Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.066
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Pathog ; 20(2): e1011942, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38408092

RESUMEN

Highly pathogenic avian influenza viruses (HPAIVs) cause severe hemorrhagic disease in terrestrial poultry and are a threat to the poultry industry, wild life, and human health. HPAIVs arise from low pathogenic avian influenza viruses (LPAIVs), which circulate in wild aquatic birds. HPAIV emergence is thought to occur in poultry and not wild aquatic birds, but the reason for this species-restriction is not known. We hypothesized that, due to species-specific tropism and replication, intrahost HPAIV selection is favored in poultry and disfavored in wild aquatic birds. We tested this hypothesis by co-inoculating chickens, representative of poultry, and ducks, representative of wild aquatic birds, with a mixture of H7N7 HPAIV and LPAIV, mimicking HPAIV emergence in an experimental setting. Virus selection was monitored in swabs and tissues by RT-qPCR and immunostaining of differential N-terminal epitope tags that were added to the hemagglutinin protein. HPAIV was selected in four of six co-inoculated chickens, whereas LPAIV remained the major population in co-inoculated ducks on the long-term, despite detection of infectious HPAIV in tissues at early time points. Collectively, our data support the hypothesis that HPAIVs are more likely to be selected at the intrahost level in poultry than in wild aquatic birds and point towards species-specific differences in HPAIV and LPAIV tropism and replication levels as possible explanations.


Asunto(s)
Subtipo H7N7 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Humanos , Pollos , Patos , Virus de la Influenza A/genética , Animales Salvajes , Aves de Corral
2.
J Immunol ; 213(2): 187-203, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38829131

RESUMEN

The RING finger (RNF) family, a group of E3 ubiquitin ligases, plays multiple essential roles in the regulation of innate immunity and resistance to viral infection in mammals. However, it is still unclear whether RNF proteins affect the production of IFN-I and the replication of avian influenza virus (AIV) in ducks. In this article, we found that duck RNF216 (duRNF216) inhibited the duRIG-I signaling pathway. Conversely, duRNF216 deficiency enhanced innate immune responses in duck embryonic fibroblasts. duRNF216 did not interacted with duRIG-I, duMDA5, duMAVS, duSTING, duTBK1, or duIRF7 in the duck RIG-I pathway. However, duRNF216 targeted duTRAF3 and inhibited duMAVS in the recruitment of duTRAF3 in a dose-dependent manner. duRNF216 catalyzed K48-linked polyubiquitination of duck TRAF3, which was degraded by the proteasome pathway. Additionally, AIV PB1 protein competed with duTRAF3 for binding to duRNF216 to reduce degradation of TRAF3 by proteasomes in the cytoplasm, thereby slightly weakening duRNF216-mediated downregulation of IFN-I. Moreover, although duRNF216 downregulated the IFN-ß expression during virus infection, the expression level of IFN-ß in AIV-infected duck embryonic fibroblasts overexpressing duRNF216 was still higher than that in uninfected cells, which would hinder the viral replication. During AIV infection, duRNF216 protein targeted the core protein PB1 of viral polymerase to hinder viral polymerase activity and viral RNA synthesis in the nucleus, ultimately strongly restricting viral replication. Thus, our study reveals a new mechanism by which duRNF216 downregulates innate immunity and inhibits AIV replication in ducks. These findings broaden our understanding of the mechanisms by which the duRNF216 protein affects AIV replication in ducks.


Asunto(s)
Patos , Inmunidad Innata , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Transducción de Señal , Ubiquitina-Proteína Ligasas , Replicación Viral , Animales , Patos/inmunología , Patos/virología , Replicación Viral/inmunología , Transducción de Señal/inmunología , Gripe Aviar/inmunología , Gripe Aviar/virología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/fisiología , Inmunidad Innata/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Fibroblastos/inmunología , Fibroblastos/virología , Proteínas Aviares/inmunología , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Ubiquitinación , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/inmunología
3.
Cell ; 147(2): 423-35, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22000019

RESUMEN

RIG-I is a key innate immune pattern-recognition receptor that triggers interferon expression upon detection of intracellular 5'triphosphate double-stranded RNA (5'ppp-dsRNA) of viral origin. RIG-I comprises N-terminal caspase activation and recruitment domains (CARDs), a DECH helicase, and a C-terminal domain (CTD). We present crystal structures of the ligand-free, autorepressed, and RNA-bound, activated states of RIG-I. Inactive RIG-I has an open conformation with the CARDs sequestered by a helical domain inserted between the two helicase moieties. ATP and dsRNA binding induce a major rearrangement to a closed conformation in which the helicase and CTD bind the blunt end 5'ppp-dsRNA with perfect complementarity but incompatibly with continued CARD binding. We propose that after initial binding of 5'ppp-dsRNA to the flexibly linked CTD, co-operative tight binding of ATP and RNA to the helicase domain liberates the CARDs for downstream signaling. These findings significantly advance our molecular understanding of the activation of innate immune signaling helicases.


Asunto(s)
Patos/metabolismo , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Receptores de Reconocimiento de Patrones/química , Receptores de Ácido Retinoico/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Pollos/inmunología , Patos/inmunología , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína , ARN Bicatenario/inmunología , ARN Viral/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/inmunología
4.
Proc Natl Acad Sci U S A ; 120(12): e2212035120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36913571

RESUMEN

Recent studies have suggested that protected areas often fail to conserve target species. However, the efficacy of terrestrial protected areas is difficult to measure, especially for highly vagile species like migratory birds that may move between protected and unprotected areas throughout their lives. Here, we use a 30-y dataset of detailed demographic data from a migratory waterbird, the Whooper swan (Cygnus cygnus), to assess the value of nature reserves (NRs). We assess how demographic rates vary at sites with varying levels of protection and how they are influenced by movements between sites. Swans had a lower breeding probability when wintering inside NRs than outside but better survival for all age classes, generating a 30-fold higher annual growth rate within NRs. There was also a net movement of individuals from NRs to non-NRs. By combining these demographic rates and estimates of movement (into and out of NRs) into population projection models, we show that the NRs should help to double the population of swans wintering in the United Kingdom by 2030. These results highlight the major effect that spatial management can have on species conservation, even when the areas protected are relatively small and only used during short periods of the life cycle.


Asunto(s)
Migración Animal , Anseriformes , Humanos , Animales , Aves , Patos , Estaciones del Año , Demografía
5.
J Virol ; 98(10): e0049724, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39345142

RESUMEN

Duck circovirus (DuCV) is widely recognized as a prominent virus in China's duck farming industry, known for its ability to cause persistent infections and significant immunosuppression, which can lead to an increased susceptibility to secondary infections, posing a significant threat to the duck industry. Moreover, clinical evidence also indicates the potential vertical transmission of the virus through duck embryos to subsequent generations of ducklings. However, the limited availability of suitable cell lines for in vitro cultivation of DuCV has hindered further investigation into the molecular mechanisms underlying its infection and pathogenicity. In this study, we observed that oral DuCV infection in female breeding ducks can lead to oviduct, ovarian, and follicular infections. Subsequently, the infection can be transmitted to the fertilized eggs, resulting in the emergence of virus-carrying ducklings upon hatching. In contrast, the reproductive organs of male breeding ducks were unaffected by the virus, thus confirming that vertical transmission of DuCV primarily occurs through infection in female breeding ducks. By analyzing transcriptome sequencing data from the oviduct, we focused on claudin-2, a gene encoding the tight junction protein CLDN2 located on the cell membrane, which showed significantly increased expression in DuCV-infected oviducts of female breeding ducks. Notably, CLDN2 was confirmed to interact with the unique structural protein of DuCV, namely capsid protein (Cap), through a series of experimental approaches including co-immunoprecipitation (co-IP), GST pull-down, immunofluorescence, and adhesion-blocking assays. Furthermore, we demonstrated that the Cap protein binds to the extracellular loop structural domains EL1 and EL2 of CLDN2. Subsequently, by constructing a series of truncated bodies of the CLDN2 promoter region, we identified the transcription factor SP5 for CLDN2. Moreover, we found that DuCV infection triggers the activation of the MAPK-ERK signaling pathway in DEF cells and ducks, leading to an upregulation of SP5 and CLDN2 expression. This process ultimately leads to the transportation of mature CLDN2 to the cell surface, thereby facilitating increased virus adherence to the target organs. In conclusion, we discovered that DuCV utilizes host CLDN2 proteins to enhance adhesion and infection in oviducts and other target organs. Furthermore, we elucidated the signaling pathways involved in the interaction between DuCV Cap proteins and CLDN2, which provides valuable insights into the molecular mechanism underlying DuCV's infection and vertical transmission. IMPORTANCE: Although duck circovirus (DuCV) poses a widespread infection and a serious hazard to the duck industry, the molecular mechanisms underlying DuCV infection and transmission remain elusive. We initially demonstrated vertical transmission of DuCV through female breeding ducks by simulating natural infection. Furthermore, a differentially expressed membrane protein CLDN2 was identified on the DuCV-infected oviduct of female ducks, and its extracellular loop structural domains EL1 and EL2 were identified as the interaction sites of DuCV Cap proteins. Moreover, the binding of DuCV Cap to CLDN2 triggered the intracellular MAPK-ERK pathway and activated the downstream transcription factor SP5. Importantly, we demonstrated that intracellular Cap also interacts with SP5, leading to upregulation of CLDN2 transcription and facilitating enhanced adherence of DuCV to target tissue, thereby promoting viral infection and transmission. Our study sheds light on the molecular mechanisms underlying vertical transmission of DuCV, highlighting CLDN2 as a promising target for drug development against DuCV infection.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Claudinas , Patos , Sistema de Señalización de MAP Quinasas , Enfermedades de las Aves de Corral , Animales , Patos/virología , Femenino , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/transmisión , Enfermedades de las Aves de Corral/metabolismo , Circovirus/genética , Infecciones por Circoviridae/virología , Infecciones por Circoviridae/veterinaria , Infecciones por Circoviridae/transmisión , Infecciones por Circoviridae/metabolismo , Claudinas/metabolismo , Claudinas/genética , Masculino , Acoplamiento Viral , Transmisión Vertical de Enfermedad Infecciosa/veterinaria
6.
J Virol ; 98(10): e0011924, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39225467

RESUMEN

Between 2013 and 2018, the novel A/Anhui/1/2013 (AH/13)-lineage H7N9 virus caused at least five waves of outbreaks in humans, totaling 1,567 confirmed human cases in China. Surveillance data indicated a disproportionate distribution of poultry infected with this AH/13-lineage virus, and laboratory experiments demonstrated that this virus can efficiently spread among chickens but not among Pekin ducks. The underlying mechanism of this selective transmission remains unclear. In this study, we demonstrated the absence of Neu5Gc expression in chickens across all respiratory and gastrointestinal tissues. However, Neu5Gc expression varied among different duck species and even within the tissues of the same species. The AH/13-lineage viruses exclusively bind to acetylneuraminic acid (Neu5Ac), in contrast to wild waterbird H7 viruses that bind both Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). The level of Neu5Gc expression influences H7 virus replication and facilitates adaptive mutations in these viruses. In summary, our findings highlight the critical role of Neu5Gc in affecting the host range and interspecies transmission dynamics of H7 viruses among avian species.IMPORTANCEMigratory waterfowl, gulls, and shorebirds are natural reservoirs for influenza A viruses (IAVs) that can occasionally spill over to domestic poultry, and ultimately humans. This study showed wild-type H7 IAVs from waterbirds initially bind to glycan receptors terminated with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc). However, after enzootic transmission in chickens, the viruses exclusively bind to Neu5Ac. The absence of Neu5Gc expression in gallinaceous poultry, particularly chickens, exerts selective pressure, shaping IAV populations, and promoting the acquisition of adaptive amino acid substitutions in the hemagglutinin protein. This results in the loss of Neu5Gc binding and an increase in virus transmissibility in gallinaceous poultry, particularly chickens. Consequently, the transmission capability of these poultry-adapted H7 IAVs in wild water birds decreases. Timely intervention, such as stamping out, may help reduce virus adaptation to domestic chicken populations and lower the risk of enzootic outbreaks, including those caused by IAVs exhibiting high pathogenicity.


Asunto(s)
Pollos , Patos , Gripe Aviar , Ácidos Neuramínicos , Replicación Viral , Animales , Gripe Aviar/virología , Gripe Aviar/transmisión , Pollos/virología , Patos/virología , Ácidos Neuramínicos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , China , Humanos , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/transmisión , Enfermedades de las Aves de Corral/metabolismo , Aves de Corral/virología
7.
J Virol ; 98(4): e0194123, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38470143

RESUMEN

Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.


Asunto(s)
Pollos , Patos , Caballos , Virus de la Influenza A , Gripe Aviar , Ácidos Neuramínicos , Animales , Humanos , Pollos/genética , Pollos/metabolismo , Pollos/virología , Patos/genética , Patos/metabolismo , Patos/virología , Epítopos/química , Epítopos/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Caballos/genética , Caballos/metabolismo , Caballos/virología , Virus de la Influenza A/química , Virus de la Influenza A/clasificación , Virus de la Influenza A/metabolismo , Gripe Aviar/genética , Gripe Aviar/transmisión , Gripe Aviar/virología , Mutación , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , Porcinos/virología , Zoonosis Virales/metabolismo , Zoonosis Virales/transmisión , Zoonosis Virales/virología
8.
FASEB J ; 38(13): e23763, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38954404

RESUMEN

Riemerella anatipestifer is a pathogenic bacterium that causes duck serositis and meningitis, leading to significant harm to the duck industry. To escape from the host immune system, the meningitis-causing bacteria must survive and multiply in the bloodstream, relying on specific virulence factors such as capsules. Therefore, it is essential to study the genes involved in capsule biosynthesis in R. anatipestifer. In this study, we successfully constructed gene deletion mutants Δ3820 and Δ3830, targeting the GE296_RS03820 and GE296_RS03830 genes, respectively, using the RA-LZ01 strain as the parental strain. The growth kinetics analysis revealed that these two genes contribute to bacterial growth. Transmission and scanning electron microscopy (TEM and SEM) and silver staining showed that Δ3820 and Δ3830 produced the altered capsules and compounds of capsular polysaccharides (CPSs). Serum resistance test showed the mutants also exhibited reduced C3b deposition and decreased resistance serum killing. In vivo, Δ3820 and Δ3830 exhibited markedly declining capacity to cross the blood-brain barrier, compared to RA-LZ01. These findings indicate that the GE296_RS03820 and GE296_RS03830 genes are involved in CPSs biosynthesis and play a key role in the pathogenicity of R. anatipestifer. Furthermore, Δ3820 and Δ3830 mutants presented a tendency toward higher survival rates from RA-LZ01 challenge in vivo. Additionally, sera from ducklings immunized with the mutants showed cross-immunoreactivity with different serotypes of R. anatipestifer, including 1, 2, 7 and 10. Western blot and SDS-PAGE assays revealed that the altered CPSs of Δ3820 and Δ3830 resulted in the exposure of some conserved proteins playing the key role in the cross-immunoreactivity. Our study clearly demonstrated that the GE296_RS03820 and GE296_RS03830 genes are involved in CPS biosynthesis in R. anatipestifer and the capsule is a target for attenuation in vaccine development.


Asunto(s)
Cápsulas Bacterianas , Patos , Infecciones por Flavobacteriaceae , Riemerella , Riemerella/genética , Riemerella/patogenicidad , Riemerella/metabolismo , Animales , Patos/microbiología , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Enfermedades de las Aves de Corral/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Polisacáridos Bacterianos/biosíntesis , Factores de Virulencia/genética , Eliminación de Gen
9.
J Immunol ; 210(6): 786-794, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36715497

RESUMEN

Mitochondrial antiviral signaling protein (MAVS) is a key adaptor in cellular innate immunity. Ubiquitination plays an important role in regulating MAVS-mediated innate immune responses; however, the molecular mechanisms underlying ubiquitination of MAVS have not been fully elucidated. In this study, we first identified the mitochondria-resident E3 ligase duck membrane-associated RING-CH 8 (duMARCH8) in ducks as a negative regulator of duck MAVS (duMAVS). Overexpression of duMARCH8 impaired the duMAVS-mediated signaling pathway, whereas knockdown of duMARCH8 resulted in the opposite effects. The suppression was due to duMARCH8 interacting with duMAVS and degrading it in a proteasome-dependent manner. We further found that duMARCH8 interacted with the 176-619 regions of duMAVS. Moreover, duMARCH8 catalyzed the K29-linked polyubiquitination of duMAVS at Lys 398 to inhibit the MAVS-mediated signaling pathway. Collectively, our findings reveal a new strategy involving MARCH8 that targets the retinoic acid-inducible gene-I-like receptor signaling pathway to regulate innate immune responses in ducks.


Asunto(s)
Patos , Transducción de Señal , Animales , Proteínas Portadoras/metabolismo , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas Mitocondriales/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(45): e2214344119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322747

RESUMEN

Conventional avian genome editing is mediated by isolation, culture, and genome editing of primordial germ cells (PGCs); screening and propagating the genome-edited PGCs; and transplantation of the PGCs into recipient embryos. The PGC-mediated procedures, however, are technically difficult, and therefore, the conventional method has previously been utilized only in chickens. Here, we generated germline mosaic founder chicken and duck lines without the PGC-mediated procedures by injecting an adenovirus containing the CRISPR-Cas9 system into avian blastoderms. Genome-edited chicken and duck offspring produced from the founders carried different insertion or deletion mutations without mutations in the potential off-target sites. Our data demonstrate successful applications of the adenovirus-mediated method for production of genome-edited chicken and duck lines.


Asunto(s)
Pollos , Edición Génica , Animales , Edición Génica/métodos , Pollos/genética , Patos/genética , Sistemas CRISPR-Cas , Adenoviridae/genética , Células Germinativas
11.
BMC Biol ; 22(1): 31, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317190

RESUMEN

BACKGROUND: The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A virus (IAV), harbors almost all subtypes of IAVs and resists to many IAVs which cause extreme virulence in chicken and human. However, the response of duck's adaptive immune system to IAV infection is poorly characterized due to lack of a detailed gene map of the major histocompatibility complex (MHC). RESULTS: We herein reported a chromosome-scale Beijing duck assembly by integrating Nanopore, Bionano, and Hi-C data. This new reference genome SKLA1.0 covers 40 chromosomes, improves the contig N50 of the previous duck assembly with highest contiguity (ZJU1.0) of more than a 5.79-fold, surpasses the chicken and zebra finch references in sequence contiguity and contains a complete genomic map of the MHC. Our 3D MHC genomic map demonstrated that gene family arrangement in this region was primordial; however, families such as AnplMHCI, AnplMHCIIß, AnplDMB, NKRL (NK cell receptor-like genes) and BTN underwent gene expansion events making this area complex. These gene families are distributed in two TADs and genes sharing the same TAD may work in a co-regulated model. CONCLUSIONS: These observations supported the hypothesis that duck's adaptive immunity had been optimized with expanded and diversified key immune genes which might help duck to combat influenza virus. This work provided a high-quality Beijing duck genome for biological research and shed light on new strategies for AIV control.


Asunto(s)
Patos , Genoma , Animales , Humanos , Patos/genética , Complejo Mayor de Histocompatibilidad/genética , Cromosomas/genética , Familia de Multigenes
12.
Genesis ; 62(1): e23530, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37353984

RESUMEN

Sex is a biological variable important to consider in all biomedical experiments. However, doing so in avian embryos can be challenging as sex can be morphologically indistinguishable. Unlike humans, female birds are the heterogametic sex with Z and W sex chromosomes. The female-specific W chromosome has previously been identified in chick using a species-specific polymerase chain reaction (PCR) technique. We developed a novel reverse transcription quantitative PCR (RT-qPCR) technique that amplifies the W chromosome gene histidine triad nucleotide-binding protein W (HINTW) in chick, quail, and duck. Accuracy of the HINTW RT-qPCR primer set was confirmed in all three species using species-specific PCR, including a novel quail-specific HINTW PCR primer set. Bone development-related gene expression was then analyzed by sex in embryonic lower jaws of duck and quail, as adult duck beak size is known to be sexually dimorphic while quail beak size is not. Trends toward sex differences were found in duck gene expression but not in quail, as expected. With these novel RT-qPCR and PCR embryo sexing methods, sex of chick, quail, and duck embryos can now be assessed by either/both RNA and DNA, which facilitates analysis of sex as a biological variable in studies using these model organisms.


Asunto(s)
Pollos , Codorniz , Animales , Humanos , Femenino , Masculino , Codorniz/genética , Patos/genética , Maxilares
13.
Glycobiology ; 34(3)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38127648

RESUMEN

Influenza A virus (IAV) pandemics result from interspecies transmission events within the avian reservoir and further into mammals including humans. Receptor incompatibility due to differently expressed glycan structures between species has been suggested to limit zoonotic IAV transmission from the wild bird reservoir as well as between different bird species. Using glycoproteomics, we have studied the repertoires of expressed glycan structures with focus on putative sialic acid-containing glycan receptors for IAV in mallard, chicken and tufted duck; three bird species with different roles in the zoonotic ecology of IAV. The methodology used pinpoints specific glycan structures to specific glycosylation sites of identified glycoproteins and was also used to successfully discriminate α2-3- from α2-6-linked terminal sialic acids by careful analysis of oxonium ions released from glycopeptides in tandem MS/MS (MS2), and MS/MS/MS (MS3). Our analysis clearly demonstrated that all three bird species can produce complex N-glycans including α2-3-linked sialyl Lewis structures, as well as both N- and O- glycans terminated with both α2-3- and α2-6-linked Neu5Ac. We also found the recently identified putative IAV receptor structures, Man-6P N-glycopeptides, in all tissues of the three bird species. Furthermore, we found many similarities in the repertoires of expressed receptors both between the bird species investigated and to previously published data from pigs and humans. Our findings of sialylated glycan structures, previously anticipated to be mammalian specific, in all three bird species may have major implications for our understanding of the role of receptor incompatibility in interspecies transmission of IAV.


Asunto(s)
Virus de la Influenza A , Humanos , Animales , Porcinos , Virus de la Influenza A/metabolismo , Patos/metabolismo , Pollos/metabolismo , Espectrometría de Masas en Tándem , Glicopéptidos/metabolismo , Polisacáridos/metabolismo , Mamíferos/metabolismo
14.
BMC Genomics ; 25(1): 429, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689208

RESUMEN

BACKGROUND: Expression quantitative trait loci (eQTL) studies aim to understand the influence of genetic variants on gene expression. The colocalization of eQTL mapping and GWAS strategy could help identify essential candidate genes and causal DNA variants vital to complex traits in human and many farm animals. However, eQTL mapping has not been conducted in ducks. It is desirable to know whether eQTLs within GWAS signals contributed to duck economic traits. RESULTS: In this study, we conducted an eQTL analysis using publicly available RNA sequencing data from 820 samples, focusing on liver, muscle, blood, adipose, ovary, spleen, and lung tissues. We identified 113,374 cis-eQTLs for 12,266 genes, a substantial fraction 39.1% of which were discovered in at least two tissues. The cis-eQTLs of blood were less conserved across tissues, while cis-eQTLs from any tissue exhibit a strong sharing pattern to liver tissue. Colocalization between cis-eQTLs and genome-wide association studies (GWAS) of 50 traits uncovered new associations between gene expression and potential loci influencing growth and carcass traits. SRSF4, GSS, and IGF2BP1 in liver, NDUFC2 in muscle, ELF3 in adipose, and RUNDC1 in blood could serve as the candidate genes for duck growth and carcass traits. CONCLUSIONS: Our findings highlight substantial differences in genetic regulation of gene expression across duck primary tissues, shedding light on potential mechanisms through which candidate genes may impact growth and carcass traits. Furthermore, this availability of eQTL data offers a valuable resource for deciphering further genetic association signals that may arise from ongoing extensive endeavors aimed at enhancing duck production traits.


Asunto(s)
Patos , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Patos/genética , Patos/crecimiento & desarrollo , Patos/metabolismo , Fenotipo , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple
15.
BMC Genomics ; 25(1): 17, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166615

RESUMEN

BACKGROUND: Specific pathogen-free ducks are a valuable laboratory resource for waterfowl disease research and poultry vaccine development. High throughput sequencing allows the systematic identification of structural variants in genomes. Copy number variation (CNV) can explain the variation of important duck genetic traits. Herein, the genome-wide CNVs of the three experimental duck species in China (Jinding ducks (JD), Shaoxing ducks (SX), and Fujian Shanma ducks (SM)) were characterized using resequencing to determine their genetic characteristics and selection signatures. RESULTS: We obtained 4,810 CNV regions (CNVRs) by merging 73,012 CNVs, covering 4.2% of the duck genome. Functional analysis revealed that the shared CNVR-harbored genes were significantly enriched for 31 gene ontology terms and 16 Kyoto Encyclopedia of Genes and Genomes pathways (e.g., olfactory transduction and immune system). Based on the genome-wide fixation index for each CNVR, growth (SPAG17 and PTH1R), disease resistance (CATHL3 and DMBT1), and thermoregulation (TRPC4 and SLIT3) candidate genes were identified in strongly selected signatures specific to JD, SM, and SX, respectively. CONCLUSIONS: In conclusion, we investigated the genome-wide distribution of experimental duck CNVs, providing a reference to establish the genetic basis of different phenotypic traits, thus contributing to the management of experimental animal genetic resources.


Asunto(s)
Variaciones en el Número de Copia de ADN , Patos , Animales , Patos/genética , Genoma , Análisis de Secuencia de ADN , Fenotipo , Polimorfismo de Nucleótido Simple
16.
BMC Genomics ; 25(1): 486, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755558

RESUMEN

BACKGROUND: Amino acids are the basic components of protein and an important index to evaluate meat quality. With the rapid development of genomics, candidate regions and genes affecting amino acid content in livestock and poultry have been gradually revealed. Hence, genome-wide association study (GWAS) can be used to screen candidate loci associated with amino acid content in duck meat. RESULT: In the current study, the content of 16 amino acids was detected in 358 duck breast muscles. The proportion of Glu to the total amino acid content was relatively high, and the proportion was 0.14. However, the proportion of Met content was relatively low, at just 0.03. By comparative analysis, significant differences were found between males and females in 3 amino acids, including Ser, Met, and Phe. In addition, 12 SNPs were significantly correlated with Pro content by GWAS analysis, and these SNPs were annotated by 7 protein-coding genes; 8 significant SNPs were associated with Tyr content, and these SNPs were annotated by 6 protein-coding genes. At the same time, linkage disequilibrium (LD) analysis was performed on these regions with significant signals. The results showed that three SNPs in the 55-56 Mbp region of chromosome 3 were highly correlated with the leader SNP (chr3:55526954) that affected Pro content (r2 > 0.6). Similarly, LD analysis showed that there were three SNPs in the 21.2-21.6 Mbp region of chromosome 13, which were highly correlated with leader SNP (chr13:21421661) (r2 > 0.6). Moreover, Through functional enrichment analysis of all candidate genes. The results of GO enrichment analysis showed that several significant GO items were associated with amino acid transport function, including amino acid transmembrane transport and glutamine transport. The results further indicate that these candidate genes are closely associated with amino acid transport. Among them, key candidate genes include SLC38A1. For KEGG enrichment analysis, CACNA2D3 and CACNA1D genes were covered by significant pathways. CONCLUSION: In this study, GWAS analysis found a total of 28 significant SNPs affecting amino acid content. Through gene annotation, a total of 20 candidate genes were screened. In addition, Through LD analysis and enrichment analysis, we considered that SERAC1, CACNA2D3 and SLC38A1 genes are important candidate genes affecting amino acid content in duck breast muscle.


Asunto(s)
Aminoácidos , Patos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Animales , Patos/genética , Patos/metabolismo , Aminoácidos/metabolismo , Sitios de Carácter Cuantitativo , Desequilibrio de Ligamiento , Femenino , Masculino , Sitios Genéticos
17.
BMC Genomics ; 25(1): 333, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570739

RESUMEN

BACKGROUND: The closed poultry houses integrated with a longitudinal water curtain cooling system (LWCCS) are widely used in modern poultry production. This study showed the variations in environmental conditions in closed houses integrated with a longitudinal water curtain cooling system. We evaluated the influence of different environmental conditions on duck growth performance and the transcriptome changes of immune organs, including the bursa of Fabricius and the spleen. RESULT: This study investigated the slaughter indicators and immune organ transcriptomes of 52-day-old Cherry Valley ducks by analyzing the LWCC at different locations (water curtain end, middle position, and fan cooling end). The results showed that the cooling effect of the LWCCS was more evident from 10:00 a.m. -14:00. And from the water curtain end to the fan cooling end, the hourly average temperature differently decreased by 0.310℃, 0.450℃, 0.480℃, 0.520℃, and 0.410℃, respectively (P < 0.05). The daily and hourly average relative humidity decreased from the water curtain end to the fan cooling end, dropping by 7.500% and 8.200%, respectively (P < 0.01). We also observed differences in production performance, such as dressing weight, half-eviscerated weight, skin fat rate, and percentage of abdominal fat (P < 0.01), which may have been caused by environmental conditions. RNA-sequencing (RNA-seq) revealed 211 and 279 differentially expressed genes (DEGs) in the ducks' bursa of Fabricius and spleen compared between the water curtain end and fan cooling end, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the two organs showed the DEGs were mainly enriched in cytokine-cytokine receptor interaction, integral component of membrane, Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway, etc. Our results implied that full-closed poultry houses integrated with LWCCS could potentially alter micro-environments (water curtain vs. fan cooling), resulting in ducks experiencing various stressful situations that eventually affect their immunity and production performance. CONCLUSION: In this study, our results indicated that uneven distributions of longitudinal environmental factors caused by LWCCS would affect the dressed weight, breast muscle weight, skin fat rate, and other product performance. Moreover, the expression of immune-related genes in the spleen and bursa of ducks could be affected by the LWCCS. This provides a new reference to optimize the use of LWCCS in conjunction with close duck houses in practical production.


Asunto(s)
Patos , Transcriptoma , Animales , Patos/genética , Patos/metabolismo , Transducción de Señal , Citocinas/genética , Perfilación de la Expresión Génica
18.
BMC Genomics ; 25(1): 551, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824564

RESUMEN

Because number of matured muscle fibers in poultry does not increase after birth, the meat yield is mainly determined during embryogenesis. We previously indicated breast muscle grew rapidly from 18th day after hatching (E18) to E27, and almost stopped from E27 to E34 of Jiaji ducks, while the mechanism is unclear. This study utilized RNA-seq to explore the related genes of muscle development and their relationship with small molecule metabolites at E18, E27 and E34 of Jiaji ducks. Several thousand differentially expressed genes (DEGs) were detected among E18, E27 and E34. DEGs expression profiles included 8 trend maps, among which trend 1 was opposite to and trend 6 was consistent with breast muscle development trend of Jiaji ducks. Through joint analysis between trend 1 of DEGs and trend 1 of differential metabolites (DEMs), protein digestion and absorption pathway stood out. The decrease of COL8A2 gene expression will lead to the decrease of arginine content, which will inhibit the development of breast muscle in embryonic Jiaji duck. Similarly, joint analysis between trend 6 of DEGs and trend 6 of DEMs indicated the increase of GAMT gene expression will cause the increase of proline content, and then promote the development of breast muscle of Jiaji duck in embryonic period. These results will be helpful for further understanding the mechanism of muscle yields of Jiaji ducks.


Asunto(s)
Patos , Metabolómica , Animales , Patos/metabolismo , Patos/genética , Patos/embriología , Metabolómica/métodos , Perfilación de la Expresión Génica , Transcriptoma , Músculo Esquelético/metabolismo , Regulación del Desarrollo de la Expresión Génica
19.
BMC Genomics ; 25(1): 57, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38216873

RESUMEN

BACKGROUND: The disease caused by Riemerella anatipestifer (R. anatipestifer, RA) results in large economic losses to the global duck industry every year. Serovar-related genomic variation, such as the O-antigen and capsular polysaccharide (CPS) gene clusters, has been widely used for serotyping in many gram-negative bacteria. RA has been classified into at least 21 serovars based on slide agglutination, but the molecular basis of serotyping is unknown. In this study, we performed a pan-genome-wide association study (Pan-GWAS) to identify the genetic loci associated with RA serovars. RESULTS: The results revealed a significant association between the putative CPS synthesis gene locus and the serological phenotype. Further characterization of the CPS gene clusters in 11 representative serovar strains indicated that they were highly diverse and serovar-specific. The CPS gene cluster contained the key genes wzx and wzy, which are involved in the Wzx/Wzy-dependent pathway of CPS synthesis. Similar CPS loci have been found in some other species within the family Weeksellaceae. We have also shown that deletion of the wzy gene in RA results in capsular defects and cross-agglutination. CONCLUSIONS: This study indicates that the CPS synthesis gene cluster of R. anatipestifer is a serotype-specific genetic locus. Importantly, our finding provides a new perspective for the systematic analysis of the genetic basis of the R anatipestifer serovars and a potential target for establishing a complete molecular serotyping scheme.


Asunto(s)
Enfermedades de las Aves de Corral , Riemerella , Animales , Serogrupo , Estudio de Asociación del Genoma Completo , Riemerella/genética , Patos/genética , Patos/microbiología , Enfermedades de las Aves de Corral/microbiología
20.
BMC Genomics ; 25(1): 927, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363174

RESUMEN

The common pochard (Aythya ferina) is a freshwater diving duck found in the Palearctic region that has been classified as vulnerable by the IUCN due to continuous and rapid population declines across their distribution. To gain a better understanding of its genetic mechanism of adaptive evolution, we successfully sequenced and assembled the first high-quality chromosome-level genome of A. ferina using Illumina, Nanopore and Hi-C sequencing technologies. A total assembly length of 1,130.78 Mbp was obtained, with over 98.81% (1,117.37Mbp) of sequence anchored to 35 pseudo-chromosomes. We predicted 17,232 protein-coding genes, 95.9% of which were functionally annotated. We identified 339 expanded and 937 contracted gene families in the genome of A. ferina, and detected 95 genes that have been positively selected. The significantly enriched Gene Ontology and enriched pathways were related to energy metabolism, immune, nervous, and sensory systems, suggests that these factors likely played an important role in its evolution. Importantly, we recovered signatures of positive selection on genes related to vasoconstriction that may be associated with thermoregulatory adaptations of A. ferina for underwater diving. Overall, the high-quality genome assembly and annotation in this study provides valuable genomic resources for ecological and evolutionary studies, as well as toward the conservation of A. ferina.


Asunto(s)
Buceo , Patos , Evolución Molecular , Genoma , Animales , Patos/genética , Cromosomas/genética , Adaptación Fisiológica/genética , Anotación de Secuencia Molecular , Genómica/métodos , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA