RESUMEN
Tissue-resident macrophages (TRMs) are long-lived cells that maintain locally and can be phenotypically distinct from monocyte-derived macrophages. Whether TRMs and monocyte-derived macrophages have district roles under differing pathologies is not understood. Here, we showed that a substantial portion of the macrophages that accumulated during pancreatitis and pancreatic cancer in mice had expanded from TRMs. Pancreas TRMs had an extracellular matrix remodeling phenotype that was important for maintaining tissue homeostasis during inflammation. Loss of TRMs led to exacerbation of severe pancreatitis and death, due to impaired acinar cell survival and recovery. During pancreatitis, TRMs elicited protective effects by triggering the accumulation and activation of fibroblasts, which was necessary for initiating fibrosis as a wound healing response. The same TRM-driven fibrosis, however, drove pancreas cancer pathogenesis and progression. Together, these findings indicate that TRMs play divergent roles in the pathogenesis of pancreatitis and cancer through regulation of stromagenesis.
Asunto(s)
Páncreas , Pancreatitis , Ratones , Animales , Páncreas/patología , Macrófagos , Pancreatitis/genética , Pancreatitis/patología , Fibrosis , Neoplasias PancreáticasRESUMEN
It has generally proven challenging to produce functional ß cells in vitro. Here, we describe a previously unidentified protein C receptor positive (Procr+) cell population in adult mouse pancreas through single-cell RNA sequencing (scRNA-seq). The cells reside in islets, do not express differentiation markers, and feature epithelial-to-mesenchymal transition characteristics. By genetic lineage tracing, Procr+ islet cells undergo clonal expansion and generate all four endocrine cell types during adult homeostasis. Sorted Procr+ cells, representing â¼1% of islet cells, can robustly form islet-like organoids when cultured at clonal density. Exponential expansion can be maintained over long periods by serial passaging, while differentiation can be induced at any time point in culture. ß cells dominate in differentiated islet organoids, while α, δ, and PP cells occur at lower frequencies. The organoids are glucose-responsive and insulin-secreting. Upon transplantation in diabetic mice, these organoids reverse disease. These findings demonstrate that the adult mouse pancreatic islet contains a population of Procr+ endocrine progenitors.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Receptor de Proteína C Endotelial/metabolismo , Islotes Pancreáticos/citología , Animales , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Femenino , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Islotes Pancreáticos/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Desnudos , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Páncreas/citología , Páncreas/metabolismo , Proteína C/metabolismo , Células Madre/citologíaRESUMEN
Optical tissue transparency permits scalable cellular and molecular investigation of complex tissues in 3D. Adult human organs are particularly challenging to render transparent because of the accumulation of dense and sturdy molecules in decades-aged tissues. To overcome these challenges, we developed SHANEL, a method based on a new tissue permeabilization approach to clear and label stiff human organs. We used SHANEL to render the intact adult human brain and kidney transparent and perform 3D histology with antibodies and dyes in centimeters-depth. Thereby, we revealed structural details of the intact human eye, human thyroid, human kidney, and transgenic pig pancreas at the cellular resolution. Furthermore, we developed a deep learning pipeline to analyze millions of cells in cleared human brain tissues within hours with standard lab computers. Overall, SHANEL is a robust and unbiased technology to chart the cellular and molecular architecture of large intact mammalian organs.
Asunto(s)
Aprendizaje Profundo , Imagenología Tridimensional/métodos , Imagen Óptica/métodos , Coloración y Etiquetado/métodos , Anciano de 80 o más Años , Animales , Encéfalo/diagnóstico por imagen , Ojo/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional/normas , Riñón/diagnóstico por imagen , Límite de Detección , Masculino , Ratones , Persona de Mediana Edad , Imagen Óptica/normas , Páncreas/diagnóstico por imagen , Coloración y Etiquetado/normas , Porcinos , Glándula Tiroides/diagnóstico por imagenRESUMEN
Much of current molecular and cell biology research relies on the ability to purify cell types by fluorescence-activated cell sorting (FACS). FACS typically relies on the ability to label cell types of interest with antibodies or fluorescent transgenic constructs. However, antibody availability is often limited, and genetic manipulation is labor intensive or impossible in the case of primary human tissue. To date, no systematic method exists to enrich for cell types without a priori knowledge of cell-type markers. Here, we propose GateID, a computational method that combines single-cell transcriptomics with FACS index sorting to purify cell types of choice using only native cellular properties such as cell size, granularity, and mitochondrial content. We validate GateID by purifying various cell types from zebrafish kidney marrow and the human pancreas to high purity without resorting to specific antibodies or transgenes.
Asunto(s)
Separación Celular/métodos , Citometría de Flujo/métodos , Programas Informáticos , Transcriptoma , Animales , Humanos , Riñón/citología , Páncreas/citología , Análisis de la Célula Individual , Pez Cebra/anatomía & histologíaRESUMEN
The pancreatic islets of Langerhans regulate glucose homeostasis. The loss of insulin-producing ß cells within islets results in diabetes, and islet transplantation from cadaveric donors can cure the disease. In vitro production of whole islets, not just ß cells, will benefit from a better understanding of endocrine differentiation and islet morphogenesis. We used single-cell mRNA sequencing to obtain a detailed description of pancreatic islet development. Contrary to the prevailing dogma, we find islet morphology and endocrine differentiation to be directly related. As endocrine progenitors differentiate, they migrate in cohesion and form bud-like islet precursors, or "peninsulas" (literally "almost islands"). α cells, the first to develop, constitute the peninsular outer layer, and ß cells form later, beneath them. This spatiotemporal collinearity leads to the typical core-mantle architecture of the mature, spherical islet. Finally, we induce peninsula-like structures in differentiating human embryonic stem cells, laying the ground for the generation of entire islets in vitro.
Asunto(s)
Islotes Pancreáticos/citología , Islotes Pancreáticos/embriología , Animales , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias Humanas/citología , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citología , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Morfogénesis , Páncreas/citologíaRESUMEN
Lymph nodes can be shared among several organs, notably in the gastrointestinal system. In this issue of Immunity, Brown et al. describe how pancreatic immunity is shaped by the mixing of different migratory dendritic cells issued from co-drainage from liver, pancreas, and duodenum.
Asunto(s)
Tracto Gastrointestinal , Páncreas , Hígado , Ganglios LinfáticosRESUMEN
Lymph nodes (LNs) are critical sites for shaping tissue-specific adaptive immunity. However, the impact of LN sharing between multiple organs on such tailoring is less understood. Here, we describe the drainage hierarchy of the pancreas, liver, and the upper small intestine (duodenum) into three murine LNs. Migratory dendritic cells (migDCs), key in instructing adaptive immune outcome, exhibited stronger pro-inflammatory signatures when originating from the pancreas or liver than from the duodenum. Qualitatively different migDC mixing in each shared LN influenced pancreatic ß-cell-reactive T cells to acquire gut-homing and tolerogenic phenotypes proportional to duodenal co-drainage. However, duodenal viral infections rendered non-intestinal migDCs and ß-cell-reactive T cells more pro-inflammatory in all shared LNs, resulting in elevated pancreatic islet lymphocyte infiltration. Our study uncovers immune crosstalk through LN co-drainage as a powerful force regulating pancreatic autoimmunity.
Asunto(s)
Autoinmunidad , Páncreas , Ratones , Animales , Páncreas/patología , Hígado , Linfocitos T , Ganglios LinfáticosRESUMEN
As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue.
Asunto(s)
Envejecimiento/patología , Senescencia Celular , Mutación , Páncreas/patología , Análisis de la Célula Individual , Adulto , Niño , Preescolar , Humanos , Lactante , Persona de Mediana Edad , Páncreas/citología , Páncreas/fisiología , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ARN , Transcripción GenéticaRESUMEN
Stem-cell-based therapies can potentially reverse organ dysfunction and diseases, but the removal of impaired tissue and activation of a program leading to organ regeneration pose major challenges. In mice, a 4-day fasting mimicking diet (FMD) induces a stepwise expression of Sox17 and Pdx-1, followed by Ngn3-driven generation of insulin-producing ß cells, resembling that observed during pancreatic development. FMD cycles restore insulin secretion and glucose homeostasis in both type 2 and type 1 diabetes mouse models. In human type 1 diabetes pancreatic islets, fasting conditions reduce PKA and mTOR activity and induce Sox2 and Ngn3 expression and insulin production. The effects of the FMD are reversed by IGF-1 treatment and recapitulated by PKA and mTOR inhibition. These results indicate that a FMD promotes the reprogramming of pancreatic cells to restore insulin generation in islets from T1D patients and reverse both T1D and T2D phenotypes in mouse models. PAPERCLIP.
Asunto(s)
Diabetes Mellitus Tipo 1/dietoterapia , Diabetes Mellitus Tipo 2/dietoterapia , Ayuno , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Dieta , Prueba de Tolerancia a la Glucosa , Humanos , Técnicas In Vitro , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos , Ratones , Proteínas del Tejido Nervioso/genética , Páncreas/citología , Páncreas/metabolismo , Transducción de Señal , TranscriptomaRESUMEN
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies, owing in part to its propensity for metastasis. Here, we used an organoid culture system to investigate how transcription and the enhancer landscape become altered during discrete stages of disease progression in a PDA mouse model. This approach revealed that the metastatic transition is accompanied by massive and recurrent alterations in enhancer activity. We implicate the pioneer factor FOXA1 as a driver of enhancer activation in this system, a mechanism that renders PDA cells more invasive and less anchorage-dependent for growth in vitro, as well as more metastatic in vivo. In this context, FOXA1-dependent enhancer reprogramming activates a transcriptional program of embryonic foregut endoderm. Collectively, our study implicates enhancer reprogramming, FOXA1 upregulation, and a retrograde developmental transition in PDA metastasis.
Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Epigenómica , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Organoides/metabolismo , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologíaRESUMEN
Stellate cells are resident lipid-storing cells of the pancreas and liver that transdifferentiate to a myofibroblastic state in the context of tissue injury. Beyond having roles in tissue homeostasis, stellate cells are increasingly implicated in pathological fibrogenic and inflammatory programs that contribute to tissue fibrosis and that constitute a growth-permissive tumor microenvironment. Although the capacity of stellate cells for extracellular matrix production and remodeling has long been appreciated, recent research efforts have demonstrated diverse roles for stellate cells in regulation of epithelial cell fate, immune modulation, and tissue health. Our present understanding of stellate cell biology in health and disease is discussed here, as are emerging means to target these multifaceted cells for therapeutic benefit.
Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Inflamación/genética , Neoplasias/genética , Células Estrelladas Pancreáticas/metabolismo , Transdiferenciación Celular/genética , Células Estrelladas Hepáticas/patología , Humanos , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Neoplasias/patología , Páncreas/lesiones , Páncreas/metabolismo , Páncreas/patología , Células Estrelladas Pancreáticas/patología , Microambiente Tumoral/genética , Cicatrización de HeridasRESUMEN
Lipoprotein disorder is a common feature of chronic pancreatitis (CP); however, the relationship between lipoprotein disorder and pancreatic fibrotic environment is unclear. Here, we investigated the occurrence and mechanism of pancreatic stellate cell (PSC) activation by lipoprotein metabolites and the subsequent regulation of type 2 immune responses, as well as the driving force of fibrotic aggressiveness in CP. Single-cell RNA sequencing revealed the heterogeneity of PSCs and identified very-low-density lipoprotein receptor (VLDLR)+ PSCs that were characterized by a higher lipid metabolism. VLDLR promoted intracellular lipid accumulation, followed by interleukin-33 (IL-33) expression and release in PSCs. PSC-derived IL-33 strongly induced pancreatic group 2 innate lymphoid cells (ILC2s) to trigger a type 2 immune response accompanied by the activation of PSCs, eventually leading to fibrosis during pancreatitis. Our findings indicate that VLDLR-enhanced lipoprotein metabolism in PSCs promotes pancreatic fibrosis and highlight a dominant role of IL-33 in this pro-fibrotic cascade.
Asunto(s)
Células Estrelladas Pancreáticas , Pancreatitis Crónica , Receptores de LDL/metabolismo , Células Cultivadas , Fibrosis , Humanos , Inmunidad Innata , Interleucina-33/metabolismo , Metabolismo de los Lípidos , Lipoproteínas VLDL/metabolismo , Linfocitos/metabolismo , Páncreas/patología , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/patologíaRESUMEN
Aging is the major risk factor for many human diseases. In vitro studies have demonstrated that cellular reprogramming to pluripotency reverses cellular age, but alteration of the aging process through reprogramming has not been directly demonstrated in vivo. Here, we report that partial reprogramming by short-term cyclic expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) ameliorates cellular and physiological hallmarks of aging and prolongs lifespan in a mouse model of premature aging. Similarly, expression of OSKM in vivo improves recovery from metabolic disease and muscle injury in older wild-type mice. The amelioration of age-associated phenotypes by epigenetic remodeling during cellular reprogramming highlights the role of epigenetic dysregulation as a driver of mammalian aging. Establishing in vivo platforms to modulate age-associated epigenetic marks may provide further insights into the biology of aging.
Asunto(s)
Envejecimiento/genética , Reprogramación Celular , Epigénesis Genética , Enfermedades Metabólicas/genética , Factores de Transcripción/metabolismo , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Animales , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Lamina Tipo A/genética , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/prevención & control , Ratones , Modelos Animales , Páncreas/metabolismo , Sarcopenia/metabolismoRESUMEN
Cancer is one of the foremost health problems worldwide and is among the leading causes of death in the United States. Gastrointestinal tract cancers account for almost one third of the cancer-related mortality globally, making it one of the deadliest groups of cancers. Early diagnosis and prompt management are key to preventing cancer-related morbidity and mortality. With advancements in technology and endoscopic techniques, endoscopy has become the core in diagnosis and management of gastrointestinal tract cancers. In this extensive review, the authors discuss the role endoscopy plays in early detection, diagnosis, and management of esophageal, gastric, colorectal, pancreatic, ampullary, biliary tract, and small intestinal cancers.
Asunto(s)
Gastroenterología , Neoplasias Gastrointestinales , Humanos , Estados Unidos/epidemiología , Neoplasias Gastrointestinales/diagnóstico , Neoplasias Gastrointestinales/terapia , Endoscopía/métodos , PáncreasRESUMEN
The endoderm germ layer contributes to the respiratory and gastrointestinal (GI) lineages during development, giving rise to an array of specialized epithelial cell types lining organs, including the thyroid, thymus, lungs, liver, biliary system, pancreas, and intestines. This SnapShot timelines and summarizes key stages following gastrulation, including endoderm patterning, organ specification, and organogenesis. A lineage tree of the developing endocrine pancreas is outlined to further illustrate this process.
Asunto(s)
Tracto Gastrointestinal/embriología , Animales , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/metabolismo , Humanos , Organogénesis , Páncreas/citología , Páncreas/embriología , Páncreas/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation, and exhibit ductal- and disease-stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy.
Asunto(s)
Carcinoma Ductal Pancreático/patología , Modelos Biológicos , Técnicas de Cultivo de Órganos , Organoides/patología , Neoplasias Pancreáticas/patología , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Páncreas/metabolismo , Páncreas/patologíaRESUMEN
Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.
Asunto(s)
Heterogeneidad Genética , Genómica , Imagenología Tridimensional , Neoplasias Pancreáticas , Lesiones Precancerosas , Análisis de la Célula Individual , Adulto , Femenino , Humanos , Masculino , Células Clonales/metabolismo , Células Clonales/patología , Secuenciación del Exoma , Aprendizaje Automático , Mutación , Páncreas/anatomía & histología , Páncreas/citología , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Flujo de Trabajo , Progresión de la Enfermedad , Detección Precoz del Cáncer , Oncogenes/genéticaRESUMEN
Type 1 diabetes (T1D) is an autoimmune disease that results from the destruction of pancreatic ß-cells by the immune system that involves innate and adaptive immune cells. Mucosal-associated invariant T cells (MAIT cells) are innate-like T-cells that recognize derivatives of precursors of bacterial riboflavin presented by the major histocompatibility complex (MHC) class I-related molecule MR1. Since T1D is associated with modification of the gut microbiota, we investigated MAIT cells in this pathology. In patients with T1D and mice of the non-obese diabetic (NOD) strain, we detected alterations in MAIT cells, including increased production of granzyme B, which occurred before the onset of diabetes. Analysis of NOD mice that were deficient in MR1, and therefore lacked MAIT cells, revealed a loss of gut integrity and increased anti-islet responses associated with exacerbated diabetes. Together our data highlight the role of MAIT cells in the maintenance of gut integrity and the control of anti-islet autoimmune responses. Monitoring of MAIT cells might represent a new biomarker of T1D, while manipulation of these cells might open new therapeutic strategies.
Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Antígenos de Histocompatibilidad Clase I/análisis , Mucosa Intestinal/inmunología , Antígenos de Histocompatibilidad Menor/análisis , Células T Invariantes Asociadas a Mucosa/inmunología , Páncreas/inmunología , Animales , Células Cultivadas , Microbioma Gastrointestinal/inmunología , Granzimas/biosíntesis , Humanos , Células Secretoras de Insulina/inmunología , Mucosa Intestinal/citología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Páncreas/citologíaRESUMEN
Genetics is a major determinant of susceptibility to autoimmune disorders. Here, we examined whether genome organization provides resilience or susceptibility to sequence variations, and how this would contribute to the molecular etiology of an autoimmune disease. We generated high-resolution maps of linear and 3D genome organization in thymocytes of NOD mice, a model of type 1 diabetes (T1D), and the diabetes-resistant C57BL/6 mice. Multi-enhancer interactions formed at genomic regions harboring genes with prominent roles in T cell development in both strains. However, diabetes risk-conferring loci coalesced enhancers and promoters in NOD, but not C57BL/6 thymocytes. 3D genome mapping of NODxC57BL/6 F1 thymocytes revealed that genomic misfolding in NOD mice is mediated in cis. Moreover, immune cells infiltrating the pancreas of humans with T1D exhibited increased expression of genes located on misfolded loci in mice. Thus, genetic variation leads to altered 3D chromatin architecture and associated changes in gene expression that may underlie autoimmune pathology.
Asunto(s)
Cromatina/metabolismo , Diabetes Mellitus Tipo 1/genética , Predisposición Genética a la Enfermedad/genética , Timocitos/patología , Animales , Factor de Unión a CCCTC/metabolismo , Mapeo Cromosómico , Diabetes Mellitus Tipo 1/patología , Epigénesis Genética , Expresión Génica , Sitios Genéticos/genética , Variación Genética , Genoma/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Páncreas/patología , Secuencias Reguladoras de Ácidos NucleicosRESUMEN
Multiple transcription factors have been shown to promote pancreatic ß-cell differentiation, yet much less is known about negative regulators. Earlier epigenomic studies suggested that the transcriptional repressor REST could be a suppressor of endocrinogenesis in the embryonic pancreas. However, pancreatic Rest knockout mice failed to show abnormal numbers of endocrine cells, suggesting that REST is not a major regulator of endocrine differentiation. Using a different conditional allele that enables profound REST inactivation, we observed a marked increase in pancreatic endocrine cell formation. REST inhibition also promoted endocrinogenesis in zebrafish and mouse early postnatal ducts and induced ß-cell-specific genes in human adult duct-derived organoids. We also defined genomic sites that are bound and repressed by REST in the embryonic pancreas. Our findings show that REST-dependent inhibition ensures a balanced production of endocrine cells from embryonic pancreatic progenitors.