecipitación de Cromatina , Cromosomas/metabolismo , Reparación del ADN , Inestabilidad Genómica , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo
7.
J Biol Chem ; 286(24): 21110-7, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21498885

RESUMEN

O-acetyl-ADP-ribose (OAADPr), produced by the Sir2-catalyzed NAD(+)-dependent histone/protein deacetylase reaction, regulates diverse biological processes. Interconversion between two OAADPr isomers with acetyl attached to the C-2″ and C-3″ hydroxyl of ADP-ribose (ADPr) is rapid. We reported earlier that ADP-ribosylhydrolase 3 (ARH3), one of three ARH proteins sharing structural similarities, hydrolyzed OAADPr to ADPr and acetate, and poly(ADPr) to ADPr monomers. ARH1 also hydrolyzed OAADPr and poly(ADPr) as well as ADP-ribose-arginine, with arginine in α-anomeric linkage to C-1″ of ADP-ribose. Because both ARH3- and ARH1-catalyzed reactions involve nucleophilic attacks at the C-1″ position, it was perplexing that the ARH3 catalytic site would cleave OAADPr at either the 2″- or 3″-position, and we postulated the existence of a third isomer, 1″-OAADPr, in equilibrium with 2″- and 3″-isomers. A third isomer, consistent with 1″-OAADPr, was identified at pH 9.0. Further, ARH3 OAADPr hydrolase activity was greater at pH 9.0 than at neutral pH where 3″-OAADPr predominated. Consistent with our hypothesis, IC(50) values for ARH3 inhibition by 2″- and 3″-N-acetyl-ADPr analogs of OAADPr were significantly higher than that for ADPr. ARH1 also hydrolyzed OAADPr more rapidly at alkaline pH, but cleavage of ADP-ribose-arginine was faster at neutral pH than pH 9.0. ARH3-catalyzed hydrolysis of OAADPr in H(2)(18)O resulted in incorporation of one (18)O into ADP-ribose by mass spectrometric analysis, consistent with cleavage at the C-1″ position. Together, these data suggest that ARH family members, ARH1 and ARH3, catalyze hydrolysis of the 1″-O linkage in their structurally diverse substrates.


Asunto(s)
Glicósido Hidrolasas/química , N-Glicosil Hidrolasas/química , O-Acetil-ADP-Ribosa/metabolismo , Adenosina Difosfato Ribosa/química , Catálisis , Dominio Catalítico , Regulación Enzimológica de la Expresión Génica , Concentración de Iones de Hidrógeno , Hidrólisis , Concentración 50 Inhibidora , Modelos Químicos , Modelos Teóricos , Poli Adenosina Difosfato Ribosa/química , Isoformas de Proteínas , Sirtuina 1/química , Sirtuinas/química
8.
Biochim Biophys Acta ; 1804(8): 1645-51, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20060508

RESUMEN

Sirtuins have emerged as important proteins in aging, stress resistance and metabolic regulation. Three sirtuins, SIRT3, 4 and 5, are located within the mitochondrial matrix. SIRT3 and SIRT5 are NAD(+)-dependent deacetylases that remove acetyl groups from acetyllysine-modified proteins and yield 2'-O-acetyl-ADP-ribose and nicotinamide. SIRT4 can transfer the ADP-ribose group from NAD(+) onto acceptor proteins. Recent findings reveal that a large fraction of mitochondrial proteins are acetylated and that mitochondrial protein acetylation is modulated by nutritional status. This and the identification of targets for SIRT3, 4 and 5 support the model that mitochondrial sirtuins are metabolic sensors that modulate the activity of metabolic enzymes via protein deacetylation or mono-ADP-ribosylation. Here, we review and discuss recent progress in the study of mitochondrial sirtuins and their targets.


Asunto(s)
Mitocondrias/metabolismo , Sirtuinas/metabolismo , Acetilación , Animales , Histona Desacetilasas del Grupo III/metabolismo , Humanos , Ratones , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , NAD/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Sirtuina 3/metabolismo
9.
Biochim Biophys Acta ; 1804(8): 1617-25, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20176146

RESUMEN

Sirtuins catalyze the NAD(+)-dependent deacetylation of target proteins, which are regulated by this reversible lysine modification. During deacetylation, the glycosidic bond of the nicotinamide ribose is cleaved to yield nicotinamide and the ribose accepts the acetyl group from substrate to produce O-acetyl-ADP-ribose (OAADPr), which exists as an approximately 50:50 mixture of 2' and 3' isomers at neutral pH. Discovery of this metabolite has fueled the idea that OAADPr may play an important role in the biology associated with sirtuins, acting as a signaling molecule and/or an important substrate for downstream enzymatic processes. Evidence for OAADPr-metabolizing enzymes indicates that at least three distinct activities exist that could modulate the cellular levels of this NAD(+)-derived metabolite. In Saccharomyces cerevisiae, NUDIX hydrolase Ysa1 cleaves OAADPr to AMP and 2- and 3-O-acetylribose-5-phosphate, lowering the cellular levels of OAADPr. A buildup of OAADPr and ADPr has been linked to a metabolic shift that lowers endogenous reactive oxygen species and diverts glucose towards preventing oxidative damage. In vitro, the mammalian enzyme ARH3 hydrolyzes OAADPr to acetate and ADPr. A third nuclear-localized activity appears to utilize OAADPr to transfer the acetyl-group to another small molecule, whose identity remains unknown. Recent studies suggest that OAADPr may regulate gene silencing by facilitating the assembly and loading of the Sir2-4 silencing complex onto nucleosomes. In mammalian cells, the Trpm2 cation channel is gated by both OAADPr and ADP-ribose. Binding is mediated by the NUDIX homology (NudT9H) domain found within the intracellular portion of the channel. OAADPr is capable of binding the Macro domain of splice variants from histone protein MacroH2A, which is highly enriched at heterochromatic regions. With recently developed tools, the pace of new discoveries of OAADPr-dependent processes should facilitate new molecular insight into the diverse biological processes modulated by sirtuins.


Asunto(s)
O-Acetil-ADP-Ribosa/metabolismo , Sirtuinas/metabolismo , Animales , Clusterina/metabolismo , Silenciador del Gen , Glicósido Hidrolasas/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Nucleosomas/metabolismo , Oxidación-Reducción , Pirofosfatasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Sirtuinas/química , Hidrolasas Nudix
10.
Biochim Biophys Acta ; 1804(8): 1626-34, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19897059

RESUMEN

SIRT1 is the closest mammalian homologue of enzymes that extend life in lower organisms. Its role in mammals is incompletely understood, but includes modulation of at least 34 distinct targets through its nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase activity. Recent experiments using small molecule activators and genetically engineered mice have provided new insight into the role of this enzyme in mammalian biology and helped to highlight some of the potentially relevant targets. The most widely employed activator is resveratrol, a small polyphenol that improves insulin sensitivity and vascular function, boosts endurance, inhibits tumor formation, and ameliorates the early mortality associated with obesity in mice. Many of these effects are consistent with modulation of SIRT1 targets, such as PGC1alpha and NFkappaB, however, resveratrol can also activate AMPK, inhibit cyclooxygenases, and influence a variety of other enzymes. A novel activator, SRT1720, as well as various methods to manipulate NAD(+) metabolism, are emerging as alternative methods to increase SIRT1 activity, and in many cases recapitulate effects of resveratrol. At present, further studies are needed to more directly test the role of SIRT1 in mediating beneficial effects of resveratrol, to evaluate other strategies for SIRT1 activation, and to confirm the specific targets of SIRT1 that are relevant in vivo. These efforts are especially important in light of the fact that SIRT1 activators are entering clinical trials in humans, and "nutraceutical" formulations containing resveratrol are already widely available.


Asunto(s)
Sirtuina 1/metabolismo , Animales , Cardiotónicos/farmacología , Metabolismo Energético/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Resistencia a la Insulina , Aprendizaje/efectos de los fármacos , Longevidad/efectos de los fármacos , Longevidad/fisiología , Memoria/efectos de los fármacos , Ratones , Modelos Biológicos , NAD/metabolismo , Neoplasias/prevención & control , Niacinamida/farmacología , O-Acetil-ADP-Ribosa/metabolismo , Resveratrol , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Estilbenos/farmacología
11.
J Org Chem ; 76(16): 6465-74, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21639110

RESUMEN

O-Acetyl-ADP-ribose (OAADPR) is a metabolite produced from nicotinamide adenine dinucleotide (NAD) as a product of sirtuin-mediated protein deacetylation. We present here a simple, one-step, nonenzymatic synthesis of OAADPR from NAD and sodium acetate in acetic acid. We extended the reaction to other carboxylic acids, demonstrating that the reaction between NAD and nonaqueous carboxylate buffers produces mixtures of the corresponding 2'- and 3'-carboxylic esters.


Asunto(s)
Ácidos Carboxílicos/química , NAD/química , O-Acetil-ADP-Ribosa/síntesis química , O-Acetil-ADP-Ribosa/metabolismo , Sirtuina 2/metabolismo , Sirtuinas/metabolismo , Secuencia de Aminoácidos , Histona Desacetilasas , Datos de Secuencia Molecular , Estructura Molecular , NAD/metabolismo , O-Acetil-ADP-Ribosa/química , Sirtuina 2/química , Sirtuinas/química
12.
Nat Struct Mol Biol ; 12(7): 624-5, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15965484

RESUMEN

Histone macroH2A is a hallmark of mammalian heterochromatin. Here we show that human macroH2A1.1 binds the SirT1-metabolite O-acetyl-ADP-ribose (OAADPR) through its macro domain. The 1.6-A crystal structure and mutants reveal how the metabolite is recognized. Mutually exclusive exon use in the gene H2AFY produces macroH2A1.2, whose tissue distribution differs. MacroH2A1.2 shows only subtle structural changes but cannot bind nucleotides. Alternative splicing may thus regulate the binding of nicotinamide adenine dinucleotide (NAD) metabolites to chromatin.


Asunto(s)
Empalme Alternativo/fisiología , Heterocromatina/metabolismo , Histonas/metabolismo , Modelos Moleculares , NAD/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Empalme Alternativo/genética , Secuencia de Aminoácidos , Cristalografía , Componentes del Gen , Histonas/genética , Humanos , Datos de Secuencia Molecular , O-Acetil-ADP-Ribosa/química , Sirtuinas/metabolismo
13.
Genes (Basel) ; 10(8)2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366171

RESUMEN

O-acetyl-ADP-ribose (AAR) is a metabolic small molecule relevant in epigenetics that is generated by NAD-dependent histone deacetylases, such as Sir2. The formation of silent heterochromatin in yeast requires histone deacetylation by Sir2, structural rearrangement of SIR complexes, spreading of SIR complexes along the chromatin, and additional maturation processing. AAR affects the interactions of the SIR-nucleosome in vitro and enhances the chromatin epigenetic silencing effect in vivo. In this study, using isothermal titration calorimetry (ITC) and dot blotting methods, we showed the direct interaction of AAR with Sir3. Furthermore, through chromatin immunoprecipitation (ChIP)-on-chip and chromatin affinity purification (ChAP)-on chip assays, we discovered that AAR is capable of increasing the extended spreading of Sir3 along telomeres, but not Sir2. In addition, the findings of a quantitative real-time polymerase chain reaction (qRT-PCR) and examinations of an in vitro assembly system of SIR-nucleosome heterochromatin filament were consistent with these results. This study provides evidence indicating another important effect of AAR in vivo. AAR may play a specific modulating role in the formation of silent SIR-nucleosome heterochromatin in yeast.


Asunto(s)
Cromatina/genética , O-Acetil-ADP-Ribosa/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Telómero/genética , Epigénesis Genética , Regulación Fúngica de la Expresión Génica , Código de Histonas , Unión Proteica , Saccharomyces cerevisiae
14.
Anal Biochem ; 383(2): 174-9, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18812159

RESUMEN

Sirtuins are nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylases that mediate cellular processes such as lifespan extension and metabolic regulation. Sirtuins form a unique metabolite, 2'-O-acetyl-ADP-ribose (OAADPr), shown to block oocyte maturation, bind to chromatin-related proteins, and activate ion channels. Given the various sirtuin phenotypes, the potential of OAADPr as a signaling molecule is extensive. However, exploration of the biological roles of OAADPr has been hindered by the lack of in vivo evidence and a reliable method for quantification. Here we provide the first direct evidence and quantification of cellular OAADPr. Compared with endogenous OAADPr levels (0.56+/-0.13 microM) in wild-type Saccharomyces cerevisiae, deletion of all five yeast sirtuins (Sir2 and Hst1-4) yielded essentially no detectable OAADPr. The single deletion of Hst2 yielded 0.37+/-0.12 microM OAADPr. Deletion of an enzyme, Ysa1, previously shown in vitro to hydrolyze OAADPr, resulted in a significant increase (0.85+/-0.24 microM) in OAADPr. Together, these data provide evidence that cellular levels of OAADPr are controlled by the action of sirtuins and can be modulated by the Nudix hydrolase Ysa1. Our methodology, consisting of internal standard (13)C-labeled OAADPr and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, displays excellent sensitivity and a linear dynamic range from 0.2 to 500 pmol. Moreover, extraction efficiencies were greater than 75%. This methodology is an essential tool in probing the biological roles of OAADPr, especially under conditions in which sirtuin phenotypes are well established.


Asunto(s)
O-Acetil-ADP-Ribosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Sirtuinas/metabolismo , Secuencia de Aminoácidos , Isótopos de Carbono , Cromatografía Liquida , Histonas/química , Histonas/metabolismo , Modelos Lineales , Estándares de Referencia , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuina 2 , Espectrometría de Masas en Tándem
15.
Structure ; 14(8): 1231-40, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16905097

RESUMEN

Sirtuin proteins comprise a unique class of NAD+-dependent protein deacetylases. Although several structures of sirtuins have been determined, the mechanism by which NAD+ cleavage occurs has remained unclear. We report the structures of ternary complexes containing NAD+ and acetylated peptide bound to the bacterial sirtuin Sir2Tm and to a catalytic mutant (Sir2Tm(H116Y)). NAD+ in these structures binds in a conformation different from that seen in previous structures, exposing the alpha face of the nicotinamide ribose to the carbonyl oxygen of the acetyl lysine substrate. The NAD+ conformation is identical in both structures, suggesting that proper coenzyme orientation is not dependent on contacts with the catalytic histidine. We also present the structure of Sir2Tm(H116A) bound to deacteylated peptide and 3'-O-acetyl ADP ribose. Taken together, these structures suggest a mechanism for nicotinamide cleavage in which an invariant phenylalanine plays a central role in promoting formation of the O-alkylamidate reaction intermediate and preventing nicotinamide exchange.


Asunto(s)
Modelos Moleculares , Complejos Multiproteicos/química , Sirtuinas/química , Sirtuinas/metabolismo , Cristalización , Cristalografía por Rayos X , NAD/química , NAD/metabolismo , O-Acetil-ADP-Ribosa/química , O-Acetil-ADP-Ribosa/metabolismo , Péptidos/química , Péptidos/metabolismo
16.
Open Biol ; 7(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28446708

RESUMEN

Macrodomains are ubiquitous conserved domains that bind or transform ADP-ribose (ADPr) metabolites. In humans, they are involved in transcription, X-chromosome inactivation, neurodegeneration and modulating PARP1 signalling, making them potential targets for therapeutic agents. Unfortunately, some aspects related to the substrate binding and catalysis of MacroD-like macrodomains still remain unclear, since mutation of the proposed catalytic aspartate does not completely abolish enzyme activity. Here, we present a functional and structural characterization of a macrodomain from the extremely halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiMacroD), related to hMacroD1/hMacroD2, shedding light on substrate binding and catalysis. The crystal structures of D40A, N30A and G37V mutants, and those with MES, ADPr and ADP bound, allowed us to identify five fixed water molecules that play a significant role in substrate binding. Closure of the ß6-α4 loop is revealed as essential not only for pyrophosphate recognition, but also for distal ribose orientation. In addition, a novel structural role for residue D40 is identified. Furthermore, it is revealed that OiMacroD not only catalyses the hydrolysis of O-acetyl-ADP-ribose but also reverses protein mono-ADP-ribosylation. Finally, mutant G37V supports the participation of a substrate-coordinated water molecule in catalysis that helps to select the proper substrate conformation.


Asunto(s)
Bacillaceae/metabolismo , Proteínas Bacterianas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Agua/química , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Hidrólisis , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , O-Acetil-ADP-Ribosa/síntesis química , O-Acetil-ADP-Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Temperatura , Agua/metabolismo
17.
Mol Biol Cell ; 28(3): 381-386, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27932495

RESUMEN

Yeast silent heterochromatin provides an excellent model with which to study epigenetic inheritance. Previously we developed an in vitro assembly system to demonstrate the formation of filament structures with requirements that mirror yeast epigenetic gene silencing in vivo. However, the properties of these filaments were not investigated in detail. Here we show that the assembly system requires Sir2, Sir3, Sir4, nucleosomes, and O-acetyl-ADP-ribose. We also demonstrate that all Sir proteins and nucleosomes are components of these filaments to prove that they are SIR-nucleosome filaments. Furthermore, we show that the individual localization patterns of Sir proteins on the SIR-nucleosome filament reflect those patterns on telomeres in vivo. In addition, we reveal that magnesium exists in the SIR-nucleosome filament, with a role similar to that for chromatin condensation. These results suggest that a small number of proteins and molecules are sufficient to mediate the formation of a minimal yeast silent pre-heterochromatin in vitro.


Asunto(s)
Silenciador del Gen/fisiología , Nucleosomas/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Sitios de Unión , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Epigenómica/métodos , Heterocromatina/metabolismo , Histonas/metabolismo , Magnesio , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuinas/metabolismo , Telómero/metabolismo
19.
Curr Med Chem ; 11(7): 807-26, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15078167

RESUMEN

The Sir2 family of enzymes is a recently described class of NAD(+)-dependent protein deacetylases that use NAD+ as a reactant to deacetylate acetyllysine residues of protein substrates to form the aminolysine sidechain and a novel product 2'-O-acetyl-ADP-ribose. The founding member of the Sir2 proteins, the yeast Sir2p, has been identified as a key member of SIR complexes responsible for the long-term silencing of genes in the yeast Saccharomyces cerevisiae. Increase of Sir2 activity by caloric restriction or osmotic stress increases genome stability and lifespan in this organism. The Sir2 reaction mechanism couples ADP-ribosyltransfer and hydrolysis reactions via the formation of a stabilized ADPR-peptidyl intermediate. Principles of the chemistry of stabilized ADPR intermediates are examined for Sir2 and the mechanistically related ADP-ribosylcyclase CD38. An examination of the crystal structures of Sir2 family members is presented with a view to the chemical requirements of the Sir2 reaction. The present review describes the current knowledge of the Sir2 reaction, the reaction mechanism and the regulation of Sir2.


Asunto(s)
Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , NAD/química , NAD/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuinas/química , Sirtuinas/metabolismo , ADP-Ribosil Ciclasa/metabolismo , ADP-Ribosil Ciclasa 1 , Acetilación , Antígenos CD/metabolismo , Catálisis , Histona Desacetilasas/genética , Histona Desacetilasas/fisiología , Hidrólisis , Cinética , Modelos Moleculares , Niacinamida/metabolismo , O-Acetil-ADP-Ribosa/biosíntesis , O-Acetil-ADP-Ribosa/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2 , Sirtuinas/genética
20.
ACS Chem Biol ; 9(10): 2255-62, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25051211

RESUMEN

Macrodomains, including the human macrodomain 1 (MacroD1), are erasers of the post-translational modification of monoadenosinediphospho-ribosylation and hydrolytically deacetylate the sirtuin product O-acetyl-ADP-ribose (OAADPr). OAADPr has been reported to play a role in cell signaling based on oocyte microinjection studies, and macrodomains affect an array of cell processes including transcription and response to DNA damage. Here, we investigate human MacroD1 by transition-state (TS) analysis based on kinetic isotope effects (KIEs) from isotopically labeled OAADPr substrates. Competitive radiolabeled-isotope effects and mass spectrometry were used to obtain KIE data to yield intrinsic KIE values. Intrinsic KIEs were matched to a quantum chemical structure of the TS that includes the active site residues Asp184 and Asn174 and a structural water molecule. Transition-state analysis supports a concerted mechanism with an early TS involving simultaneous nucleophilic water attack and leaving group bond cleavage where the breaking C-O ester bond=1.60 Å and the C-O bond to the attacking water nucleophile=2.30 Å. The MacroD1 TS provides mechanistic understanding of the OAADPr esterase chemistry.


Asunto(s)
Esterasas/metabolismo , Hidrolasas/metabolismo , O-Acetil-ADP-Ribosa/química , O-Acetil-ADP-Ribosa/metabolismo , Catálisis , Dominio Catalítico , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Espectrometría de Masas , Modelos Moleculares , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA