Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 17(3): e1009347, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33647067

RESUMEN

In the field, many insect-borne crop viral diseases are more suitable for maintenance and spread in hot-temperature areas, but the mechanism remains poorly understood. The epidemic of a planthopper (Sogatella furcifera)-transmitted rice reovirus (southern rice black-streaked dwarf virus, SRBSDV) is geographically restricted to southern China and northern Vietnam with year-round hot temperatures. Here, we reported that two factors of endoplasmic reticulum-associated degradation (ERAD) machinery, the heat shock protein DnaJB11 and ER membrane protein BAP31, were activated by viral infection to mediate the adaptation of S. furcifera to high temperatures. Infection and transmission efficiencies of SRBSDV by S. furcifera increased with the elevated temperatures. We observed that high temperature (35°C) was beneficial for the assembly of virus-containing tubular structures formed by nonstructural protein P7-1 of SRBSDV, which facilitates efficient viral transmission by S. furcifera. Both DnaJB11 and BAP31 competed to directly bind to the tubule protein P7-1 of SRBSDV; however, DnaJB11 promoted whereas BAP31 inhibited P7-1 tubule assembly at the ER membrane. Furthermore, the binding affinity of DnaJB11 with P7-1 was stronger than that of BAP31 with P7-1. We also revealed that BAP31 negatively regulated DnaJB11 expression through their direct interaction. High temperatures could significantly upregulate DnaJB11 expression but inhibit BAP31 expression, thereby strongly facilitating the assembly of abundant P7-1 tubules. Taken together, we showed that a new temperature-dependent protein quality control pathway in the ERAD machinery has evolved for strong activation of DnaJB11 for benefiting P7-1 tubules assembly to support efficient transmission of SRBSDV in high temperatures. We thus deduced that ERAD machinery has been hitchhiked by insect-borne crop viruses to enhance their transmission in tropical climates.


Asunto(s)
Calor/efectos adversos , Insectos Vectores/virología , Enfermedades de las Plantas/virología , Reoviridae/inmunología , Animales , Degradación Asociada con el Retículo Endoplásmico/inmunología , Insectos Vectores/inmunología , Orthoreovirus/patogenicidad
2.
Vet Res ; 52(1): 131, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34649601

RESUMEN

Piscine orthoreovirus-1 (PRV-1) is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). However, it has been shown that PRV-1 variants differ in their ability to induce HSMI. The objective of this work was to identify the PRV-1 variants in Norwegian aquaculture and their geographical distribution. Sequencing and subsequent analysis of the five genomic segments (S1, S4, M2, L1 and L2) putatively linked to virulence, made out the basis of the study. Thirty-seven Norwegian PRV-1 isolates were sequenced, and they grouped into eight genogroups based on combinations of the five analyzed genomic segments. Two groups were defined as high-virulent and two low-virulent, based on comparison with PRV-1 reference isolates with known virulence. The remaining four groups were of unknown virulence. The geographic distribution indicated a higher frequency of the high-virulent isolates in the mid- and northern regions. The present study confirms circulation of both high- and low-virulent isolates of PRV-1 in farmed Atlantic salmon in Norway. To reduce the impact of PRV-1 related disease, detection and differentiation between high- and low-virulent genogroups of PRV-1 could be a targeted approach for reduction of high-virulent variants.


Asunto(s)
Enfermedades de los Peces/virología , Genotipo , Orthoreovirus/genética , Orthoreovirus/patogenicidad , Infecciones por Reoviridae/veterinaria , Salmo salar , Animales , Acuicultura , Noruega , Orthoreovirus/clasificación , Infecciones por Reoviridae/virología , Virulencia/genética
3.
J Fish Dis ; 43(9): 1019-1028, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33448429

RESUMEN

Two cohorts of farmed Atlantic salmon, Salmo salar L., in British Columbia, Canada, were sampled for histopathology (nine organs) and piscine orthoreovirus (PRV-1) PCR after seawater entry at 2, 4, 6, 8, 10, 13, 16 and 19 months (20 fish per cohort per date). One cohort-from a PRV+ hatchery-remained PRV+ throughout the study (sample prevalence 80%-100%). In an adjacent pen, the other cohort-from a PRV- hatchery-was 0% PRV+ at 78 days, 30% PRV+ at 128 days and ≥95% PRV+ thereafter. Among sample cohorts that were ≥80% PRV+, median Ct values were nominally less among fish sourced from the PRV- hatchery (28.7-33.3) than the PRV+ hatchery (30.8-35.2). No microscopic lesions were associated with PRV Ct value (minimum = 25.6). About 3% of fish in both cohorts had moderate inflammatory heart lesions; among these fish, only one had skeletal muscle inflammation (mild), and PRV Ct values were similar to unaffected cohorts sampled the same day. Also, among 16 moribund or freshly dead fish sampled opportunistically during the study, 14 were PRV+, and none had significant inflammatory heart lesions. These data support the hypothesis that British Columbia PRV-1 does not contribute to mortality.


Asunto(s)
Enfermedades de los Peces/virología , Orthoreovirus/aislamiento & purificación , Infecciones por Reoviridae/veterinaria , Animales , Acuicultura , Colombia Británica , Estudios Transversales , Inflamación , Miocardio/patología , Orthoreovirus/genética , Orthoreovirus/patogenicidad , Infecciones por Reoviridae/virología , Salmo salar
4.
J Fish Dis ; 43(11): 1331-1352, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32935367

RESUMEN

Piscine orthoreovirus (PRV) is a common and widely distributed virus of salmonids. Since its discovery in 2010, the virus has been detected in wild and farmed stocks from North America, South America, Europe and East Asia in both fresh and salt water environments. Phylogenetic analysis suggests three distinct genogroups of PRV with generally discrete host tropisms and/or regional patterns. PRV-1 is found mainly in Atlantic (Salmo salar), Chinook (Oncorhynchus tshawytscha) and Coho (Oncorhynchus kisutch) Salmon of Europe and the Americas; PRV-2 has only been detected in Coho Salmon of Japan; and PRV-3 has been reported primarily in Rainbow Trout (Oncorhynchus mykiss) in Europe. All three genotypes can establish high-load systemic infections by targeting red blood cells for principal replication. Each genotype has also demonstrated potential to cause circulatory disease. At the same time, high-load PRV infections occur in non-diseased salmon and trout, indicating a complexity for defining PRV's role in disease aetiology. Here, we summarize the current body of knowledge regarding PRV following 10 years of study.


Asunto(s)
Enfermedades de los Peces/virología , Orthoreovirus/patogenicidad , Infecciones por Reoviridae/veterinaria , Animales , Acuicultura , Enfermedades de los Peces/patología , Genotipo , Orthoreovirus/clasificación , Orthoreovirus/genética , Filogenia , Infecciones por Reoviridae/virología , Salmón , Trucha
5.
Virol J ; 16(1): 41, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940162

RESUMEN

BACKGROUND: Piscine orthoreovirus (PRV) is an emergent virus in salmon aquaculture belonging to the family Reoviridae. PRV is associated with a growing list of pathological conditions including heart and skeletal inflammation (HSMI) of farmed Atlantic salmon. Despite widespread PRV infection in commercially farmed Atlantic salmon, information on PRV prevalence and on the genetic sequence variation of PRV in Atlantic salmon on the north Pacific Coast is limited. METHODS: Feral Atlantic salmon caught in Washington State and British Columbia following a large containment failure at a farm in northern Puget Sound were sampled. Fish tissues were tested for PRV by RT-qPCR assay for segment L1 and conventional RT-PCR for PRV segment S1. The PCR products were sequenced and their relationship to PRV strains in GenBank was determined using phylogenetic analysis and nucleotide and amino acid homology comparisons. RESULTS: Following the escape of 253,000 Atlantic salmon from a salmon farm in Washington State, USA, 72/73 tissue samples from 27 Atlantic salmon captured shortly after the escape tested PRV-positive. We estimate PRV-prevalence in the source farm population at 95% or greater. The PRV found in the fish was identified as PRV sub-genotype Ia and very similar to PRV from farmed Atlantic salmon in Iceland. This correlates with the source of the fish in the farm. Eggs of infected fish were positive for PRV indicating the possibility of vertical transfer and spread with fish egg transports. CONCLUSIONS: PRV prevalence was close to 100% in farmed Atlantic salmon that were caught in Washington State and British Columbia following a large containment failure at a farm in northern Puget Sound. The PRV strains present in the escaped Atlantic salmon were very similar to the PRV strain reported in farmed Atlantic salmon from the source hatchery in Iceland that was used to stock commercial aquaculture sites in Washington State. This study emphasizes the need to screen Atlantic salmon broodstock for PRV, particularly where used to supply eggs to the global Atlantic salmon farming industry thereby improving our understanding of PRV epidemiology.


Asunto(s)
Enfermedades de los Peces/virología , Orthoreovirus/genética , Infecciones por Reoviridae/veterinaria , Salmo salar/virología , Animales , Acuicultura , Colombia Británica/epidemiología , Genotipo , Corazón/virología , Inflamación , Orthoreovirus/aislamiento & purificación , Orthoreovirus/patogenicidad , Filogenia , Reacción en Cadena de la Polimerasa , Prevalencia , Infecciones por Reoviridae/epidemiología , Washingtón/epidemiología
6.
J Fish Dis ; 42(6): 935-945, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30972792

RESUMEN

Melanized focal changes in skeletal muscle of farmed Atlantic salmon (Salmo salar) are a major quality problem. The aetiology is unknown, but infection with Piscine orthoreovirus (PRV) has been associated with the condition. Here, we addressed the pathogenesis of red and melanized focal changes and their association with PRV. First, a population of farmed fish (PRV-negative prior to sea transfer) was sequentially investigated throughout the seawater period. The fish were autopsied and tested for PRV infection. Muscular changes were described by macroscopy and histology, and a classification system was established. Second, in an experimental infection trial, PRV was injected intramuscularly to induce changes. The farmed fish was gradually infected with PRV. Red focal changes occurred throughout the observation period with a low prevalence regardless of PRV status. Melanized changes were highly diverse and their prevalence increased during the trial. Changes of low macroscopic grade and histological category were more prevalent in PRV-negative fish. Diffuse granulomatous melanized changes only occurred after PRV infection. No muscular changes were observed in the experimentally challenged fish. Our studies do not indicate that PRV infection causes red focal changes, but seems important in the development of granulomatous melanized changes.


Asunto(s)
Enfermedades de los Peces/virología , Músculo Esquelético/patología , Orthoreovirus/patogenicidad , Infecciones por Reoviridae/veterinaria , Salmo salar/virología , Animales , Acuicultura , Enfermedades de los Peces/patología , Melaninas , Músculo Esquelético/virología , Noruega , ARN Viral/genética , Infecciones por Reoviridae/patología
7.
Vet Res ; 47(1): 57, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27216404

RESUMEN

Piscine orthoreovirus (PRV) is a ubiquitous virus in Norwegian salmon farms associated with the disease heart and skeletal muscle inflammation (HSMI). Experimental challenge has shown that the virus replicates in circulating red blood cells of Atlantic salmon prior to infecting heart myocytes. The infection route from water to blood is however still unknown. The related mammalian orthoreovirus primarily infects the lungs and gastrointestinal (GI) tract and is proposed to spread mainly through the faecal-oral route. To investigate the role of the salmonid GI tract in PRV-infection, oral and anal administration of virus was compared to intraperitoneal (i.p.) injection. When administered anally, PRV was transferred to blood 4 days post challenge (dpc) and levels peaked at 42 dpc, similar to i.p. injected fish. PRV was detected in heart and faeces with corresponding kinetics, and inflammatory heart lesions consistent with HSMI were observed from 49 dpc. The orally intubated group showed slower virus kinetics in both blood and heart, and no signs of HSMI. Compared to the oral and i.p. administration routes, leakage of virus inoculate by anal intubation was minor and challenge was restricted to the mid- and distal intestine. These findings show that anal intubation is an efficacious method for PRV delivery to the GI tract and demonstrates that PRV can establish infection through the intestine with the potential for transmission via faeces.


Asunto(s)
Enfermedades de los Peces/virología , Intestinos/virología , Orthoreovirus/patogenicidad , Salmo salar/virología , Animales , Heces/virología , Enfermedades de los Peces/transmisión , Esparcimiento de Virus
8.
J Virol ; 88(11): 6137-47, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24648446

RESUMEN

UNLABELLED: Orthoreovirus fusion-associated small transmembrane (FAST) proteins are dedicated cell-cell fusogens responsible for multinucleated syncytium formation and are virulence determinants of the fusogenic reoviruses. While numerous studies on the FAST proteins and enveloped-virus fusogens have delineated steps involved in membrane fusion and pore formation, little is known about the mechanics of pore expansion needed for syncytiogenesis. We now report that RNA interference (RNAi) knockdown of annexin A1 (AX1) expression dramatically reduced both reptilian reovirus p14 and measles virus F and H protein-mediated pore expansion during syncytiogenesis but had no effect on pore formation. A similar effect was obtained by chelating intracellular calcium, which dramatically decreased syncytiogenesis in the absence of detectable effects on p14-induced pore formation. Coimmunoprecipitation revealed calcium-dependent interaction between AX1 and p14 or measles virus F and H proteins, and fluorescence resonance energy transfer (FRET) demonstrated calcium-dependent p14-AX1 interactions in cellulo. Furthermore, antibody inhibition of extracellular AX1 had no effect on p14-induced syncytium formation but did impair cell-cell fusion mediated by the endogenous muscle cell fusion machinery in C2C12 mouse myoblasts. AX1 can therefore exert diverse, fusogen-specific effects on cell-cell fusion, functioning as an extracellular mediator of differentiation-dependent membrane fusion or as an intracellular promoter of postfusion pore expansion and syncytium formation following virus-mediated cell-cell fusion. IMPORTANCE: Numerous enveloped viruses and nonenveloped fusogenic orthoreoviruses encode membrane fusion proteins that induce syncytium formation, which has been linked to viral pathogenicity. Considerable insights into the mechanisms of membrane fusion have been obtained, but processes that drive postfusion expansion of fusion pores to generate syncytia are poorly understood. This study identifies intracellular calcium and annexin A1 (AX1) as key factors required for efficient pore expansion during syncytium formation mediated by the reptilian reovirus p14 and measles virus F and H fusion protein complexes. Involvement of intracellular AX1 in syncytiogenesis directly correlates with a requirement for intracellular calcium in p14-AX1 interactions and pore expansion but not membrane fusion and pore formation. This is the first demonstration that intracellular AX1 is involved in pore expansion, which suggests that the AX1 pathway may be a common host cell response needed to resolve virus-induced cell-cell fusion pores.


Asunto(s)
Anexina A1/metabolismo , Calcio/metabolismo , Regulación Viral de la Expresión Génica/genética , Células Gigantes/virología , Virus del Sarampión/metabolismo , Orthoreovirus/metabolismo , Proteínas Virales/metabolismo , Animales , Fusión Celular , Línea Celular , Chlorocebus aethiops , ADN Complementario/genética , Fibroblastos , Transferencia Resonante de Energía de Fluorescencia , Regulación Viral de la Expresión Génica/fisiología , Células Gigantes/fisiología , Proteínas Fluorescentes Verdes , Humanos , Ratones , Orthoreovirus/patogenicidad , Plásmidos/genética , Codorniz , Interferencia de ARN , Células Vero , Proteínas Virales de Fusión/metabolismo , Virulencia
9.
Uirusu ; 64(2): 191-202, 2014.
Artículo en Japonés | MEDLINE | ID: mdl-26437841

RESUMEN

Members of the genus Orthoreovirus in the family Reoviridae are nonenveloped, icosahedral viruses. Their genomes contain 10 segments of double-stranded RNA (dsRNA). The orthoreoviruses are divided into two subgroups, the fusogenic and nonfusogenic reoviruses, based on the ability of the virus to induce cell-to-cell fusion. The fusogenic subgroup consists of the avian reovirus, baboon reovirus, pteropine reovirus, and reptilian reovirus, whereas the nonfusogenic subgroup consists of the prototypical mammalian reovirus (MRV) species. MRVs are highly tractable experimental models for studies of segmented dsRNA virus replication and pathogenesis. Moreover, MRVs can selectively kill tumor cells and have been evaluated as oncolytic agents in clinical trials. This review provides a brief overview of current knowledge on the virological features of MRVs.


Asunto(s)
Orthoreovirus , Animales , Vacunas contra el Cáncer , Quirópteros/virología , Genes Virales/genética , Vectores Genéticos , Genoma Viral/genética , Humanos , Estadios del Ciclo de Vida , Neoplasias/terapia , Orthoreovirus/genética , Orthoreovirus/patogenicidad , Orthoreovirus/fisiología , Orthoreovirus/ultraestructura , Orthoreovirus de los Mamíferos , ARN Bicatenario , Genética Inversa , Ensamble de Virus , Replicación Viral
10.
Emerg Infect Dis ; 18(6): 944-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22608100

RESUMEN

Several severe respiratory virus infections that have emerged during the past decade originated in animals, including bats. In Indonesia, exposure to bats has been associated with increased risk of acquiring orthoreovirus infection. Although orthoreovirus infections are mild and self-limiting, we explored their potential for evolution into a more virulent form. We used conventional virus culture, electron microscopy, and molecular sequencing to isolate and identify orthoreoviruses from 3 patients in whom respiratory tract infection developed after travel to Indonesia. Virus characterization by plaque-reduction neutralization testing showed antigenic similarity, but sequencing of the small segment genes suggested virus reassortment, which could lead to increased virulence. Bats as a reservoir might contribute to virus evolution and genetic diversity, giving orthoreoviruses the potential to become more virulent. Evolution of this virus should be closely monitored so that prevention and control measures can be taken should it become more virulent.


Asunto(s)
Orthoreovirus/patogenicidad , Infecciones por Reoviridae/virología , Adulto , Animales , Anticuerpos Neutralizantes/sangre , Células Cultivadas , Perros , Femenino , Células Gigantes/virología , Humanos , Macaca mulatta , Masculino , Persona de Mediana Edad , Orthoreovirus/genética , Orthoreovirus/aislamiento & purificación , Filogenia , Infecciones por Reoviridae/sangre , Infecciones por Reoviridae/inmunología , Análisis de Secuencia de ADN , Ensayo de Placa Viral , Virulencia , Cultivo de Virus
11.
Front Immunol ; 12: 729017, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603301

RESUMEN

Piscine orthoreovirus (PRV-1) infection causes heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). The virus is also associated with focal melanized changes in white skeletal muscle where PRV-1 infection of macrophages appears to be important. In this study, we studied the macrophage polarization into M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes during experimentally induced HSMI. The immune response in heart with HSMI lesions was characterized by CD8+ and MHC-I expressing cells and not by polarized macrophages. Fluorescent in situ hybridization (FISH) assays revealed localization of PRV-1 in a few M1 macrophages in both heart and skeletal muscle. M2 type macrophages were widely scattered in the heart and were more abundant in heart compared to the skeletal muscle. However, the M2 macrophages did not co-stain for PRV-1. There was a strong cellular immune response to the infection in the heart compared to that of the skeletal muscle, seen as increased MHC-I expression, partly in cells also containing PRV-1 RNA, and a high number of cytotoxic CD8+ granzyme producing cells that targeted PRV-1. In skeletal muscle, MHC-I expressing cells and CD8+ cells were dispersed between myocytes, but these cells did not stain for PRV-1. Gene expression analysis by RT-qPCR complied with the FISH results and confirmed a drop in level of PRV-1 following the cell mediated immune response. Overall, the results indicated that M1 macrophages do not contribute to the initial development of HSMI. However, large numbers of M2 macrophages reside in the heart and may contribute to the subsequent fast recovery following clearance of PRV-1 infection.


Asunto(s)
Linfocitos T CD8-positivos/virología , Enfermedades de los Peces/virología , Corazón/virología , Macrófagos/virología , Orthoreovirus/patogenicidad , Infecciones por Retroviridae/virología , Salmo salar/virología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/metabolismo , Interacciones Huésped-Patógeno , Inmunidad Celular , Macrófagos/inmunología , Macrófagos/metabolismo , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , Músculo Esquelético/virología , Miocardio/inmunología , Miocardio/metabolismo , Orthoreovirus/inmunología , Fenotipo , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/metabolismo , Salmo salar/inmunología , Salmo salar/metabolismo , Factores de Tiempo , Carga Viral
12.
Arch Virol ; 155(8): 1295-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20495835

RESUMEN

Nelson Bay orthoreovirus (NBV) is a species in the genus Orthoreovirus, family Reoviridae, containing 4, possibly 5, members. Here, we report a putative sixth member, Xi River virus (XRV), isolated from fruit bats collected in a location near the Xi River, Guangdong Province, China. This virus showed the same electron microscopic morphology as NBV, fusogenic CPE, and a 10-segmented double-strand RNA genome, as well as high sequence identity to NBV members. It is the first bat reovirus isolated in China.


Asunto(s)
Quirópteros/virología , Orthoreovirus , Animales , Secuencia de Bases , China , Efecto Citopatogénico Viral , Pulmón/virología , Datos de Secuencia Molecular , Orthoreovirus/clasificación , Orthoreovirus/genética , Orthoreovirus/aislamiento & purificación , Orthoreovirus/patogenicidad , Filogenia , ARN Bicatenario/genética , ARN Viral/genética , Análisis de Secuencia de ADN
13.
Pharm Nanotechnol ; 8(5): 409-417, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32851967

RESUMEN

BACKGROUND: A key challenge in the process of virus amplification is the need for a simple and convenient method for measuring virus titers. OBJECTIVE: Real-time unlabeled cell analysis (RTCA) was used to establish a standard curve of correlation between half-cell index time (CIT50) and virus titer. At the same time, the virus titer from tunable resistance pulse detection (TRPS) technology was compared with the traditional median tissue culture infectious dose (TCID50) method to evaluate the feasibility and application value of the RTCA technique and TRPS technology. METHODS: Cell index (CI) values for L929 cells under different culture conditions were detected, and the appropriate initial cell inoculation density was screened. The half-cell index (CI50) values of reovirus infected L929 cells with TCID50 titers were analyzed by RTCA, the CI50-TCID50 standard curve was created, and a regression equation was developed. RTCA, TCID50, and TRPS methods were used to detect the reovirus titer obtained by the amplification, and the sensitivity and feasibility of the CIT50-TCID50 standard curve method were analyzed. The virus titer was detected by TRPS technology and the TCID50 method. RESULTS: L929 cells were best propagated at an initial density of 6 × 103 cells/well. After infecting L929 cells with different titers of reference reovirus, the linear correlation of CIT50 and TCID50 was y = -2.1806x + 71.023 (R2 = 0.9742). The titer resulting from the RTCA assay was 7×109.6821 pfu/mL, from the TRPS assay was 4.52×1010 pfu/mL, and from the TCID50 assay was 7×109.467 pfu/mL. CONCLUSION: The CIT50-TCID50 standard curve method established by the RTCA technique can be used to quantitatively detect reovirus titer with L929 cells. Compared with the TCID50 method, it takes a relatively short time and has high sensitivity and accuracy. The TRPS technology requires even less time to quantify the virus, but its precision is lower than that of the TCID50 method and RTCA technology. This study provides new technical methods for assessing the virulence of infectious live reovirus particles. Lay Summary: After amplification of the virus, we need to detect the virus titers (the virulence of the virus). The traditional method is to use the virus to infect cells, and then the virus titers can be calculated by 50% of the cells infected. However, this traditional method is time consuming. The ways of RTCA (a real-time cell analysis technique) and TRPS (a nano-bioparticle analysis technique) help us to detect viral titers. The consistency of these three methods determines their feasibility and accuracy. If they are feasible, then these two simple technologies will provide new ideas for detecting viral titers.


Asunto(s)
Fibroblastos/virología , Orthoreovirus/crecimiento & desarrollo , Carga Viral , Replicación Viral , Animales , Línea Celular , Efecto Citopatogénico Viral , Ratones , Orthoreovirus/patogenicidad , Reproducibilidad de los Resultados , Factores de Tiempo , Virulencia
14.
Viruses ; 12(11)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228135

RESUMEN

Serpentoviruses are an emerging group of nidoviruses known to cause respiratory disease in snakes and have been associated with disease in other non-avian reptile species (lizards and turtles). This study describes multiple episodes of respiratory disease-associated mortalities in a collection of juvenile veiled chameleons (Chamaeleo calyptratus). Histopathologic lesions included rhinitis and interstitial pneumonia with epithelial proliferation and abundant mucus. Metagenomic sequencing detected coinfection with two novel serpentoviruses and a novel orthoreovirus. Veiled chameleon serpentoviruses are most closely related to serpentoviruses identified in snakes, lizards, and turtles (approximately 40-50% nucleotide and amino acid identity of ORF1b). Veiled chameleon orthoreovirus is most closely related to reptilian orthoreoviruses identified in snakes (approximately 80-90% nucleotide and amino acid identity of the RNA-dependent RNA polymerase). A high prevalence of serpentovirus infection (>80%) was found in clinically healthy subadult and adult veiled chameleons, suggesting the potential for chronic subclinical carriers. Juvenile veiled chameleons typically exhibited a more rapid progression compared to subadults and adults, indicating a possible age association with morbidity and mortality. This is the first description of a serpentovirus infection in any chameleon species. A causal relationship between serpentovirus infection and respiratory disease in chameleons is suspected. The significance of orthoreovirus coinfection remains unknown.


Asunto(s)
Coinfección/veterinaria , Lagartos/virología , Enfermedades Pulmonares Intersticiales/veterinaria , Nidovirales/patogenicidad , Orthoreovirus/patogenicidad , Infecciones por Reoviridae/veterinaria , Animales , Animales de Zoológico/virología , Coinfección/virología , Brotes de Enfermedades/veterinaria , Femenino , Enfermedades Pulmonares Intersticiales/virología , Masculino , Metagenómica , Nidovirales/genética , Orthoreovirus/genética , Prevalencia
15.
Genes (Basel) ; 11(6)2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486315

RESUMEN

Cardiomyopathy syndrome is a viral disease of Atlantic salmon, mostly affecting fish during the late stages of production, resulting in significant losses to the industry. It has been shown that resistance to this disease has a strong genetic component, with quantitative trait loci (QTL) on chromosomes 27 (Ssa27) and Ssa12 to explain most of the additive genetic variance. Here, by analysing animals from a different year-class and a different population, we further aimed to confirm and narrow down the locations of these QTL. The data support the existence of the two QTL and suggest that the causative mutation on Ssa27 is most likely within the 10-10.5 Mbp segment of this chromosome. This region contains a cluster of major histocompatibility complex class I (MHC I) genes with the most strongly associated marker mapped to one of these loci. On Ssa12, the data confirmed the previous finding that the location of the causative mutation is within the 61.3 to 61.7 Mbp region. This segment contains several immune-related genes, but of particular interest are genes related to MHC II. Together, these findings highlight the likely key role of MHC genes in Atlantic salmon following infection with Piscine myocarditis virus (PMCV) and their potential impact on influencing the trajectory of this disease.


Asunto(s)
Enfermedades de los Peces/genética , Estudio de Asociación del Genoma Completo , Orthoreovirus/genética , Salmo salar/genética , Animales , Acuicultura , Enfermedades de los Peces/virología , Miocarditis/virología , Orthoreovirus/patogenicidad , Sitios de Carácter Cuantitativo/genética , Salmo salar/virología , Totiviridae/genética , Totiviridae/patogenicidad , Carga Viral/genética
16.
Vet Microbiol ; 242: 108546, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32122578

RESUMEN

Since 2017, a disease that is characterized by spleen necrosis and swelling has emerged in China's main meat duck breeding provinces, this disease generally causes a large number of ducks to develop a poor mental state and either an increase or loss of appetite, as well as potentially resulting in death. Necrosis of spleen in this disease weakens the duck's immunity, therefore often leading to secondary infection. The net result of this is significant economic loss to China's duck breeding industry. In our previous research, we determined that the pathogen causing this disease is a new variant duck orthoreovirus (N-DRV). Because the morbidity and mortality rates of the isolate were higher than those of the previously reported strains, 180 healthy 1-day-old Cherry Valley ducklings were selected to be artificially infected in order to determine the pathogenicity of the strain. The weight gains of numbers of the infected group were significantly inhibited after they had been inoculated with the virus, which continued to detoxify in the blood and the cloaca. The main target organ of the virus is the spleen, although the virus can also attack the brain, this does not lead to any obvious pathology in this organ. These findings have enriched our understanding of the N-DRV-XT18 virus and have lain the foundation for further study of the pathogenic mechanism of this virus.


Asunto(s)
Patos/virología , Variación Genética , Orthoreovirus/genética , Orthoreovirus/patogenicidad , Infecciones por Reoviridae/veterinaria , Factores de Edad , Animales , Encéfalo/patología , Encéfalo/virología , China , Evolución Molecular , Orthoreovirus/fisiología , Enfermedades de las Aves de Corral/virología , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/virología , Bazo/patología , Bazo/virología , Tropismo Viral , Virulencia
17.
Viruses ; 12(7)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659960

RESUMEN

Pteropine orthoreovirus (PRV; Reoviridae: Spinareovirinae) is an emerging bat-borne zoonotic virus that causes influenza-like illness (ILI). PRV has thus far been found only in Australia and Asia, where diverse old-world fruit bats (Pteropodidae) serve as hosts. In this study, we report the discovery of PRV in Africa, in an Angolan soft-furred fruit bat (Lissonycteris angolensis ruwenzorii) from Bundibugyo District, Uganda. Metagenomic characterization of a rectal swab yielded 10 dsRNA genome segments, revealing this virus to cluster within the known diversity of PRV variants detected in bats and humans in Southeast Asia. Phylogeographic analyses revealed a correlation between geographic distance and genetic divergence of PRVs globally, which suggests a geographic continuum of PRV diversity spanning Southeast Asia to sub-Saharan Africa. The discovery of PRV in an African bat dramatically expands the geographic range of this zoonotic virus and warrants further surveillance for PRVs outside of Southeast Asia.


Asunto(s)
Quirópteros/virología , Orthoreovirus , Infecciones por Reoviridae/virología , Animales , Genoma Viral/genética , Humanos , Metagenómica , Orthoreovirus/genética , Orthoreovirus/patogenicidad , Orthoreovirus/fisiología , Filogenia , Infecciones por Reoviridae/epidemiología , Infecciones por Reoviridae/veterinaria , Uganda/epidemiología , Zoonosis Virales/epidemiología
18.
Viruses ; 11(2)2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30696111

RESUMEN

The proliferative darkening syndrome (PDS) is a lethal disease of brown trout (Salmo trutta fario) which occurs in several alpine Bavarian limestone rivers. Because mortality can reach 100%, PDS is a serious threat for affected fish populations. Recently, Kuehn and colleagues reported that a high throughput RNA sequencing approach identified a piscine orthoreovirus (PRV) as a causative agent of PDS. We investigated samples from PDS-affected fish obtained from two exposure experiments performed at the river Iller in 2008 and 2009. Using a RT-qPCR and a well-established next-generation RNA sequencing pipeline for pathogen detection, PRV-specific RNA was not detectable in PDS fish from 2009. In contrast, PRV RNA was readily detectable in several organs from diseased fish in 2008. However, similar virus loads were detectable in the control fish which were not exposed to Iller water and did not show any signs of the disease. Therefore, we conclude that PRV is not the causative agent of PDS of brown trout in the rhithral region of alpine Bavarian limestone rivers. The abovementioned study by Kuehn used only samples from the exposure experiment from 2008 and detected a subclinical PRV bystander infection. Work is ongoing to identify the causative agent of PDS.


Asunto(s)
Enfermedades de los Peces/virología , Orthoreovirus/patogenicidad , Trucha/virología , Animales , Alemania , Secuenciación de Nucleótidos de Alto Rendimiento , Hígado/virología , Orthoreovirus/genética , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Infecciones por Reoviridae , Ríos/virología , Bazo/virología
19.
Sci Rep ; 9(1): 3297, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30867461

RESUMEN

Piscine orthoreovirus (PRV) is ubiquitous in farmed Atlantic salmon and sometimes associated with disease - most notably, Heart and Skeletal Muscle Inflammation (HSMI). However, PRV is also widespread in non-diseased fish, particularly in Pacific Canada, where few cases of severe heart inflammation have been documented. To better understand the mechanisms behind PRV-associated disease, this study investigated the infection dynamics of PRV from Pacific Canada and the potential for experimental passage of putatively associated heart inflammation in Pacific-adapted Mowi-McConnell Atlantic salmon. Regardless of the PRV source (fish with or without HSMI-like heart inflammation), infections led to high-load viremia that induced only minor focal heart inflammation without significant transcriptional induction of inflammatory cytokines. Repeated screening of PRV dsRNA/ssRNA along with histopathology and gene expression analysis of host blood and heart tissues identified three distinct phases of infection: (1) early systemic dissemination and replication without host recognition; (2) peak replication, erythrocyte inclusion body formation and load-dependent host recognition; (3) long-term, high-load viral persistence with limited replication or host recognition sometimes accompanied by minor heart inflammation. These findings contrast previous challenge trials with PRV from Norway that induced severe heart inflammation and indicate that strain and/or host specific factors are necessary to initiate PRV-associated disease.


Asunto(s)
Enfermedades de los Peces/virología , Orthoreovirus/patogenicidad , Infecciones por Reoviridae/virología , Salmo salar/virología , Virulencia/fisiología , Animales , Acuicultura , Canadá , Eritrocitos/virología , Corazón/virología , Inflamación/virología , Músculo Esquelético/virología , Noruega , Carga Viral/métodos
20.
PLoS One ; 12(12): e0188793, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29236731

RESUMEN

The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37-45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012-2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction.


Asunto(s)
Acuicultura , Orthoreovirus/patogenicidad , Salmón/virología , Animales , Colombia Británica , Océano Pacífico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA