Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.318
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 88: 409-431, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30633550

RESUMEN

Aerobic life is possible because the molecular structure of oxygen (O2) makes direct reaction with most organic materials at ambient temperatures an exceptionally slow process. Of course, these reactions are inherently very favorable, and they occur rapidly with the release of a great deal of energy at high temperature. Nature has been able to tap this sequestered reservoir of energy with great spatial and temporal selectivity at ambient temperatures through the evolution of oxidase and oxygenase enzymes. One mechanism used by these enzymes for O2 activation has been studied in detail for the soluble form of the enzyme methane monooxygenase. These studies have revealed the step-by-step process of O2 activation and insertion into the ultimately stable C-H bond of methane. Additionally, an elegant regulatory mechanism has been defined that enlists size selection and quantum tunneling to allow methane oxidation to occur specifically in the presence of more easily oxidized substrates.


Asunto(s)
Bacterias/enzimología , Metano/metabolismo , Oxígeno/metabolismo , Oxigenasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía , Cinética , Methylococcus capsulatus/enzimología , Methylosinus trichosporium/enzimología , Oxigenasas/química , Conformación Proteica
2.
Annu Rev Biochem ; 87: 585-620, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29494239

RESUMEN

2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.


Asunto(s)
Ácidos Cetoglutáricos/metabolismo , Oxigenasas/metabolismo , Animales , Biocatálisis , Colágeno/biosíntesis , Humanos , Hidroxilación , Modelos Biológicos , Modelos Moleculares , Oxidación-Reducción , Oxigenasas/química , Conformación Proteica , Especificidad por Sustrato
3.
Cell ; 173(2): 456-469.e16, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576453

RESUMEN

Following a previous microbial inoculation, plants can induce broad-spectrum immunity to pathogen infection, a phenomenon known as systemic acquired resistance (SAR). SAR establishment in Arabidopsis thaliana is regulated by the Lys catabolite pipecolic acid (Pip) and flavin-dependent-monooxygenase1 (FMO1). Here, we show that elevated Pip is sufficient to induce an FMO1-dependent transcriptional reprogramming of leaves that is reminiscent of SAR. In planta and in vitro analyses demonstrate that FMO1 functions as a pipecolate N-hydroxylase, catalyzing the biochemical conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates in plants after microbial attack. When exogenously applied, it overrides the defect of NHP-deficient fmo1 in acquired resistance and acts as a potent inducer of plant immunity to bacterial and oomycete infection. Our work has identified a pathogen-inducible L-Lys catabolic pathway in plants that generates the N-hydroxylated amino acid NHP as a critical regulator of systemic acquired resistance to pathogen infection.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxigenasas/metabolismo , Ácidos Pipecólicos/metabolismo , Inmunidad de la Planta/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Cromatografía de Gases y Espectrometría de Masas , Lisina/metabolismo , Oomicetos/patogenicidad , Oxigenasas/genética , Ácidos Pipecólicos/análisis , Ácidos Pipecólicos/farmacología , Hojas de la Planta/enzimología , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Pseudomonas syringae/patogenicidad , Transaminasas/genética , Transaminasas/metabolismo
4.
Annu Rev Microbiol ; 76: 325-348, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35650666

RESUMEN

Oxygenases, which catalyze the reductive activation of O2 and incorporation of oxygen atoms into substrates, are widely distributed in aerobes. They function by switching the redox states of essential cofactors that include flavin, heme iron, Rieske non-heme iron, and Fe(II)/α-ketoglutarate. This review summarizes the catalytic features of flavin-dependent monooxygenases, heme iron-dependent cytochrome P450 monooxygenases, Rieske non-heme iron-dependent oxygenases, Fe(II)/α-ketoglutarate-dependent dioxygenases, and ring-cleavage dioxygenases, which are commonly involved in pesticide degradation. Heteroatom release (hydroxylation-coupled hetero group release), aromatic/heterocyclic ring hydroxylation to form ring-cleavage substrates, and ring cleavage are the main chemical fates of pesticides catalyzed by these oxygenases. The diversity of oxygenases, specificities for electron transport components, and potential applications of oxygenases are also discussed. This article summarizes our current understanding of the catalytic mechanisms of oxygenases and a framework for distinguishing the roles of oxygenases in pesticide degradation.


Asunto(s)
Dioxigenasas , Plaguicidas , Compuestos Ferrosos , Flavinas , Hierro , Ácidos Cetoglutáricos , Oxigenasas de Función Mixta , Oxigenasas/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(11): e2308570121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442170

RESUMEN

Cytokinesis is the last step of cell division and is regulated by the small GTPase RhoA. RhoA activity is required for all steps of cytokinesis, including prior to abscission when daughter cells are ultimately physically separated. Like germ cells in all animals, the Caenorhabditis elegans embryonic germline founder cell initiates cytokinesis but does not complete abscission, leaving a stable intercellular bridge between the two daughter cells. Here, we identify and characterize C. elegans OSGN-1 as a cytokinetic regulator that promotes RhoA activity during late cytokinesis. Sequence analyses and biochemical reconstitutions reveal that OSGN-1 is a flavin-containing monooxygenase (MO). Genetic analyses indicate that the MO activity of OSGN-1 is required to maintain active RhoA at the end of cytokinesis in the germline founder cell and to stabilize the intercellular bridge. Deletion of OSGIN1 in human cells results in an increase in binucleation as a result of cytokinetic furrow regression, and this phenotype can be rescued by expressing a catalytically active form of C. elegans OSGN-1, indicating that OSGN-1 and OSGIN1 are functional orthologs. We propose that OSGN-1 and OSGIN1 are conserved MO enzymes required to maintain RhoA activity at the intercellular bridge during late cytokinesis and thus favor its stability, enabling proper abscission in human cells and bridge stabilization in C. elegans germ cells.


Asunto(s)
Citocinesis , Dermatitis , Oxigenasas , Animales , Humanos , Citocinesis/genética , Caenorhabditis elegans/genética , División Celular
6.
Proc Natl Acad Sci U S A ; 121(16): e2311390121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593075

RESUMEN

Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon Thermococcus kodakarensis, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. T. kodakarensis harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in T. kodakarensis cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when T. kodakarensis was grown under microaerobic conditions. The results suggest that T. kodakarensis removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in T. kodakarensis functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle.


Asunto(s)
Archaea , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Archaea/metabolismo , Fotosíntesis , Glicolatos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Oxigenasas/metabolismo , Pentosas
7.
Nat Chem Biol ; 20(2): 243-250, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37945897

RESUMEN

The anthraquinone-fused enediynes (AFEs) combine an anthraquinone moiety and a ten-membered enediyne core capable of generating a cytotoxic diradical species. AFE cyclization is triggered by opening the F-ring epoxide, which is also the site of the most structural diversity. Previous studies of tiancimycin A, a heavily modified AFE, have revealed a cryptic aldehyde blocking installation of the epoxide, and no unassigned oxidases could be predicted within the tnm biosynthetic gene cluster. Here we identify two consecutively acting cofactorless oxygenases derived from methyltransferase and α/ß-hydrolase protein folds, TnmJ and TnmK2, respectively, that are responsible for F-ring tailoring in tiancimycin biosynthesis by comparative genomics. Further biochemical and structural characterizations reveal that the electron-rich AFE anthraquinone moiety assists in catalyzing deformylation, epoxidation and oxidative ring cleavage without exogenous cofactors. These enzymes therefore fill important knowledge gaps for the biosynthesis of this class of molecules and the underappreciated family of cofactorless oxygenases.


Asunto(s)
Antineoplásicos , Oxigenasas , Antraquinonas/química , Antraquinonas/metabolismo , Enediinos/química , Enediinos/metabolismo , Compuestos Epoxi
8.
Chem Rev ; 124(3): 1288-1320, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305159

RESUMEN

Methane is a potent greenhouse gas that contributes significantly to climate change and is primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of methane to methanol is a chemically difficult transformation, accomplished in methanotrophs by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or copper metallocofactors and have been the subject of detailed investigation. While the structure, function, and active site architecture of the copper-dependent particulate methane monooxygenase (pMMO) have been investigated extensively, its putative quaternary interactions, regulation, requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, and, for the most part, mechanistically. Here, we review the history of MMO research, focusing on recent developments and providing an outlook for future directions of the field. Engineered biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, inorganic chemistry, microbiology, computational biology, and engineering.


Asunto(s)
Cobre , Metano , Cobre/química , Hierro , Metanol , Oxigenasas/metabolismo , Oxidación-Reducción , Oxigenasas de Función Mixta
9.
Nature ; 588(7836): 135-140, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177712

RESUMEN

The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment1. The origins of specific compounds are known, including metabolites that are highly heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as smoking5, or by diet6. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites-in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts7,8 that were not available to us when we trained the algorithms. We used feature attribution analysis9 to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites.


Asunto(s)
Dieta , Microbioma Gastrointestinal/fisiología , Metaboloma/genética , Suero/metabolismo , Adulto , Pan , Estudios de Cohortes , Femenino , Voluntarios Sanos , Humanos , Estilo de Vida , Aprendizaje Automático , Masculino , Metabolómica , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Oxigenasas/genética , Estándares de Referencia , Reproducibilidad de los Resultados , Estaciones del Año
10.
Bioessays ; 46(7): e2400029, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713170

RESUMEN

Flavin-containing monooxygenases (FMOs), traditionally known for detoxifying xenobiotics, are now recognized for their involvement in endogenous metabolism. We recently discovered that an isoform of FMO, fmo-2 in Caenorhabditis elegans, alters endogenous metabolism to impact longevity and stress tolerance. Increased expression of fmo-2 in C. elegans modifies the flux through the key pathway known as One Carbon Metabolism (OCM). This modified flux results in a decrease in the ratio of S-adenosyl-methionine (SAM) to S-adenosyl-homocysteine (SAH), consequently diminishing methylation capacity. Here we discuss how FMO-2-mediated formate production during tryptophan metabolism may serve as a trigger for changing the flux in OCM. We suggest formate bridges tryptophan and OCM, altering metabolic flux away from methylation during fmo-2 overexpression. Additionally, we highlight how these metabolic results intersect with the mTOR and AMPK pathways, in addition to mitochondrial metabolism. In conclusion, the goal of this essay is to bring attention to the central role of FMO enzymes but lack of understanding of their mechanisms. We justify a call for a deeper understanding of FMO enzyme's role in metabolic rewiring through tryptophan/formate or other yet unidentified substrates. Additionally, we emphasize the identification of novel drugs and microbes to induce FMO activity and extend lifespan.


Asunto(s)
Caenorhabditis elegans , Oxigenasas , Xenobióticos , Animales , Xenobióticos/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Oxigenasas/metabolismo , Oxigenasas/genética , Humanos , Triptófano/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Longevidad
11.
J Biol Chem ; 300(6): 107343, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705395

RESUMEN

Rieske nonheme iron aromatic ring-hydroxylating oxygenases (RHOs) play pivotal roles in determining the substrate preferences of polycyclic aromatic hydrocarbon (PAH) degraders. However, their potential to degrade high molecular weight PAHs (HMW-PAHs) has been relatively unexplored. NarA2B2 is an RHO derived from a thermophilic Hydrogenibacillus sp. strain N12. In this study, we have identified four "hotspot" residues (V236, Y300, W316, and L375) that may hinder the catalytic capacity of NarA2B2 when it comes to HMW-PAHs. By employing structure-guided rational enzyme engineering, we successfully modified NarA2B2, resulting in NarA2B2 variants capable of catalyzing the degradation of six different types of HMW-PAHs, including pyrene, fluoranthene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene. Three representative variants, NarA2B2W316I, NarA2B2Y300F-W316I, and NarA2B2V236A-W316I-L375F, not only maintain their abilities to degrade low-molecular-weight PAHs (LMW-PAHs) but also exhibited 2 to 4 times higher degradation efficiency for HMW-PAHs in comparison to another isozyme, NarAaAb. Computational analysis of the NarA2B2 variants predicts that these modifications alter the size and hydrophobicity of the active site pocket making it more suitable for HMW-PAHs. These findings provide a comprehensive understanding of the relationship between three-dimensional structure and functionality, thereby opening up possibilities for designing improved RHOs that can be more effectively used in the bioremediation of PAHs.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/química , Peso Molecular , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Especificidad por Sustrato , Biodegradación Ambiental , Oxigenasas/metabolismo , Oxigenasas/química , Oxigenasas/genética , Hidroxilación
12.
J Biol Chem ; 300(1): 105464, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979917

RESUMEN

Neuronal nitric oxide synthase (nNOS) is a homodimeric cytochrome P450-like enzyme that catalyzes the conversion of L-arginine to nitric oxide in the presence of NADPH and molecular oxygen. The binding of calmodulin (CaM) to a linker region between the FAD/FMN-containing reductase domain, and the heme-containing oxygenase domain is needed for electron transfer reactions, reduction of the heme, and NO synthesis. Due to the dynamic nature of the reductase domain and low resolution of available full-length structures, the exact conformation of the CaM-bound active complex during heme reduction is still unresolved. Interestingly, hydrogen-deuterium exchange and mass spectrometry studies revealed interactions of the FMN domain and CaM with the oxygenase domain for iNOS, but not nNOS. This finding prompted us to utilize covalent crosslinking and mass spectrometry to clarify interactions of CaM with nNOS. Specifically, MS-cleavable bifunctional crosslinker disuccinimidyl dibutyric urea was used to identify thirteen unique crosslinks between CaM and nNOS as well as 61 crosslinks within the nNOS. The crosslinks provided evidence for CaM interaction with the oxygenase and reductase domain residues as well as interactions of the FMN domain with the oxygenase dimer. Cryo-EM studies, which gave a high-resolution model of the oxygenase domain, along with crosslink-guided docking provided a model of nNOS that brings the FMN within 15 Å of the heme in support for a more compact conformation than previously observed. These studies also point to the utility of covalent crosslinking and mass spectrometry in capturing transient dynamic conformations that may not be captured by hydrogen-deuterium exchange and mass spectrometry experiments.


Asunto(s)
Calmodulina , Reactivos de Enlaces Cruzados , Modelos Moleculares , Óxido Nítrico Sintasa de Tipo I , Calmodulina/metabolismo , Hemo/metabolismo , Espectrometría de Masas , Óxido Nítrico Sintasa de Tipo I/metabolismo , Oxigenasas/metabolismo , Reactivos de Enlaces Cruzados/química , Calcio/química , Estructura Cuaternaria de Proteína , Unión Proteica , Microscopía por Crioelectrón
13.
Hum Mol Genet ; 32(5): 798-809, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36150025

RESUMEN

Rod and cone photoreceptors in the retina mediate dim light and daylight vision, respectively. Despite their distinctive functions, rod and cone visual pigments utilize the same vitamin A-derived chromophore. To sustain vision, vitamin A precursors must be acquired in the gut, metabolized, and distributed to the eyes. Deficiencies in this pathway in inherited ocular disease states deplete cone photoreceptors from chromophore and eventually lead to cell death, whereas the more abundant rod photoreceptors are less affected. However, pathways that support cone function and survival under such conditions are largely unknown. Using biochemical, histological, and physiological approaches, we herein show that intervention with ß-carotene in STRA6-deficient mice improved chromophore supply to cone photoreceptors. Relieving the inherent negative feedback regulation of ß-carotene oxygenase-1 activity in the intestine by genetic means further bolstered cone photoreceptor functioning in the STRA6-deficient eyes. A vitamin A-rich diet, however, did not improve cone photoreceptor function in STRA6-deficiency. We provide evidence that the beneficial effect of ß-carotene on cones results from favorable serum kinetics of retinyl esters in lipoproteins. The respective alterations in lipoprotein metabolism maintained a steady supply of retinoids to the STRA6-deficient eyes, which ameliorated the competition for chromophore between rod and cone photoreceptors. Together, our study elucidates a cone photoreceptor-survival pathway and unravels an unexpected metabolic connection between the gut and the retina.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , beta Caroteno , Animales , Ratones , Células Fotorreceptoras Retinianas Conos/metabolismo , beta Caroteno/metabolismo , Vitamina A/metabolismo , Retina/metabolismo , Oxigenasas/metabolismo , Proteínas de la Membrana/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(39): e2210908119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122239

RESUMEN

Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase-like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Šfrom the dimetal site. We propose that this self-sacrificial reaction occurs through O2 activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the "substrate" Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics.


Asunto(s)
Proteínas Bacterianas , Chlamydia trachomatis , Oxigenasas , Tirosina , para-Aminobenzoatos , Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/enzimología , Ácido Fólico , Hierro/metabolismo , Manganeso/metabolismo , Oxígeno/metabolismo , Oxigenasas/metabolismo , Tirosina/metabolismo , para-Aminobenzoatos/metabolismo
15.
Biochemistry ; 63(19): 2506-2516, 2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-39265075

RESUMEN

A gene cluster responsible for the degradation of nicotinic acid (NA) in Bacillus niacini has recently been identified, and the structures and functions of the resulting enzymes are currently being evaluated to establish pathway intermediates. One of the genes within this cluster encodes a flavin monooxygenase (BnFMO) that is hypothesized to catalyze a hydroxylation reaction. Kinetic analyses of the recombinantly purified BnFMO suggest that this enzyme catalyzes the hydroxylation of 2,6-dihydroxynicotinic acid (2,6-DHNA) or 2,6-dihydroxypyridine (2,6-DHP), which is formed spontaneously by the decarboxylation of 2,6-DHNA. To understand the details of this hydroxylation reaction, we determined the structure of BnFMO using a multimodel approach combining protein X-ray crystallography and cryo-electron microscopy (cryo-EM). A liganded BnFMO cryo-EM structure was obtained in the presence of 2,6-DHP, allowing us to make predictions about potential catalytic residues. The structural data demonstrate that BnFMO is trimeric, which is unusual for Class A flavin monooxygenases. In both the electron density and coulomb potential maps, a region at the trimeric interface was observed that was consistent with and modeled as lipid molecules. High-resolution mass spectral analysis suggests that there is a mixture of phosphatidylethanolamine and phosphatidylglycerol lipids present. Together, these data provide insights into the molecular details of the central hydroxylation reaction unique to the aerobic degradation of NA in Bacillus niacini.


Asunto(s)
Bacillus , Microscopía por Crioelectrón , Bacillus/enzimología , Cristalografía por Rayos X , Oxigenasas/metabolismo , Oxigenasas/química , Oxigenasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Modelos Moleculares , Conformación Proteica , Hidroxilación , Niacina/metabolismo , Niacina/química , Dominio Catalítico
16.
Biochemistry ; 63(9): 1170-1177, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38587906

RESUMEN

The MbnBC enzyme complex converts cysteine residues in a peptide substrate, MbnA, to oxazolone/thioamide groups during the biosynthesis of copper chelator methanobactin (Mbn). MbnBC belongs to the mixed-valent diiron oxygenase (MVDO) family, of which members use an Fe(II)Fe(III) cofactor to react with dioxygen for substrate modification. Several crystal structures of the inactive Fe(III)Fe(III) form of MbnBC alone and in complex with MbnA have been reported, but a mechanistic understanding requires determination of the oxidation states of the crystallographically observed Fe ions in the catalytically active Fe(II)Fe(III) state, along with the site of MbnA binding. Here, we have used electron nuclear double resonance (ENDOR) spectroscopy to determine such structural and electronic properties of the active site, in particular, the mode of substrate binding to the MV state, information not accessible by X-ray crystallography alone. The oxidation states of the two Fe ions were determined by 15N ENDOR analysis. The presence and locations of both bridging and terminal exogenous solvent ligands were determined using 1H and 2H ENDOR. In addition, 2H ENDOR using an isotopically labeled MbnA substrate indicates that MbnA binds to the Fe(III) ion of the cluster via the sulfur atom of its N-terminal modifiable cysteine residue, with displacement of a coordinated solvent ligand as shown by complementary 1H ENDOR. These results, which underscore the utility of ENDOR in studying MVDOs, provide a molecular picture of the initial steps in Mbn biosynthesis.


Asunto(s)
Imidazoles , Oligopéptidos , Imidazoles/metabolismo , Imidazoles/química , Oligopéptidos/metabolismo , Oligopéptidos/química , Oligopéptidos/biosíntesis , Oxidación-Reducción , Cristalografía por Rayos X , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Espectroscopía de Resonancia por Spin del Electrón , Oxigenasas/metabolismo , Oxigenasas/química , Dominio Catalítico , Especificidad por Sustrato , Modelos Moleculares , Hierro/metabolismo , Hierro/química
17.
Biochemistry ; 63(13): 1674-1683, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38898603

RESUMEN

N-Acetylnorloline synthase (LolO) is one of several iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenases that catalyze sequential reactions of different types in the biosynthesis of valuable natural products. LolO hydroxylates C2 of 1-exo-acetamidopyrrolizidine before coupling the C2-bonded oxygen to C7 to form the tricyclic loline core. Each reaction requires cleavage of a C-H bond by an oxoiron(IV) (ferryl) intermediate; however, different carbons are targeted, and the carbon radicals have different fates. Prior studies indicated that the substrate-cofactor disposition (SCD) controls the site of H· abstraction and can affect the reaction outcome. These indications led us to determine whether a change in SCD from the first to the second LolO reaction might contribute to the observed reactivity switch. Whereas the single ferryl complex in the C2 hydroxylation reaction was previously shown to have typical Mössbauer parameters, one of two ferryl complexes to accumulate during the oxacyclization reaction has the highest isomer shift seen to date for such a complex and abstracts H· from C7 ∼ 20 times faster than does the first ferryl complex in its previously reported off-pathway hydroxylation of C7. The detectable hydroxylation of C7 in competition with cyclization by the second ferryl complex is not enhanced in 2H2O solvent, suggesting that the C2 hydroxyl is deprotonated prior to C7-H cleavage. These observations are consistent with the coordination of the C2 oxygen to the ferryl complex, which may reorient its oxo ligand, the substrate, or both to positions more favorable for C7-H cleavage and oxacyclization.


Asunto(s)
Hierro , Ácidos Cetoglutáricos , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/química , Hierro/metabolismo , Hierro/química , Hidroxilación , Ciclización , Oxigenasas/metabolismo , Oxigenasas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
18.
Biochemistry ; 63(11): 1445-1459, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38779817

RESUMEN

OxaD is a flavin-dependent monooxygenase (FMO) responsible for catalyzing the oxidation of an indole nitrogen atom, resulting in the formation of a nitrone. Nitrones serve as versatile intermediates in complex syntheses, including challenging reactions like cycloadditions. Traditional organic synthesis methods often yield limited results and involve environmentally harmful chemicals. Therefore, the enzymatic synthesis of nitrone-containing compounds holds promise for more sustainable industrial processes. In this study, we explored the catalytic mechanism of OxaD using a combination of steady-state and rapid-reaction kinetics, site-directed mutagenesis, spectroscopy, and structural modeling. Our investigations showed that OxaD catalyzes two oxidations of the indole nitrogen of roquefortine C, ultimately yielding roquefortine L. The reductive-half reaction analysis indicated that OxaD rapidly undergoes reduction and follows a "cautious" flavin reduction mechanism by requiring substrate binding before reduction can take place. This characteristic places OxaD in class A of the FMO family, a classification supported by a structural model featuring a single Rossmann nucleotide binding domain and a glutathione reductase fold. Furthermore, our spectroscopic analysis unveiled both enzyme-substrate and enzyme-intermediate complexes. Our analysis of the oxidative-half reaction suggests that the flavin dehydration step is the slow step in the catalytic cycle. Finally, through mutagenesis of the conserved D63 residue, we demonstrated its role in flavin motion and product oxygenation. Based on our findings, we propose a catalytic mechanism for OxaD and provide insights into the active site architecture within class A FMOs.


Asunto(s)
Oxigenasas de Función Mixta , Óxidos de Nitrógeno , Oxidación-Reducción , Óxidos de Nitrógeno/metabolismo , Óxidos de Nitrógeno/química , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Cinética , Mutagénesis Sitio-Dirigida , Flavinas/metabolismo , Flavinas/química , Modelos Moleculares , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Oxigenasas
19.
J Biol Chem ; 299(10): 105222, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673337

RESUMEN

Many microorganisms use both biological and nonbiological molecules as sources of carbon and energy. This resourcefulness means that some microorganisms have mechanisms to assimilate pollutants found in the environment. One such organism is Comamonas testosteroni, which metabolizes 4-methylbenzenesulfonate and 4-methylbenzoate using the TsaMBCD pathway. TsaM is a Rieske oxygenase, which in concert with the reductase TsaB consumes a molar equivalent of NADH. Following this step, the annotated short-chain dehydrogenase/reductase and aldehyde dehydrogenase enzymes TsaC and TsaD each regenerate a molar equivalent of NADH. This co-occurrence ameliorates the need for stoichiometric addition of reducing equivalents and thus represents an attractive strategy for integration of Rieske oxygenase chemistry into biocatalytic applications. Therefore, in this work, to overcome the lack of information regarding NADH recycling enzymes that function in partnership with Rieske non-heme iron oxygenases (Rieske oxygenases), we solved the X-ray crystal structure of TsaC to a resolution of 2.18 Å. Using this structure, a series of substrate analog and protein variant combination reactions, and differential scanning fluorimetry experiments, we identified active site features involved in binding NAD+ and controlling substrate specificity. Further in vitro enzyme cascade experiments demonstrated the efficient TsaC- and TsaD-mediated regeneration of NADH to support Rieske oxygenase chemistry. Finally, through in-depth bioinformatic analyses, we illustrate the widespread co-occurrence of Rieske oxygenases with TsaC-like enzymes. This work thus demonstrates the utility of these NADH recycling enzymes and identifies a library of short-chain dehydrogenase/reductase enzyme prospects that can be used in Rieske oxygenase pathways for in situ regeneration of NADH.


Asunto(s)
Proteínas Bacterianas , Comamonas testosteroni , Oxigenasas , Aldehído Deshidrogenasa/metabolismo , NAD/metabolismo , Oxigenasas/metabolismo , Especificidad por Sustrato , Comamonas testosteroni/enzimología , Comamonas testosteroni/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/genética , Proteínas de Hierro no Heme/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estructura Terciaria de Proteína , Modelos Moleculares , Estabilidad Proteica , Biología Computacional
20.
BMC Genomics ; 25(1): 872, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294571

RESUMEN

BACKGROUND: Carotenoid cleavage oxygenases (CCOs) are a group of enzymes that catalyze the oxidative cleavage of carotenoid molecules. These enzymes widely exist in plants, fungi, and certain bacteria, and are involved in various biological processes. It would be of great importance and necessity to identify CCO members in birch and characterize their responses upon abiotic stresses. RESULTS: A total of 16 BpCCOs, including 8 BpCCDs and 8 BpNCEDs were identified in birch, and phylogenetic tree analysis showed that they could be classified into six subgroups. Collinearity analysis revealed that BpCCOs have the largest number of homologous genes in Gossypium hirsutum and also have more homologous genes in other dicotyledons. In addition, promoter analysis revealed that the promoter regions of BpCCOs contained many abiotic stress-related and hormone-responsive elements. The results of qRT-PCR showed that most of the BpCCOs were able to respond significantly to ABA, PEG, salt and cold stresses. Finally, the prediction of the interacting proteins of BpCCOs by STRING revealed several proteins that may interact with BpCCOs and be involved in plant growth and development/abiotic stress processes, such as HEC1 (bHLH), ATABA1, ATVAMP714, etc. CONCLUSION: In this study, the CCO members were identified in birch in a genome-wide scale. These results indicate that BpCCO genes may play important roles in the abiotic stress responses of birch plants.


Asunto(s)
Betula , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oxigenasas , Filogenia , Estrés Fisiológico , Betula/genética , Estrés Fisiológico/genética , Oxigenasas/genética , Oxigenasas/metabolismo , Regiones Promotoras Genéticas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA