RESUMEN
BACKGROUND: Aldosterone has been assumed to be one of aggravating factors in diabetic kidney disease (DKD). Natriuretic peptides/guanylyl cyclase-A/cGMP signalling has been shown to ameliorate aldosterone-induced renal injury in mice. Sacubitril/valsartan (SAC/VAL) is used clinically for chronic heart failure and hypertension, in part by augmenting natriuretic peptide bioavailability. The effects of SAC/VAL on renal pathophysiology including in DKD, however, have remained unclarified. METHODS: Eight-week-old male db/db mice fed on a high-salt diet (HSD) were treated with vehicle or aldosterone (0.2 µg/kg/min), and divided into four groups: HSD control, ALDO (aldosterone), ALDO + VAL (valsartan), and ALDO + SAC/VAL group. After 4 weeks, they were analysed for plasma atrial natriuretic peptide (ANP) levels, renal histology, and haemodynamic parameters including glomerular filtration rate (GFR) by FITC-inulin and renal plasma flow (RPF) by para-amino hippuric acid. RESULTS: The ALDO + SAC/VAL group showed significantly increased plasma ANP concentration and creatinine clearance, and decreased tubulointerstitial fibrosis and neutrophil gelatinase-associated lipocalin expression compared to ALDO and ALDO + VAL groups. SAC/VAL treatment increased GFR and RPF, and suppressed expression of Tgfb1, Il1b, Ccl2, and Lcn2 genes compared to the ALDO group. The percentage of tubulointerstitial fibrotic areas negatively correlated with the RPF and GFR. CONCLUSION: In a mouse model of type 2 diabetes with aldosterone excess, SAC/VAL increased RPF and GFR, and ameliorated tubulointerstitial fibrosis. Furthermore, RPF negatively correlated well with tubulointerstitial injury, suggesting that the beneficial effects of SAC/VAL could be through increased renal plasma flow with enhanced natriuretic peptide bioavailability.
Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Masculino , Ratones , Animales , Aldosterona , Flujo Plasmático Renal , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Riñón , Valsartán/farmacología , Valsartán/uso terapéutico , Compuestos de Bifenilo/farmacología , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Péptidos Natriuréticos/farmacología , FibrosisRESUMEN
The time-dependent changes in the natriuretic peptide families during sacubitril/valsartan (S/V) treatment remain obscure in the Asian heart failure (HF) cohort. Eighty-one outpatients with compensated HF were analyzed. The patients were divided into two groups based on the administration of S/V (n = 42) or angiotensin converting enzyme inhibitor (ACE-I; n = 39). Changes to the natriuretic peptide families and the daily dose of loop diuretics were evaluated 3 and 6 months after the intervention. The atrial natriuretic peptide (ANP) level was significantly increased (102 [63-160] pg/mL to 283 [171-614] pg/mL [3 months]; 409 [210-726] pg/mL [6 months]) in the S/V group but not in the ACE-I group. The dose of furosemide was significantly decreased during the six-month follow-up period in the S/V group (40 [20-40] mg to 20 [10-20] mg) but not in the ACE-I group. A multivariate logistic regression model showed that the presence of persistent atrial fibrillation (AF) and HF with a preserved left ventricular ejection fraction (HFpEF) was independently associated with a high delta-ANP ratio (≥ 4.5 ANP value on the start date/ANP value at 6 months; the mean value was used as the cutoff value) (odds ratio [OR]: 4.649, 95% CI 1.032-20.952 and OR: 7.558, 95% CI 1.427-40.042). The plasma level of ANP was increased, and the loop diuretic dose was decreased by the addition of neprilysin inhibitor therapy in patients with compensated HF. In patients with HFpEF and complicated persistent AF, neprilysin inhibitor therapy was associated with an increase in ANP.
Asunto(s)
Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Volumen Sistólico , Neprilisina , Tetrazoles/efectos adversos , Función Ventricular Izquierda , Antagonistas de Receptores de Angiotensina/uso terapéutico , Valsartán/farmacología , Valsartán/uso terapéutico , Péptidos Natriuréticos/farmacología , Péptidos Natriuréticos/uso terapéutico , Combinación de Medicamentos , Vasodilatadores/farmacologíaRESUMEN
Cardiovascular ailments are a major cause of mortality where over 1.3 billion people suffer from hypertension leading to heart-disease related deaths. Snake venoms possess a broad repertoire of natriuretic peptides with therapeutic potential for treating hypertension, congestive heart failure, and related cardiovascular disease. We now describe several taipan (Oxyuranus microlepidotus) natriuretic peptides TNPa-e which stimulated cGMP production through the natriuretic peptide receptor A (NPR-A) with higher potencies for the rat NPR-A (rNPR-A) over human NPR-A (hNPR-A). TNPc and TNPd were the most potent, demonstrating 100- and 560-fold selectivity for rNPR-A over hNPR-A. In vivo studies found that TNPc decreased diastolic and systolic blood pressure (BP) and increased heart rate (HR) in conscious normotensive rabbits, to a level that was similar to that of human atrial natriuretic peptide (hANP). TNPc also enhanced the bradycardia due to cardiac afferent stimulation (Bezold-Jarisch reflex). This indicated that TNPc possesses the ability to lower blood pressure and facilitate cardiac vagal afferent reflexes but unlike hANP does not produce tachycardia. The 3-dimensional structure of TNPc was well defined within the pharmacophoric disulfide ring, displaying two turn-like regions (RMSD = 1.15 Å). Further, its much greater biological stability together with its selectivity and potency will enhance its usefulness as a biological tool.
Asunto(s)
Hipertensión , Péptidos Natriuréticos , Ratas , Animales , Humanos , Conejos , Péptidos Natriuréticos/farmacología , Receptores del Factor Natriurético Atrial , Corazón , Elapidae , Hipertensión/tratamiento farmacológicoRESUMEN
With variable potencies atrial-, brain-type and c-type natriuretic peptides (NP)s, best documented for ANP and its analogues, promote sodium and water excretion, renal blood flow, lipolysis, lower blood pressure, and suppress renin and aldosterone secretion through interaction predominantly with cGMP-coupled NPR-A receptor. Infusion of especially ANP and its analogues up to 50 ng/kg/min in patients with high risk of acute kidney injury (cardiac vascular bypass surgery, intraabdominal surgery, direct kidney surgery) protects kidney function (GFR, plasma flow, medullary flow, albuminuria, renal replacement therapy, tissue injury) at short term and also long term and likely additively with the diuretic furosemide. This documents a pharmacologic potential for the pathway. Neprilysin (NEP, neutral endopeptidase) degrades NPs, in particular ANP, and angiotensin II. The drug LCZ696, a mixture of the neprilysin inhibitor sacubitril and the ANGII-AT1 receptor blocker valsartan, was FDA approved in 2015 and marketed as Entresto®. In preclinical studies of kidney injury, LCZ696 and NPs lowered plasma creatinine, countered hypoxia and oxidative stress, suppressed proinflammatory cytokines, and inhibited fibrosis. Few randomized clinical studies exist and were designed with primary cardiac outcomes. The studies showed that LCZ696/entresto stabilized and improved glomerular filtration rate in patients with chronic kidney disease. LCZ696 is safe to use concerning kidney function and stabilizes or increases GFR. In perspective, combined AT1 and neprilysin inhibition is a promising approach for long-term renal protection in addition to AT1 receptor blockers in acute kidney injury and chronic kidney disease.
Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Riñón/metabolismo , Péptidos Natriuréticos/farmacología , Neprilisina/antagonistas & inhibidores , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Animales , Humanos , Riñón/efectos de los fármacos , Riñón/fisiología , Péptidos Natriuréticos/uso terapéuticoRESUMEN
RATIONALE: Acute kidney injury (AKI) has a high prevalence and mortality in critically ill patients. It is also a powerful risk factor for heart failure incidence driven by hemodynamic changes and neurohormonal activation. However, no drugs have been approved by the Food and Drug Administration. Endogenous pGC-A (particulate guanylyl cyclase A receptor) activators were reported to preserve renal function and improve mortality in AKI patients, although hypotension accompanied by pGC-A activators have limited their therapeutic potential. OBJECTIVE: We investigated the therapeutic potential of a nonhypotensive pGC-A activator/designer natriuretic peptide, CRRL269, in a short-term, large animal model of ischemia-induced AKI and also investigated the potential of uCNP (urinary C-type natriuretic peptide) as a biomarker for AKI. METHODS AND RESULTS: We first showed that CRRL269 stimulated cGMP generation, suppressed plasma angiotensin II, and reduced cardiac filling pressures without lowering blood pressure in the AKI canine model. We also demonstrated that CRRL269 preserved glomerular filtration rate, increased renal blood flow, and promoted diuresis and natriuresis. Further, CRRL269 reduced kidney injury and apoptosis as evidenced by ex vivo histology and tissue apoptosis analysis. We also showed, compared with native pGC-A activators, that CRRL269 is a more potent inhibitor of apoptosis in renal cells and induced less decreases in intracellular Ca2+ concentration in vascular smooth muscle cells. The renal antiapoptotic effects were at least mediated by cGMP/PKG pathway. Further, CRRL269 inhibited proapoptotic genes expression using a polymerase chain reaction gene array. Additionally, we demonstrated that AKI increased uCNP levels. CONCLUSIONS: Our study supports developing CRRL269 as a novel renocardiac protective agent for AKI treatment.
Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/orina , Péptido Natriurético Tipo-C/orina , Péptidos Natriuréticos/uso terapéutico , Fármacos Renales/uso terapéutico , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Angiotensina II/sangre , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/orina , Presión Sanguínea/fisiología , GMP Cíclico/biosíntesis , Diuresis/efectos de los fármacos , Perros , Tasa de Filtración Glomerular/efectos de los fármacos , Masculino , Natriuresis/efectos de los fármacos , Péptidos Natriuréticos/farmacología , Receptores del Factor Natriurético Atrial/análisis , Receptores del Factor Natriurético Atrial/efectos de los fármacos , Circulación Renal/efectos de los fármacosRESUMEN
Based on the cardiac hormone atrial natriuretic peptide (ANP) and its seminal role in blood pressure (BP) homeostasis, we investigated the chronic BP lowering actions of a novel ANP analog currently entering clinical trials for hypertension. Previous reports demonstrate that this analog MANP activates the guanylyl cyclase A receptor (GC-A) and results in more potent biological actions compared with ANP; thus, it may represent a new therapeutic drug for hypertension. A major goal of this study was to establish that chronic subcutaneous delivery of MANP is feasible and hypotensive together with cGMP effects. We investigated the BP-lowering and cGMP-activating actions of acute and chronic subcutaneous delivery in normal and hypertensive rats. Furthermore, we explored vascular mechanisms of MANP in human aortic smooth muscle cells (HASMC) and ex vivo in isolated arteries. In normal rats with a single subcutaneous injection, MANP promoted robust dose-dependent BP-lowering actions and natriuresis, together with cGMP activation. Most importantly in hypertensive rats, once-a-day subcutaneous injection of MANP for 7 days induced cGMP elevation and long-term BP reduction compared with vehicle. Mechanistically, in HASMC, MANP activated cGMP and attenuated angiotensin II-mediated increases in intracellular Ca2+ levels while directly vasorelaxing arterial rings. Our study demonstrates for the first time the effectiveness of subcutaneous administration of MANP for 7 days and provides innovative, vascular mechanisms of BP regulation supporting its continued development as a novel therapeutic for hypertension.
Asunto(s)
Presión Sanguínea/efectos de los fármacos , GMP Cíclico/metabolismo , Péptidos Natriuréticos/síntesis química , Péptidos Natriuréticos/farmacología , Animales , Perros , Arteria Femoral/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/fisiología , Masculino , Péptidos Natriuréticos/química , Neurotransmisores/orina , Ratas , Ratas Sprague-Dawley , Vasodilatación/efectos de los fármacosRESUMEN
Polycystic kidney diseases (PKDs) are genetic disorders that can cause renal failure and death in children and adults. Lowering cAMP in cystic tissues through the inhibition of the type-2 vasopressin receptor (V2R) constitutes a validated strategy to reduce disease progression. We identified a peptide from green mamba venom that exhibits nanomolar affinity for the V2R without any activity on 155 other G-protein-coupled receptors or on 15 ionic channels. Mambaquaretin-1 is a full antagonist of the V2R activation pathways studied: cAMP production, beta-arrestin interaction, and MAP kinase activity. This peptide adopts the Kunitz fold known to mostly act on potassium channels and serine proteases. Mambaquaretin-1 interacts selectively with the V2R through its first loop, in the same manner that aprotinin inhibits trypsin. Injected in mice, mambaquaretin-1 increases in a dose-dependent manner urine outflow with concomitant reduction of urine osmolality, indicating a purely aquaretic effect associated with the in vivo blockade of V2R. CD1-pcy/pcy mice, a juvenile model of PKD, daily treated with 13 [Formula: see text]g of mambaquaretin-1 for 99 d, developed less abundant (by 33%) and smaller (by 47%) cysts than control mice. Neither tachyphylaxis nor apparent toxicity has been noted. Mambaquaretin-1 represents a promising therapeutic agent against PKDs.
Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Dendroaspis , Péptidos Natriuréticos/farmacología , Péptidos/farmacología , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Receptores de Vasopresinas/genética , Venenos de Serpiente/farmacología , Animales , Benzazepinas/farmacología , Células CHO , Cricetinae , Cricetulus , Cristalografía por Rayos X , AMP Cíclico/metabolismo , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Enfermedades Renales Poliquísticas/metabolismo , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo , Tolvaptán , Tripsina/químicaRESUMEN
The natriuretic peptide system, a key regulator of cGMP signaling, comprises three types of natriuretic peptides, osteocrin/musclin (OSTN), and their natriuretic peptide receptors. Although this system plays important roles in many organs, its physiological roles in skeletal muscle have not been clearly described. In the present study, we investigated the role of the natriuretic peptide system in C2C12 myocytes. All three natriuretic peptide receptors were expressed by cells differentiating from myoblasts to myotubes, and natriuretic peptide receptor B (NPR-B) transcripts were detected at the highest levels. Further, higher levels of cGMP were generated in response to stimulation with C-type natriuretic peptide (CNP) versus atrial natriuretic peptide (ANP), which reflected receptor expression levels. A cGMP analog downregulated the expression of a few ER stress-related genes. Furthermore, OSTN gene expression was strongly upregulated after 20 days of differentiation. Augmented gene expression was found to correlate closely with endoplasmic reticulum (ER) stress, and C/EBP [CCAAT-enhancer-binding protein] homologous protein (CHOP), which is known to be activated by ER stress, affected the expression of OSTN. Together, these results suggest a role for natriuretic peptide signaling in the ER stress response of myocytes.
Asunto(s)
GMP Cíclico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Péptidos Natriuréticos/farmacología , Sistemas de Mensajero Secundario/efectos de los fármacos , Animales , Línea Celular , GMP Cíclico/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Proteínas Musculares/biosíntesisRESUMEN
Translation is the process of turning observations in the laboratory, clinic, and community into interventions that improve the health of individuals and the public, ranging from diagnostics and therapeutics to medical procedures and behavioral changes. Translational research is defined as the effort to traverse a particular step of the translation process for a particular target or disease. Translational science is a newly emerging science, distinct from basic and clinical sciences in biology and medicine, and is a field of investigation focused on understanding the scientific and operational principles underlying each step of the translational process. Advances in translational science will increase the efficacy and safety of translational research in all diagnostic and therapeutic areas. This report examines translational research on novel hormones, the natriuretic peptide family and leptin, which have achieved clinical applications or for which studies are still ongoing, and also emphasizes the lessons that translational science has learned from more than 30 years' experience in translational research.
Asunto(s)
Leptina/metabolismo , Leptina/farmacología , Péptidos Natriuréticos/metabolismo , Péptidos Natriuréticos/farmacología , Investigación Biomédica Traslacional , Acondroplasia/diagnóstico , Acondroplasia/terapia , Animales , Humanos , Lipodistrofia/diagnóstico , Lipodistrofia/terapia , Enfermedades Raras/diagnóstico , Enfermedades Raras/terapiaRESUMEN
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to and degrades the low-density lipoprotein receptor (LDLR), contributing to hypercholesterolemia. Adipose tissue plays a role in lipoprotein metabolism, but there are almost no data about PCSK9 and LDLR regulation in human adipocytes. We studied PCSK9 and LDLR regulation by insulin, atrial natriuretic peptide (ANP, a potent lipolytic agonist that antagonizes insulin), and LDL in visceral adipose tissue (VAT) and in human cultured adipocytes. PCSK9 was expressed in VAT and its expression was positively correlated with body mass index (BMI). Both intracellular mature and secreted PCSK9 were abundant in cultured human adipocytes. Insulin induced PCSK9, LDLR, and sterol-regulatory element-binding protein-1c (SREBP-1c) and -2 expression (SREBP-2). ANP reduced insulin-induced PCSK9, especially in the context of a medium simulating hyperglycemia. Human LDL induced both mature and secreted PCSK9 and reduced LDLR. ANP indirectly blocked the LDLR degradation, reducing the positive effect of LDL on PCSK9. In conclusion, PCSK9 is expressed in human adipocytes. When the expression of PCSK9 is induced, LDLR is reduced through the PCSK9-mediated degradation. On the contrary, when the induction of PCSK9 by insulin and LDL is partially blocked by ANP, the LDLR degradation is reduced. This suggests that NPs could be able to control LDLR levels, preventing PCSK9 overexpression.
Asunto(s)
Tejido Adiposo/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Insulina/farmacología , Péptidos Natriuréticos/farmacología , Proproteína Convertasa 9/genética , Adipocitos/metabolismo , Anciano , Biomarcadores , LDL-Colesterol/sangre , Femenino , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Receptores de LDL/metabolismoRESUMEN
Atrial natriuretic peptide (ANP) is a cardiac hormone belonging to the family of natriuretic peptides (NPs). ANP exerts diuretic, natriuretic, and vasodilatory effects that contribute to maintain water-salt balance and regulate blood pressure. Besides these systemic properties, ANP displays important pleiotropic effects in the heart and in the vascular system that are independent of blood pressure regulation. These functions occur through autocrine and paracrine mechanisms. Previous works examining the cardiac phenotype of loss-of-function mouse models of ANP signaling showed that both mice with gene deletion of ANP or its receptor natriuretic peptide receptor A (NPR-A) developed cardiac hypertrophy and dysfunction in response to pressure overload and chronic ischemic remodeling. Conversely, ANP administration has been shown to improve cardiac function in response to remodeling and reduces ischemia-reperfusion (I/R) injury. ANP also acts as a pro-angiogenetic, anti-inflammatory, and anti-atherosclerotic factor in the vascular system. Pleiotropic effects regarding brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) were also reported. In this review, we discuss the current evidence underlying the pleiotropic effects of NPs, underlying their importance in cardiovascular homeostasis.
Asunto(s)
Sistema Cardiovascular/metabolismo , Péptidos Natriuréticos/metabolismo , Animales , Sistema Cardiovascular/efectos de los fármacos , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/metabolismo , Péptido Natriurético Encefálico/farmacología , Péptidos Natriuréticos/farmacología , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Remodelación Vascular/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacosRESUMEN
Urodilatin (UD) and uroguanylin (UGN) have been implicated in the regulation of salt and water homeostasis, particularly in the balance handling of salt intake. In this sense, the aim of the present work was to study the main effects of these peptides in kidneys from animals subjected to high NaCl (2%) intake, during 10 days in metabolic cages. The control group received only normal water, whereas the treated group drank 2% solution of NaCl (NaCl 2%). In addition, we studied effect of subthreshold UD (0.14 nM) and UGN (0.06 µM) doses in NaCl 2% after a 30-min control period. Kidney perfusion was performed with Krebs-Henseleit containing 6 g% bovine albumin previously dialyzed. The effects of UD (0.14 nM) promoted reduction of PP, RVR, and UF in the NaCl 2% group. We also observed an increase in %TNa+ and %TCl-. The main effects of UGN in NaCl 2% were increase in PP, UF, and GFR, followed by a reduction in %TNa+ and %TCl-. After an increased intake of salt, physiological pathways are activated and regulated in order to eliminate excess sodium. In this study, we observed that in a subthreshold dose, UD does not promotes natriuresis and diuresis, suggesting that UGN is an important hormone in inducing salt excretion in a chronic salt overload. Therefore, the effects herein described may play a contributory role in the regulation of kidney function after ingestion of salty meals.
Asunto(s)
Factor Natriurético Atrial/farmacología , Riñón/efectos de los fármacos , Péptidos Natriuréticos/farmacología , Cloruro de Sodio Dietético/administración & dosificación , Animales , Tasa de Filtración Glomerular/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Perfusión , Presión , Ratas Endogámicas WKY , Micción/efectos de los fármacos , Resistencia Vascular/efectos de los fármacosRESUMEN
BACKGROUND: The natriuretic effect of uroguanylin (UGN) involves reduction of proximal tubule (PT) sodium reabsorption. However, the target sodium transporters as well as the molecular mechanisms involved in these processes remain poorly understood. METHODS: To address the effects of UGN on PT (Na(+)+K(+))ATPase and the signal transduction pathways involved in this effect, we used LLC-PK1 cells. The effects of UGN were determined through ouabain-sensitive ATP hydrolysis and immunoblotting assays during different experimental conditions. RESULTS: We observed that UGN triggers cGMP/PKG and cAMP/PKA pathways in a sequential way. The activation of PKA leads to the inhibition of mTORC2 activity, PKB phosphorylation at S473, PKB activity and, consequently, a decrease in the mTORC1/S6K pathway. The final effects are decreased expression of the α1 subunit of (Na(+)+K(+))ATPase and inhibition of enzyme activity. CONCLUSIONS: These results suggest that the molecular mechanism of action of UGN on sodium reabsorption in PT cells is more complex than previously thought. We propose that PKG-dependent activation of PKA leads to the inhibition of the mTORC2/PKB/mTORC1/S6K pathway, an important signaling pathway involved in the maintenance of the PT sodium pump expression and activity. GENERAL SIGNIFICANCE: The current results expand our understanding of the signal transduction pathways involved in the overall effect of UGN on renal sodium excretion.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Natriuréticos/farmacología , Péptidos Natriuréticos/farmacología , Sistemas de Mensajero Secundario/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Activación Enzimática , Hidrólisis , Túbulos Renales Proximales/enzimología , Células LLC-PK1 , Natriuresis/efectos de los fármacos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Eliminación Renal/efectos de los fármacos , Reabsorción Renal/efectos de los fármacos , Sodio/metabolismo , Porcinos , Serina-Treonina Quinasas TOR/antagonistas & inhibidoresRESUMEN
BACKGROUND: Natriuretic peptides (NPs), brain and C type NPs (BNP and CNP), were involved in the maintenance of porcine oocyte meiotic arrest. The present study investigated the effects of NPs on developmental competence of immature porcine oocytes with follicles of different sizes. METHODS: Follicular fluid NP levels were examined by radioimmunoassay. The developmental competence of porcine oocytes was evaluated by cleavage and blastocyst developmental rates after in vitro fertilization (IVF) or parthenogenetic activation (PA) of cumulus oocyte complexes (COCs), which were recovered from follicle with different sizes. NP levels were examined and classified according to the cleavage potential after IVF with COCs released from these follicles. RESULTS: The BNP and CNP concentrations were increased with follicular size in follicular fluid and sustained at the set ranges of 3.0 - 6.0 mm follicles compared to 6.1 - 8.0 mm follicles. The oocytes developed from 3.0 to 6.0 mm follicles demonstrated increased embryo cleavage and blastocyst ratios after IVF, with an increased follicle size (P < 0.05). Moreover, BNP and CNP significantly promoted the blastocyst developmental rates of 3.0 - 6.0 mm follicles, but could not improve the developmental competence of oocytes from 6.1 to 8.0 mm follicles due to low NP levels. The COCs from 3.0 to 4.0 mm follicles were pre-incubated in 100 ng/ml of BNP and CNP media for 20 h before regular in vitro maturation, which demonstrated 2 to 3 folds higher developmental competencies in both PA and IVF groups compared to respective controls (P < 0.01). CONCLUSIONS: The effects of BNP and CNP supplementation in the pre-maturation culture media (PMC) on porcine developmental competence from COCs in follicles of different sizes were different and improved the developmental competence of porcine oocytes from small antral follicle in vitro.
Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos/métodos , Péptidos Natriuréticos/farmacología , Oocitos/efectos de los fármacos , Oogénesis/efectos de los fármacos , Animales , Blastocisto , Células Cultivadas , Células del Cúmulo/citología , Células del Cúmulo/efectos de los fármacos , Células del Cúmulo/fisiología , Técnicas de Cultivo de Embriones , Femenino , Oocitos/citología , Oocitos/fisiología , Oogénesis/fisiología , Partenogénesis/efectos de los fármacos , Partenogénesis/fisiología , PorcinosRESUMEN
Cardiac natriuretic peptides have long been known to act as main players in the homeostatic control of blood pressure, salt and water balance. However, in the last few decades, new properties have been ascribed to these hormones. A systematic review of English articles using MEDLINE Search terms included prostate cancer, inflammation, cardiac hormones, atrial natriuretic peptide, and brain natriuretic peptide. Most recent publications were selected. Natriuretic peptides are strongly connected to the immune system, whose two branches, innate and adaptive, are finely tuned and organized to kill invaders and repair injured tissues. These peptides control the immune response and act as anti-inflammatory and immune-modulatory agents. In addition, in cancers, natriuretic peptides have anti-proliferative effects by molecular mechanisms based on the inhibition/regulation of several pathways promoting cell proliferation and survival. Nowadays, it is accepted that chronic inflammation is a crucial player in prostate cancer development and progression. In this review, we summarize the current knowledge on the link between prostate cancer and inflammation and the potential use of natriuretic peptides as anti-inflammatory and anticancer agents.
Asunto(s)
Antineoplásicos/farmacología , Péptidos Natriuréticos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Masculino , Péptidos Natriuréticos/uso terapéuticoRESUMEN
In previous work, we identified xanthine oxidase (XO) as an important enzyme in the interaction between the host and enteropathogenic Escherichia coli(EPEC) and Shiga-toxigenic E. coli(STEC). Many of the biological effects of XO were due to the hydrogen peroxide produced by the enzyme. We wondered, however, if uric acid generated by XO also had biological effects in the gastrointestinal tract. Uric acid triggered inflammatory responses in the gut, including increased submucosal edema and release of extracellular DNA from host cells. While uric acid alone was unable to trigger a chloride secretory response in intestinal monolayers, it did potentiate the secretory response to cyclic AMP agonists. Uric acid crystals were formed in vivo in the lumen of the gut in response to EPEC and STEC infections. While trying to visualize uric acid crystals formed during EPEC and STEC infections, we noticed that uric acid crystals became enmeshed in the neutrophilic extracellular traps (NETs) produced from host cells in response to bacteria in cultured cell systems and in the intestine in vivo Uric acid levels in the gut lumen increased in response to exogenous DNA, and these increases were enhanced by the actions of DNase I. Interestingly, addition of DNase I reduced the numbers of EPEC bacteria recovered after a 20-h infection and protected against EPEC-induced histologic damage.
Asunto(s)
Infecciones por Escherichia coli/metabolismo , Ácido Úrico/metabolismo , Animales , Línea Celular , Colforsina/farmacología , Escherichia coli Enterohemorrágica , Hormonas Gastrointestinales/farmacología , Humanos , Intestinos , Péptidos Natriuréticos/farmacología , Conejos , Escherichia coli Shiga-Toxigénica , Ácido Úrico/farmacología , Xantina Oxidasa/metabolismoRESUMEN
OBJECTIVE: We characterized the vasodilatory effects of ANP, BNP, and CNP in human subcutaneous arterioles in vitro and the cutaneous microcirculation in vivo. METHODS: The in vitro experiments were performed using wire myography and the responses were characterized by the use of inhibitors for nitric oxide (L-NAME), prostaglandin synthesis (indomethacin), or the endothelium-derived hyperpolarization factor. In vivo, the vasorelaxant effect of iontophoretically administrated BNP or CNP was measured with a noninvasive laser Doppler technique. Involvement of nitric oxide or prostaglandins was assessed by L-NAME or indomethacin given by iontophoresis. RESULTS: In vitro all three peptides showed significant vasodilatation with the efficacy order: CNP > BNP = ANP. The BNP-induced vasodilatation, but not that of ANP or CNP, was significantly reduced by pretreatment with indomethacin or L-NAME. In vivo administration of BNP induced a marked vasodilatory response that was attenuated by local pretreatment of L-NAME. Indomethacin by itself resulted in increased cutaneous perfusion. CONCLUSIONS: NPs are potent vasodilators in the human subcutaneous circulation. The response to BNP differs from that of the other peptides as it seems dependent on cyclooxygenase products and nitric oxide.
Asunto(s)
Microcirculación/efectos de los fármacos , Péptidos Natriuréticos/farmacología , Vasodilatación/efectos de los fármacos , Arteriolas/efectos de los fármacos , Factor Natriurético Atrial/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Humanos , Péptido Natriurético Encefálico/farmacología , Péptido Natriurético Tipo-C/farmacología , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/fisiología , Piel/irrigación sanguíneaRESUMEN
Teleosts living in seawater continually absorb water across the intestine to compensate for branchial water loss to the environment. The present study reveals that the Gulf toadfish (Opsanus beta) rectum plays a comparable role to the posterior intestine in ion and water absorption. However, the posterior intestine appears to rely more on SLC26a6 (a HCO3 (-)/Cl(-) antiporter) and the rectum appears to rely on NKCC2 (SLC12a1) for the purposes of solute-coupled water absorption. The present study also demonstrates that the rectum responds to renoguanylin (RGN), a member of the guanylin family of peptides that alters the normal osmoregulatory processes of the distal intestine, by inhibited water absorption. RGN decreases rectal water absorption more greatly than in the posterior intestine and leads to net Na(+) and Cl(-) secretion, and a reversal of the absorptive short-circuit current (ISC). It is hypothesized that maintaining a larger fluid volume within the distal segments of intestinal tract facilitates the removal of CaCO3 precipitates and other solids from the intestine. Indeed, the expression of the components of the Cl(-)-secretory response, apical CFTR, and basolateral NKCC1 (SLC12a2), are upregulated in the rectum of the Gulf toadfish after 96 h in 60 ppt, an exposure that increases CaCO3 precipitate formation relative to 35 ppt. Moreover, the downstream intracellular effects of RGN appear to directly inhibit ion absorption by NKCC2 and anion exchange by SLC26a6. Overall, the present findings elucidate key electrophysiological differences between the posterior intestine and rectum of Gulf toadfish and the potent regulatory role renoguanylin plays in osmoregulation.
Asunto(s)
Translocador 3 del Nucleótido Adenina/metabolismo , Batrachoidiformes/metabolismo , Hormonas Gastrointestinales/farmacología , Péptidos Natriuréticos/farmacología , Osmorregulación/efectos de los fármacos , Recto/efectos de los fármacos , Animales , Bicarbonatos/metabolismo , Transporte Biológico Activo/efectos de los fármacos , Carbonato de Calcio/farmacología , Cloruros/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Sodio/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Agua/metabolismoRESUMEN
Natriuretic peptides (NPs) are potent vasoactive hormones, which maintain pressure-volume homoeostasis. Snake venom NPs exhibit distinct biological activity compared with mammalian NPs due to subtle changes in their sequences. We recently identified a new NP from krait venom (KNP), with an unusual 38-residue long C-terminal tail, which has a propensity to form an α-helix. KNP mediates vasodilation via NP receptor (NPR) independent mechanisms on pre-contracted aortic strips in contrast with classical NPs. The infusion of KNP in anaesthetized rats resulted in a prolonged and sustained drop in blood pressure (BP) and heart rate (HR) with no renal effects in contrast with mammalian counterparts. Deletion mutant studies have revealed the presence of two functional segments in KNP, namely Ring and Helix. Although the Ring interacts with NPR, its contribution to the activity of KNP is shown to be negligible as both KNP and Helix elicit equipotent endothelium-dependent vasorelaxation. Further, KNP and Helix signalled through endothelial nitric oxide (NO) to mediate NPR-independent vasodilation. Thus, KNP exhibits non-canonical characteristics through its C-terminal tail, despite a functional NP ring. The present study has altered the paradigm of NP biology through the understanding of structure-function relationships and may serve as a lead for the design of novel hypotensive agents.