RESUMEN
'Reactive oxygen species' (ROS) is a generic term that defines a wide variety of oxidant molecules with vastly different properties and biological functions that range from signalling to causing cell damage. Consequently, the description of oxidants needs to be chemically precise to translate research on their biological effects into therapeutic benefit in redox medicine. This Expert Recommendation article pinpoints key issues associated with identifying the physiological roles of oxidants, focusing on H2O2 and O2.-. The generic term ROS should not be used to describe specific molecular agents. We also advocate for greater precision in measurement of H2O2, O2.- and other oxidants, along with more specific identification of their signalling targets. Future work should also consider inter-organellar communication and the interactions of redox-sensitive signalling targets within organs and whole organisms, including the contribution of environmental exposures. To achieve these goals, development of tools that enable site-specific and real-time detection and quantification of individual oxidants in cells and model organisms are needed. We also stress that physiological O2 levels should be maintained in cell culture to better mimic in vivo redox reactions associated with specific cell types. Use of precise definitions and analytical tools will help harmonize research among the many scientific disciplines working on the common goal of understanding redox biology.
Asunto(s)
Peróxido de Hidrógeno , Oxidantes , Antioxidantes/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Photoenzymes are light-powered biocatalysts that typically rely on the excitation of cofactors or unnatural amino acids for their catalytic activities1,2. A notable natural example is the fatty acid photodecarboxylase, which uses light energy to convert aliphatic carboxylic acids to achiral hydrocarbons3. Here we report a method for the design of a non-natural photodecarboxylase based on the excitation of enzyme-bound catalytic intermediates, rather than reliance on cofactor excitation4. Iminium ions5, transiently generated from enals within the active site of an engineered class I aldolase6, can absorb violet light and function as single-electron oxidants. Activation of chiral carboxylic acids, followed by decarboxylation, generates two radicals that undergo stereospecific cross-coupling, yielding products with two stereocentres. Using the appropriate enantiopure chiral substrate, the desired diastereoisomeric product is selectively obtained with complete enantiocontrol. This finding underscores the ability of the active site to transfer stereochemical information from the chiral radical precursor into the product, effectively addressing the long-standing problem of rapid racemization of chiral radicals. The resulting 'memory of chirality' scenario7 is a rarity in enantioselective radical chemistry.
Asunto(s)
Carboxiliasas , Estereoisomerismo , Biocatálisis/efectos de la radiación , Carboxiliasas/química , Carboxiliasas/metabolismo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Dominio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Descarboxilación , Electrones , Radicales Libres/química , Radicales Libres/metabolismo , Iminas/química , Iminas/metabolismo , Luz , Oxidantes/química , Oxidantes/metabolismo , Ingeniería de Proteínas , Especificidad por SustratoRESUMEN
Cytochrome P450 enzymes are known to catalyse bimodal oxidation of aliphatic acids via radical intermediates, which partition between pathways of hydroxylation and desaturation1,2. Developing analogous catalytic systems for remote C-H functionalization remains a significant challenge3-5. Here, we report the development of Cu(I)-catalysed bimodal dehydrogenation/lactonization reactions of synthetically common N-methoxyamides through radical abstractions of the γ-aliphatic C-H bonds. The feasibility of switching from dehydrogenation to lactonization is also demonstrated by altering reaction conditions. The use of a readily available amide as both radical precursor and internal oxidant allows for the development of redox-neutral C-H functionalization reactions with methanol as the sole side product. These C-H functionalization reactions using a Cu(I) catalyst with loading as low as 0.5 mol.% is applied to the diversification of a wide range of aliphatic acids including drug molecules and natural products. The exceptional compatibility of this catalytic system with a wide range of oxidatively sensitive functionality demonstrates the unique advantage of using a simple amide substrate as a mild internal oxidant.
Asunto(s)
Carbono , Cobre , Hidrógeno , Lactonas , Amidas/química , Amidas/metabolismo , Carbono/química , Catálisis , Cobre/química , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/química , Hidrógeno/química , Hidrogenación , Lactonas/química , Metanol/química , Oxidantes/química , Oxidantes/metabolismo , Oxidación-ReducciónRESUMEN
Loss of protein homeostasis (proteostasis) is a common hallmark of aging and age-associated diseases. Considered as the guardian of proteostasis, the proteostasis network (PN) acts to preserve the functionality of proteins during their lifetime. However, its activity declines with age, leading to disease manifestation. While reactive oxygen species (ROS) were traditionally considered culprits in this process, recent research challenges this view. While harmful at high concentrations, moderate ROS levels protect the cell against age-mediated onset of proteotoxicity by activating molecular chaperones, stress response pathways, and autophagy. This review explores the nuanced roles of ROS in proteostasis and discusses the most recent findings regarding the redox regulation of the PN and its potential in extending healthspan and delaying age-related pathologies.
Asunto(s)
Proteostasis , Especies Reactivas de Oxígeno , Humanos , Especies Reactivas de Oxígeno/metabolismo , Animales , Oxidantes/metabolismo , Autofagia , Oxidación-Reducción , Envejecimiento/metabolismo , Estrés OxidativoRESUMEN
Biaryl compounds, with two connected aromatic rings, are found across medicine, materials science and asymmetric catalysis1,2. The necessity of joining arene building blocks to access these valuable compounds has inspired several approaches for biaryl bond formation and challenged chemists to develop increasingly concise and robust methods for this task3. Oxidative coupling of two C-H bonds offers an efficient strategy for the formation of a biaryl C-C bond; however, fundamental challenges remain in controlling the reactivity and selectivity for uniting a given pair of substrates4,5. Biocatalytic oxidative cross-coupling reactions have the potential to overcome limitations inherent to numerous small-molecule-mediated methods by providing a paradigm with catalyst-controlled selectivity6. Here we disclose a strategy for biocatalytic cross-coupling through oxidative C-C bond formation using cytochrome P450 enzymes. We demonstrate the ability to catalyse cross-coupling reactions on a panel of phenolic substrates using natural P450 catalysts. Moreover, we engineer a P450 to possess the desired reactivity, site selectivity and atroposelectivity by transforming a low-yielding, unselective reaction into a highly efficient and selective process. This streamlined method for constructing sterically hindered biaryl bonds provides a programmable platform for assembling molecules with catalyst-controlled reactivity and selectivity.
Asunto(s)
Biocatálisis , Técnicas de Química Sintética , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidantes/química , Carbono/química , Cumarinas/química , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Hidrógeno/química , Oxidación-Reducción , Especificidad por SustratoRESUMEN
Misfolded proteins are usually refolded to their functional conformations or degraded by quality control mechanisms. When misfolded proteins evade quality control, they can be sequestered to specific sites within cells to prevent the potential dysfunction and toxicity that arises from protein aggregation. Btn2 and Hsp42 are compartment-specific sequestrases that play key roles in the assembly of these deposition sites. Their exact intracellular functions and substrates are not well defined, particularly since heat stress sensitivity is not observed in deletion mutants. We show here that Btn2 and Hsp42 are required for tolerance to oxidative stress conditions induced by exposure to hydrogen peroxide. Btn2 and Hsp42 act to sequester oxidized proteins into defined PQC sites following ROS exposure and their absence leads to an accumulation of protein aggregates. The toxicity of protein aggregate accumulation causes oxidant sensitivity in btn2 hsp42 sequestrase mutants since overexpression of the Hsp104 disaggregase rescues oxidant tolerance. We have identified the Sup35 translation termination factor as an in vivo sequestrase substrate and show that Btn2 and Hsp42 act to suppress oxidant-induced formation of the yeast [PSI+] prion, which is the amyloid form of Sup35. [PSI+] prion formation in sequestrase mutants does not require IPOD (insoluble protein deposit) localization which is the site where amyloids are thought to undergo fragmentation and seeding to propagate their heritable prion form. Instead, both amorphous and amyloid Sup35 aggregates are increased in btn2 hsp42 mutants consistent with the idea that prion formation occurs at multiple intracellular sites during oxidative stress conditions in the absence of sequestrase activity. Taken together, our data identify protein sequestration as a key antioxidant defence mechanism that functions to mitigate the damaging consequences of protein oxidation-induced aggregation.
Asunto(s)
Priones , Proteínas de Saccharomyces cerevisiae , Agregado de Proteínas/genética , Priones/genética , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estrés Oxidativo/genética , Amiloide/metabolismo , Oxidantes/farmacología , Oxidantes/metabolismo , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismoRESUMEN
Apical cilia on epithelial cells defend the lung by propelling pathogens and particulates out of the respiratory airways. Ciliated cells produce ATP that powers cilia beating by densely grouping mitochondria just beneath the apical membrane. However, this efficient localization comes at a cost because electrons leaked during oxidative phosphorylation react with molecular oxygen to form superoxide, and thus, the cluster of mitochondria creates a hotspot for oxidant production. The relatively high oxygen concentration overlying airway epithelia further intensifies the risk of generating superoxide. Thus, airway ciliated cells face a unique challenge of producing harmful levels of oxidants. However, surprisingly, highly ciliated epithelia produce less reactive oxygen species (ROS) than epithelia with few ciliated cells. Compared to other airway cell types, ciliated cells express high levels of mitochondrial uncoupling proteins, UCP2 and UCP5. These proteins decrease mitochondrial protonmotive force and thereby reduce production of ROS. As a result, lipid peroxidation, a marker of oxidant injury, decreases. However, mitochondrial uncoupling proteins exact a price for decreasing oxidant production; they decrease the fraction of mitochondrial respiration that generates ATP. These findings indicate that ciliated cells sacrifice mitochondrial efficiency in exchange for safety from damaging oxidation. Employing uncoupling proteins to prevent oxidant production, instead of relying solely on antioxidants to decrease postproduction oxidant levels, may offer an advantage for targeting a local area of intense ROS generation.
Asunto(s)
Canales Iónicos , Superóxidos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Superóxidos/metabolismo , Canales Iónicos/metabolismo , Estrés Oxidativo , Adenosina Trifosfato/metabolismo , Células Epiteliales/metabolismo , Oxidantes/farmacología , Oxígeno/metabolismo , Proteínas Mitocondriales/metabolismoRESUMEN
The burst of superoxide produced when neutrophils phagocytose bacteria is the defining biochemical feature of these abundant immune cells. But 50 years since this discovery, the vital role superoxide plays in host defense has yet to be defined. Superoxide is neither bactericidal nor is it just a source of hydrogen peroxide. This simple free radical does, however, have remarkable chemical dexterity. Depending on its environment and reaction partners, superoxide can act as an oxidant, a reductant, a nucleophile, or an enzyme substrate. We outline the evidence that inside phagosomes where neutrophils trap, kill, and digest bacteria, superoxide will react preferentially with the enzyme myeloperoxidase, not the bacterium. By acting as a cofactor, superoxide will sustain hypochlorous acid production by myeloperoxidase. As a substrate, superoxide may give rise to other forms of reactive oxygen. We contend that these interactions hold the key to understanding the precise role superoxide plays in neutrophil biology. State-of-the-art techniques in mass spectrometry, oxidant-specific fluorescent probes, and microscopy focused on individual phagosomes are needed to identify bactericidal mechanisms driven by superoxide. This work will undoubtably lead to fascinating discoveries in host defense and give a richer understanding of superoxide's varied biology.
Asunto(s)
Neutrófilos , Superóxidos , Humanos , Neutrófilos/microbiología , Superóxidos/farmacología , Peroxidasa/farmacología , Fagocitosis , Oxidantes/farmacología , Ácido Hipocloroso/análisis , Ácido Hipocloroso/farmacología , Antibacterianos , BiologíaRESUMEN
Functionalization of the ß-C-H bonds of aliphatic acids is emerging as a valuable synthetic disconnection that complements a wide range of conjugate addition reactions1-5. Despite efforts for ß-C-H functionalization in carbon-carbon and carbon-heteroatom bond-forming reactions, these have numerous crucial limitations, especially for industrial-scale applications, including lack of mono-selectivity, use of expensive oxidants and limited scope6-13. Notably, the majority of these reactions are incompatible with free aliphatic acids without exogenous directing groups. Considering the challenge of developing C-H activation reactions, it is not surprising that achieving different transformations requires independent catalyst design and directing group optimizations in each case. Here we report a Pd-catalysed ß-C(sp3)-H lactonization of aliphatic acids enabled by a mono-N-protected ß-amino acid ligand. The highly strained and reactive ß-lactone products are versatile linchpins for the mono-selective installation of diverse alkyl, alkenyl, aryl, alkynyl, fluoro, hydroxyl and amino groups at the ß position of the parent acid, thus providing a route to many carboxylic acids. The use of inexpensive tert-butyl hydrogen peroxide as the oxidant to promote the desired selective reductive elimination from the Pd(IV) centre, as well as the ease of product purification without column chromatography, render this reaction amenable to tonne-scale manufacturing.
Asunto(s)
Carbono/química , Hidrógeno/química , Lactonas/química , Alquilación , Aminoácidos/química , Ácidos Carboxílicos/síntesis química , Ácidos Carboxílicos/química , Catálisis , Técnicas de Química Sintética , Gemfibrozilo/química , Ligandos , Oxidantes/química , Oxidación-Reducción , Paladio/química , terc-Butilhidroperóxido/químicaRESUMEN
Some of the most challenging stress conditions that organisms encounter during their lifetime involve the transient accumulation of reactive oxygen and chlorine species. Extremely reactive to amino acid side chains, these oxidants cause widespread protein unfolding and aggregation. It is therefore not surprising that cells draw on a variety of different strategies to counteract the damage and maintain a healthy proteome. Orchestrated largely by direct changes in the thiol oxidation status of key proteins, the response strategies involve all layers of protein protection. Reprogramming of basic biological functions helps decrease nascent protein synthesis and restore redox homeostasis. Mobilization of oxidative stress-activated chaperones and production of stress-resistant non-proteinaceous chaperones prevent irreversible protein aggregation. Finally, redox-controlled increase in proteasome activity removes any irreversibly damaged proteins. Together, these systems pave the way to restore protein homeostasis and enable organisms to survive stress conditions that are inevitable when living an aerobic lifestyle.
Asunto(s)
Oxidantes/metabolismo , Estrés Oxidativo/fisiología , Proteoma/fisiología , Animales , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Oxidantes/efectos adversos , Oxidación-Reducción , Desplegamiento Proteico , Proteoma/metabolismo , Proteostasis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismoRESUMEN
Natural products that possess antibiotic and antitumor qualities are often suspected of working through oxidative mechanisms. In this study, two quinone-based small molecules were compared. Menadione, a classic redox-cycling compound, was confirmed to generate high levels of reactive oxygen species inside Escherichia coli. It inactivated iron-cofactored enzymes and blocked growth. However, despite the substantial levels of oxidants that it produced, it was unable to generate significant DNA damage and was not lethal. Streptonigrin, in contrast, was poorer at redox cycling and did not inactivate enzymes or block growth; however, even in low doses, it damaged DNA and killed cells. Its activity required iron and oxygen, and in vitro experiments indicated that its quinone moiety transferred electrons through the adjacent iron atom to oxygen. Additionally, in vitro experiments revealed that streptonigrin was able to damage DNA without inhibition by catalase, indicating that hydrogen peroxide was not involved. We infer that streptonigrin can reduce bound oxygen directly to a ferryl species, which then oxidizes the adjacent DNA, without release of superoxide or hydrogen peroxide intermediates. This scheme allows streptonigrin to kill a bacterial cell without interference by scavenging enzymes. Moreover, its minimal redox-cycling behavior avoids alerting either the OxyR or the SoxRS systems, which otherwise would block killing. This example highlights qualities that may be important in the design of oxidative drugs. These results also cast doubt on proposals that bacteria can be killed by stressors that merely stimulate intracellular O2- and H2O2 formation.
Asunto(s)
Peróxido de Hidrógeno , Oxidantes , Oxidantes/farmacología , Oxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Estreptonigrina/metabolismo , Estrés Oxidativo , Escherichia coli/genética , Oxígeno/metabolismo , Hierro/metabolismo , ADN/metabolismo , Quinonas/metabolismoRESUMEN
It has previously been reported that antioxidant vitamins can help reduce the risk of vision loss associated with progression to advanced age-related macular degeneration (AMD), a leading cause of visual impairment among the elderly. Nonetheless, how oxidative stress contributes to the development of choroidal neovascularization (CNV) in some AMD patients and geographic atrophy (GA) in others is poorly understood. Here, we provide evidence demonstrating that oxidative stress cooperates with hypoxia to synergistically stimulate the accumulation of hypoxia-inducible factor (HIF)-1α in the retinal pigment epithelium (RPE), resulting in increased expression of the HIF-1-dependent angiogenic mediators that promote CNV. HIF-1 inhibition blocked the expression of these angiogenic mediators and prevented CNV development in an animal model of ocular oxidative stress, demonstrating the pathological role of HIF-1 in response to oxidative stress stimulation in neovascular AMD. While human-induced pluripotent stem cell (hiPSC)-derived RPE monolayers exposed to chemical oxidants resulted in disorganization and disruption of their normal architecture, RPE cells proved remarkably resistant to oxidative stress. Conversely, equivalent doses of chemical oxidants resulted in apoptosis of hiPSC-derived retinal photoreceptors. Pharmacologic inhibition of HIF-1 in the mouse retina enhanced-while HIF-1 augmentation reduced-photoreceptor apoptosis in two mouse models for oxidative stress, consistent with a protective role for HIF-1 in photoreceptors in patients with advanced dry AMD. Collectively, these results suggest that in patients with AMD, increased expression of HIF-1α in RPE exposed to oxidative stress promotes the development of CNV, but inadequate HIF-1α expression in photoreceptors contributes to the development of GA.
Asunto(s)
Neovascularización Coroidal , Atrofia Geográfica , Degeneración Macular Húmeda , Ratones , Animales , Humanos , Anciano , Epitelio Pigmentado de la Retina/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Inhibidores de la Angiogénesis , Degeneración Macular Húmeda/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Agudeza Visual , Neovascularización Coroidal/genética , Neovascularización Coroidal/prevención & control , Neovascularización Coroidal/metabolismo , Oxidantes/metabolismo , Hipoxia/metabolismoRESUMEN
The signals that denote mammalian host environments and dictate the activation of signaling pathways in human-associated microorganisms are often unknown. The transcription regulator Rtg1/3 in the human fungal pathogen Candida albicans is a crucial determinant of host colonization and pathogenicity. Rtg1/3's activity is controlled, in part, by shuttling the regulator between the cytoplasm and nucleus of the fungus. The host signal(s) that Rtg1/3 respond(s) to, however, have remained unclear. Here we report that neutrophil-derived reactive oxygen species (ROS) direct the subcellular localization of this C. albicans transcription regulator. Upon engulfment of Candida cells by human or mouse neutrophils, the regulator shuttles to the fungal nucleus. Using genetic and chemical approaches to disrupt the neutrophils' oxidative burst, we establish that the oxidants produced by the NOX2 complex-but not the oxidants generated by myeloperoxidase-trigger Rtg1/3's migration to the nucleus. Furthermore, screening a collection of C. albicans kinase deletion mutants, we implicate the MKC1 signaling pathway in the ROS-dependent regulation of Rtg1/3 in this fungus. Finally, we show that Rtg1/3 contributes to C. albicans virulence in the nematode Caenorhabditis elegans in an ROS-dependent manner as the rtg1 and rtg3 mutants display virulence defects in wild-type but not in ROS deficient worms. Our findings establish NOX2-derived ROS as a key signal that directs the activity of the pleiotropic fungal regulator Rtg1/3.
Asunto(s)
Candida albicans , Neutrófilos , Animales , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neutrófilos/metabolismo , Candida , Oxidantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , MamíferosRESUMEN
Both single and multicellular organisms depend on anti-stress mechanisms that enable them to deal with sudden changes in the environment, including exposure to heat and oxidants. Central to the stress response are dynamic changes in metabolism, such as the transition from the glycolysis to the pentose phosphate pathway-a conserved first-line response to oxidative insults1,2. Here we report a second metabolic adaptation that protects microbial cells in stress situations. The role of the yeast polyamine transporter Tpo1p3-5 in maintaining oxidant resistance is unknown6. However, a proteomic time-course experiment suggests a link to lysine metabolism. We reveal a connection between polyamine and lysine metabolism during stress situations, in the form of a promiscuous enzymatic reaction in which the first enzyme of the polyamine pathway, Spe1p, decarboxylates lysine and forms an alternative polyamine, cadaverine. The reaction proceeds in the presence of extracellular lysine, which is taken up by cells to reach concentrations up to one hundred times higher than those required for growth. Such extensive harvest is not observed for the other amino acids, is dependent on the polyamine pathway and triggers a reprogramming of redox metabolism. As a result, NADPH-which would otherwise be required for lysine biosynthesis-is channelled into glutathione metabolism, leading to a large increase in glutathione concentrations, lower levels of reactive oxygen species and increased oxidant tolerance. Our results show that nutrient uptake occurs not only to enable cell growth, but when the nutrient availability is favourable it also enables cells to reconfigure their metabolism to preventatively mount stress protection.
Asunto(s)
Antioxidantes/metabolismo , Lisina/metabolismo , Poliaminas/metabolismo , Saccharomyces cerevisiae/metabolismo , Antiportadores/metabolismo , Cadaverina/metabolismo , Glutamina/metabolismo , Glutatión/metabolismo , NADP/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Ornitina Descarboxilasa/metabolismo , Oxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Mutational signatures discerned in cancer genomes, in aging tissues and in cells exposed to toxic agents, reflect complex processes underlying transformation of cells from normal to dysfunctional. Due to its ubiquitous and chronic nature, redox stress contributions to cellular makeover remain equivocal. The deciphering of a new mutational signature of an environmentally-relevant oxidizing agent, potassium bromate, in yeast single strand DNA uncovered a surprising heterogeneity in the mutational signatures of oxidizing agents. NMR-based analysis of molecular outcomes of redox stress revealed profound dissimilarities in metabolic landscapes following exposure to hydrogen peroxide versus potassium bromate. The predominance of G to T substitutions in the mutational spectra distinguished potassium bromate from hydrogen peroxide and paraquat and mirrored the observed metabolic changes. We attributed these changes to the generation of uncommon oxidizing species in a reaction with thiol-containing antioxidants; a nearly total depletion of intracellular glutathione and a paradoxical augmentation of potassium bromate mutagenicity and toxicity by antioxidants. Our study provides the framework for understanding multidimensional processes triggered by agents collectively known as oxidants. Detection of increased mutational loads associated with potassium bromate-related mutational motifs in human tumors may be clinically relevant as a biomarker of this distinct type of redox stress.
Asunto(s)
Antioxidantes , Neoplasias , Humanos , Peróxido de Hidrógeno/toxicidad , Mutación , Oxidación-Reducción , Neoplasias/genética , OxidantesRESUMEN
Tetrahydropapaverine (THP) and papaverine are plant natural products with clinically significant roles. THP is a precursor in the production of the drugs atracurium and cisatracurium, and papaverine is used as an antispasmodic during vascular surgery. In recent years, metabolic engineering advances have enabled the production of natural products through heterologous expression of pathway enzymes in yeast. Heterologous biosynthesis of THP and papaverine could play a role in ensuring a stable supply of these clinically significant products. Biosynthesis of THP and papaverine has not been achieved to date, in part because multiple pathway enzymes have not been elucidated. Here, we describe the development of an engineered yeast strain for de novo biosynthesis of THP. The production of THP is achieved through heterologous expression of two enzyme variants with activity on nonnative substrates. Through protein engineering, we developed a variant of N-methylcoclaurine hydroxylase with activity on coclaurine, enabling de novo norreticuline biosynthesis. Similarly, we developed a variant of scoulerine 9-O-methyltransferase capable of O-methylating 1-benzylisoquinoline alkaloids at the 3' position, enabling de novo THP biosynthesis. Flux through the heterologous pathway was improved by knocking out yeast multidrug resistance transporters and optimization of media conditions. Overall, strain engineering increased the concentration of biosynthesized THP 600-fold to 121 µg/L. Finally, we demonstrate a strategy for papaverine semisynthesis using hydrogen peroxide as an oxidizing agent. Through optimizing pH, temperature, reaction time, and oxidizing agent concentration, we demonstrated the ability to produce semisynthesized papaverine through oxidation of biosynthesized THP.
Asunto(s)
Productos Biológicos , Papaverina , Ingeniería de Proteínas , Saccharomyces cerevisiae , Productos Biológicos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Peróxido de Hidrógeno/química , Oxidantes/química , Papaverina/biosíntesis , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genéticaRESUMEN
Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress sequentially occur in bronchopulmonary dysplasia (BPD), and all result in DNA damage. When DNA damage becomes irreparable, tumor suppressors increase, followed by apoptosis or senescence. Although cellular senescence contributes to wound healing, its persistence inhibits growth. Therefore, we hypothesized that cellular senescence contributes to BPD progression. Human autopsy lungs were obtained. Sprague-Dawley rat pups exposed to 95% oxygen between Postnatal Day 1 (P1) and P10 were used as the BPD phenotype. N-acetyl-lysyltyrosylcysteine-amide (KYC), tauroursodeoxycholic acid (TUDCA), and Foxo4 dri were administered intraperitoneally to mitigate myeloperoxidase oxidant generation, ER stress, and cellular senescence, respectively. Lungs were examined by histology, transcriptomics, and immunoblotting. Cellular senescence increased in rat and human BPD lungs, as evidenced by increased oxidative DNA damage, tumor suppressors, GL-13 stain, and inflammatory cytokines with decreased cell proliferation and lamin B expression. Cellular senescence-related transcripts in BPD rat lungs were enriched at P10 and P21. Single-cell RNA sequencing showed increased cellular senescence in several cell types, including type 2 alveolar cells. In addition, Foxo4-p53 binding increased in BPD rat lungs. Daily TUDCA or KYC, administered intraperitoneally, effectively decreased cellular senescence, improved alveolar complexity, and partially maintained the numbers of type 2 alveolar cells. Foxo4 dri administered at P4, P6, P8, and P10 led to outcomes similar to TUDCA and KYC. Our data suggest that cellular senescence plays an essential role in BPD after initial inducement by hyperoxia. Reducing myeloperoxidase toxic oxidant production, ER stress, and attenuating cellular senescence are potential therapeutic strategies for halting BPD progression.
Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Ácido Tauroquenodesoxicólico , Recién Nacido , Animales , Ratas , Humanos , Displasia Broncopulmonar/patología , Hiperoxia/metabolismo , Ratas Sprague-Dawley , Pulmón/patología , Senescencia Celular , Peroxidasa/metabolismo , Oxidantes , Animales Recién Nacidos , Modelos Animales de EnfermedadRESUMEN
Necroptosis is a form of regulated cell death triggered by various host and pathogen-derived molecules during infection and inflammation. The essential step leading to necroptosis is phosphorylation of the mixed lineage kinase domain-like protein by receptor-interacting protein kinase 3. Caspase-8 cleaves receptor-interacting protein kinases to block necroptosis, so synthetic caspase inhibitors are required to study this process in experimental models. However, it is unclear how caspase-8 activity is regulated in a physiological setting. The active site cysteine of caspases is sensitive to oxidative inactivation, so we hypothesized that oxidants generated at sites of inflammation can inhibit caspase-8 and promote necroptosis. Here, we discovered that hypothiocyanous acid (HOSCN), an oxidant generated in vivo by heme peroxidases including myeloperoxidase and lactoperoxidase, is a potent caspase-8 inhibitor. We found HOSCN was able to promote necroptosis in mouse fibroblasts treated with tumor necrosis factor. We also demonstrate purified caspase-8 was inactivated by low concentrations of HOSCN, with the predominant product being a disulfide-linked dimer between Cys360 and Cys409 of the large and small catalytic subunits. We show oxidation still occurred in the presence of reducing agents, and reduction of the dimer was slow, consistent with HOSCN being a powerful physiological caspase inhibitor. While the initial oxidation product is a dimer, further modification also occurred in cells treated with HOSCN, leading to higher molecular weight caspase-8 species. Taken together, these findings indicate major disruption of caspase-8 function and suggest a novel mechanism for the promotion of necroptosis at sites of inflammation.
Asunto(s)
Caspasa 8 , Necroptosis , Oxidantes , Factores de Necrosis Tumoral , Animales , Ratones , Caspasa 8/química , Caspasa 8/metabolismo , Inflamación/metabolismo , Necroptosis/efectos de los fármacos , Oxidantes/metabolismo , Oxidantes/farmacología , Oxidación-Reducción/efectos de los fármacos , Factores de Necrosis Tumoral/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/metabolismo , Peroxidasa , Lactoperoxidasa , Dominio CatalíticoRESUMEN
Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors.
Asunto(s)
Electrones , Modelos Moleculares , Oxidantes , Complejo de Proteína del Fotosistema II , Benzoquinonas/química , Transporte de Electrón , Oxidantes/química , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo , Quinonas/química , Quinonas/metabolismo , Agua/química , Sitios de Unión , Estructura Terciaria de Proteína , Difracción de Rayos X , Cianobacterias/química , Cianobacterias/fisiologíaRESUMEN
The pseudohypohalous acid hypothiocyanite/hypothiocyanous acid (OSCN- /HOSCN) has been known to play an antimicrobial role in mammalian immunity for decades. It is a potent oxidant that kills bacteria but is non-toxic to human cells. Produced from thiocyanate (SCN- ) and hydrogen peroxide (H2 O2 ) in a variety of body sites by peroxidase enzymes, HOSCN has been explored as an agent of food preservation, pathogen killing, and even improved toothpaste. However, despite the well-recognized antibacterial role HOSCN plays in host-pathogen interactions, little is known about how bacteria sense and respond to this oxidant. In this work, we will summarize what is known and unknown about HOSCN in innate immunity and recent advances in understanding the responses that both pathogenic and non-pathogenic bacteria mount against this antimicrobial agent, highlighting studies done with three model organisms, Escherichia coli, Streptococcus spp., and Pseudomonas aeruginosa.