Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.439
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 183(2): 537-548.e12, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33064989

RESUMEN

Sequential activation of neurons has been observed during various behavioral and cognitive processes, but the underlying circuit mechanisms remain poorly understood. Here, we investigate premotor sequences in HVC (proper name) of the adult zebra finch forebrain that are central to the performance of the temporally precise courtship song. We use high-density silicon probes to measure song-related population activity, and we compare these observations with predictions from a range of network models. Our results support a circuit architecture in which heterogeneous delays between sequentially active neurons shape the spatiotemporal patterns of HVC premotor neuron activity. We gauge the impact of several delay sources, and we find the primary contributor to be slow conduction through axonal collaterals within HVC, which typically adds between 1 and 7.5 ms for each link within the sequence. Thus, local axonal "delay lines" can play an important role in determining the dynamical repertoire of neural circuits.


Asunto(s)
Pinzones/fisiología , Prosencéfalo/fisiología , Vocalización Animal/fisiología , Comunicación Animal , Animales , Axones , Masculino , Corteza Motora/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología
2.
Nature ; 628(8006): 117-121, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509376

RESUMEN

Vocal learning in songbirds is thought to have evolved through sexual selection, with female preference driving males to develop large and varied song repertoires1-3. However, many songbird species learn only a single song in their lifetime4. How sexual selection drives the evolution of single-song repertoires is not known. Here, by applying dimensionality-reduction techniques to the singing behaviour of zebra finches (Taeniopygia guttata), we show that syllable spread in low-dimensional feature space explains how single songs function as honest indicators of fitness. We find that this Gestalt measure of behaviour captures the spectrotemporal distinctiveness of song syllables in zebra finches; that females strongly prefer songs that occupy more latent space; and that matching path lengths in low-dimensional space is difficult for young males. Our findings clarify how simple vocal repertoires may have evolved in songbirds and indicate divergent strategies for how sexual selection can shape vocal learning.


Asunto(s)
Pinzones , Aprendizaje , Preferencia en el Apareamiento Animal , Vocalización Animal , Animales , Femenino , Masculino , Cortejo , Pinzones/fisiología , Aprendizaje/fisiología , Vocalización Animal/fisiología , Preferencia en el Apareamiento Animal/fisiología
3.
Nature ; 616(7955): 132-136, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36949189

RESUMEN

While motor cortical circuits contain information related to specific movement parameters1, long-range inputs also have a critical role in action execution2,3. Thalamic projections can shape premotor activity2-6 and have been suggested7 to mediate the selection of short, stereotyped actions comprising more complex behaviours8. However, the mechanisms by which thalamus interacts with motor cortical circuits to execute such movement sequences remain unknown. Here we find that thalamic drive engages a specific subpopulation of premotor neurons within the zebra finch song nucleus HVC (proper name) and that these inputs are critical for the progression between vocal motor elements (that is, 'syllables'). In vivo two-photon imaging of thalamic axons in HVC showed robust song-related activity, and online perturbations of thalamic function caused song to be truncated at syllable boundaries. We used thalamic stimulation to identify a sparse set of thalamically driven neurons within HVC, representing ~15% of the premotor neurons within that network. Unexpectedly, this population of putative thalamorecipient neurons is robustly active immediately preceding syllable onset, leading to the possibility that thalamic input can initiate individual song components through selectively targeting these 'starter cells'. Our findings highlight the motor thalamus as a director of cortical dynamics in the context of an ethologically relevant behavioural sequence.


Asunto(s)
Cortejo , Pinzones , Tálamo , Vocalización Animal , Animales , Pinzones/fisiología , Neuronas/fisiología , Tálamo/citología , Tálamo/fisiología , Vocalización Animal/fisiología , Corteza Motora/citología , Corteza Motora/fisiología , Vías Nerviosas/fisiología , Encéfalo/citología , Encéfalo/fisiología , Masculino
4.
Nature ; 623(7986): 375-380, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37758948

RESUMEN

Hunger, thirst, loneliness and ambition determine the reward value of food, water, social interaction and performance outcome1. Dopamine neurons respond to rewards meeting these diverse needs2-8, but it remains unclear how behaviour and dopamine signals change as priorities change with new opportunities in the environment. One possibility is that dopamine signals for distinct drives are routed to distinct dopamine pathways9,10. Another possibility is that dopamine signals in a given pathway are dynamically tuned to rewards set by the current priority. Here we used electrophysiology and fibre photometry to test how dopamine signals associated with quenching thirst, singing a good song and courting a mate change as male zebra finches (Taeniopygia guttata) were provided with opportunities to retrieve water, evaluate song performance or court a female. When alone, water reward signals were observed in two mesostriatal pathways but singing-related performance error signals were routed to Area X, a striatal nucleus specialized for singing. When courting a female, water seeking was reduced and dopamine responses to both water and song performance outcomes diminished. Instead, dopamine signals in Area X were driven by female calls timed with the courtship song. Thus the dopamine system handled coexisting drives by routing vocal performance and social feedback signals to a striatal area for communication and by flexibly re-tuning to rewards set by the prioritized drive.


Asunto(s)
Encéfalo , Cortejo , Dopamina , Neuronas Dopaminérgicas , Retroalimentación Fisiológica , Retroalimentación Psicológica , Pinzones , Animales , Femenino , Masculino , Dopamina/metabolismo , Pinzones/fisiología , Vocalización Animal/fisiología , Agua , Retroalimentación Fisiológica/fisiología , Ingestión de Líquidos/fisiología , Sed/fisiología , Neuronas Dopaminérgicas/metabolismo , Electrofisiología , Encéfalo/citología , Encéfalo/fisiología , Comunicación , Recompensa , Retroalimentación Psicológica/fisiología
5.
Nature ; 599(7886): 635-639, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34671166

RESUMEN

Musical and athletic skills are learned and maintained through intensive practice to enable precise and reliable performance for an audience. Consequently, understanding such complex behaviours requires insight into how the brain functions during both practice and performance. Male zebra finches learn to produce courtship songs that are more varied when alone and more stereotyped in the presence of females1. These differences are thought to reflect song practice and performance, respectively2,3, providing a useful system in which to explore how neurons encode and regulate motor variability in these two states. Here we show that calcium signals in ensembles of spiny neurons (SNs) in the basal ganglia are highly variable relative to their cortical afferents during song practice. By contrast, SN calcium signals are strongly suppressed during female-directed performance, and optogenetically suppressing SNs during practice strongly reduces vocal variability. Unsupervised learning methods4,5 show that specific SN activity patterns map onto distinct song practice variants. Finally, we establish that noradrenergic signalling reduces vocal variability by directly suppressing SN activity. Thus, SN ensembles encode and drive vocal exploration during practice, and the noradrenergic suppression of SN activity promotes stereotyped and precise song performance for an audience.


Asunto(s)
Pinzones/fisiología , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Vocalización Animal/fisiología , Neuronas Adrenérgicas/metabolismo , Animales , Ganglios Basales/citología , Ganglios Basales/fisiología , Señalización del Calcio , Femenino , Masculino , Modelos Neurológicos
6.
Proc Natl Acad Sci U S A ; 121(18): e2312323121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38621117

RESUMEN

Zebra finches, a species of songbirds, learn to sing by creating an auditory template through the memorization of model songs (sensory learning phase) and subsequently translating these perceptual memories into motor skills (sensorimotor learning phase). It has been traditionally believed that babbling in juvenile birds initiates the sensorimotor phase while the sensory phase of song learning precedes the onset of babbling. However, our findings challenge this notion by demonstrating that testosterone-induced premature babbling actually triggers the onset of the sensory learning phase instead. We reveal that juvenile birds must engage in babbling and self-listening to acquire the tutor song as the template. Notably, the sensory learning of the template in songbirds requires motor vocal activity, reflecting the observation that prelinguistic babbling in humans plays a crucial role in auditory learning for language acquisition.


Asunto(s)
Pinzones , Animales , Humanos , Vocalización Animal , Aprendizaje , Desarrollo del Lenguaje
7.
Nature ; 577(7791): 526-530, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915383

RESUMEN

Changes in behaviour resulting from environmental influences, development and learning1-5 are commonly quantified on the basis of a few hand-picked features2-4,6,7 (for example, the average pitch of acoustic vocalizations3), assuming discrete classes of behaviours (such as distinct vocal syllables)2,3,8-10. However, such methods generalize poorly across different behaviours and model systems and may miss important components of change. Here we present a more-general account of behavioural change that is based on nearest-neighbour statistics11-13, and apply it to song development in a songbird, the zebra finch3. First, we introduce the concept of 'repertoire dating', whereby each rendition of a behaviour (for example, each vocalization) is assigned a repertoire time, reflecting when similar renditions were typical in the behavioural repertoire. Repertoire time isolates the components of vocal variability that are congruent with long-term changes due to vocal learning and development, and stratifies the behavioural repertoire into 'regressions', 'anticipations' and 'typical renditions'. Second, we obtain a holistic, yet low-dimensional, description of vocal change in terms of a stratified 'behavioural trajectory', revealing numerous previously unrecognized components of behavioural change on fast and slow timescales, as well as distinct patterns of overnight consolidation1,2,4,14,15 across the behavioral repertoire. We find that diurnal changes in regressions undergo only weak consolidation, whereas anticipations and typical renditions consolidate fully. Because of its generality, our nonparametric description of how behaviour evolves relative to itself-rather than to a potentially arbitrary, experimenter-defined goal2,3,14,16-appears well suited for comparing learning and change across behaviours and species17,18, as well as biological and artificial systems5.


Asunto(s)
Pinzones/fisiología , Aprendizaje/fisiología , Modelos Neurológicos , Desempeño Psicomotor/fisiología , Vocalización Animal/fisiología , Acústica , Animales , Simulación por Computador , Interpretación Estadística de Datos , Masculino , Factores de Tiempo
8.
Nature ; 587(7833): 252-257, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177665

RESUMEN

Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.


Asunto(s)
Aves/clasificación , Aves/genética , Genoma/genética , Genómica/métodos , Genómica/normas , Filogenia , Animales , Pollos/genética , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Pinzones/genética , Humanos , Selección Genética/genética , Sintenía/genética
9.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38916488

RESUMEN

Nest building is a vital behavior exhibited during breeding in birds, and is possibly induced by environmental and social cues. Although such behavioral plasticity has been hypothesized to be controlled by adult neuronal plasticity, empirical evidence, especially at the neurogenomic level, remains limited. Here, we aim to uncover the gene regulatory networks that govern avian nest construction and examine whether they are associated with circuit rewiring. We designed an experiment to dissect this complex behavior into components in response to pair bonding and nest material acquisition by manipulating the presence of mates and nest materials in 30 pairs of zebra finches. Whole-transcriptome analysis of 300 samples from five brain regions linked to avian nesting behaviors revealed nesting-associated gene expression enriched with neural rewiring functions, including neurogenesis and neuron projection. The enriched expression was observed in the motor/sensorimotor and social behavior networks of female finches, and in the dopaminergic reward system of males. Female birds exhibited predominant neurotranscriptomic changes to initiate the nesting stage, while males showed major changes after entering this stage, underscoring sex-specific roles in nesting behavior. Notably, major neurotranscriptomic changes occurred during pair bonding, with minor changes during nest material acquisition, emphasizing social interactions in nest construction. We also revealed gene expression associated with reproductive behaviors and tactile sensing for nesting behavior. This study presents novel neurogenomic evidence supporting the hypothesis of adult neural plasticity underlying avian nest-construction behavior. By uncovering the genetic toolkits involved, we offer novel insights into the evolution of animals' innate ability to construct nests.


Asunto(s)
Encéfalo , Pinzones , Redes Reguladoras de Genes , Comportamiento de Nidificación , Animales , Pinzones/genética , Pinzones/fisiología , Encéfalo/metabolismo , Encéfalo/fisiología , Femenino , Masculino , Conducta Social , Transcriptoma
10.
PLoS Pathog ; 19(6): e1011408, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37294834

RESUMEN

Animal hosts can adapt to emerging infectious disease through both disease resistance, which decreases pathogen numbers, and disease tolerance, which limits damage during infection without limiting pathogen replication. Both resistance and tolerance mechanisms can drive pathogen transmission dynamics. However, it is not well understood how quickly host tolerance evolves in response to novel pathogens or what physiological mechanisms underlie this defense. Using natural populations of house finches (Haemorhous mexicanus) across the temporal invasion gradient of a recently emerged bacterial pathogen (Mycoplasma gallisepticum), we find rapid evolution of tolerance (<25 years). In particular, populations with a longer history of MG endemism have less pathology but similar pathogen loads compared with populations with a shorter history of MG endemism. Further, gene expression data reveal that more-targeted immune responses early in infection are associated with tolerance. These results suggest an important role for tolerance in host adaptation to emerging infectious diseases, a phenomenon with broad implications for pathogen spread and evolution.


Asunto(s)
Enfermedades de las Aves , Enfermedades Transmisibles Emergentes , Pinzones , Mycoplasma gallisepticum , Animales , Pinzones/microbiología , Tolerancia Inmunológica , Mycoplasma gallisepticum/genética
11.
PLoS Comput Biol ; 20(8): e1012329, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39110762

RESUMEN

Our understanding of bird song, a model system for animal communication and the neurobiology of learning, depends critically on making reliable, validated comparisons between the complex multidimensional syllables that are used in songs. However, most assessments of song similarity are based on human inspection of spectrograms, or computational methods developed from human intuitions. Using a novel automated operant conditioning system, we collected a large corpus of zebra finches' (Taeniopygia guttata) decisions about song syllable similarity. We use this dataset to compare and externally validate similarity algorithms in widely-used publicly available software (Raven, Sound Analysis Pro, Luscinia). Although these methods all perform better than chance, they do not closely emulate the avian assessments. We then introduce a novel deep learning method that can produce perceptual similarity judgements trained on such avian decisions. We find that this new method outperforms the established methods in accuracy and more closely approaches the avian assessments. Inconsistent (hence ambiguous) decisions are a common occurrence in animal behavioural data; we show that a modification of the deep learning training that accommodates these leads to the strongest performance. We argue this approach is the best way to validate methods to compare song similarity, that our dataset can be used to validate novel methods, and that the general approach can easily be extended to other species.


Asunto(s)
Aprendizaje Profundo , Pinzones , Vocalización Animal , Animales , Vocalización Animal/fisiología , Pinzones/fisiología , Algoritmos , Biología Computacional/métodos , Juicio/fisiología , Masculino , Espectrografía del Sonido/métodos , Condicionamiento Operante/fisiología , Humanos
12.
Nature ; 573(7772): 122-125, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31413368

RESUMEN

Fossilized eyes permit inferences of the visual capacity of extinct arthropods1-3. However, structural and/or chemical modifications as a result of taphonomic and diagenetic processes can alter the original features, thereby necessitating comparisons with modern species. Here we report the detailed molecular composition and microanatomy of the eyes of 54-million-year-old crane-flies, which together provide a proxy for the interpretation of optical systems in some other ancient arthropods. These well-preserved visual organs comprise calcified corneal lenses that are separated by intervening spaces containing eumelanin pigment. We also show that eumelanin is present in the facet walls of living crane-flies, in which it forms the outermost ommatidial pigment shield in compound eyes incorporating a chitinous cornea. To our knowledge, this is the first record of melanic screening pigments in arthropods, and reveals a fossilization mode in insect eyes that involves a decay-resistant biochrome coupled with early diagenetic mineralization of the ommatidial lenses. The demonstrable secondary calcification of lens cuticle that was initially chitinous has implications for the proposed calcitic corneas of trilobites, which we posit are artefacts of preservation rather than a product of in vivo biomineralization4-7. Although trilobite eyes might have been partly mineralized for mechanical strength, a (more likely) organic composition would have enhanced function via gradient-index optics and increased control of lens shape.


Asunto(s)
Artrópodos/anatomía & histología , Artrópodos/química , Dípteros/anatomía & histología , Dípteros/química , Fósiles , Pigmentos Biológicos/análisis , Pigmentos Biológicos/química , Animales , Biomarcadores/análisis , Biomarcadores/química , Femenino , Pinzones , Masculino , Melaninas/análisis , Melaninas/química , Óptica y Fotónica
13.
Proc Natl Acad Sci U S A ; 119(23): e2118448119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35658073

RESUMEN

During vocal exchanges, hearing specific auditory signals can provoke vocal responses or suppress vocalizations to avoid interference. These abilities result in the widespread phenomenon of vocal turn taking, yet little is known about the neural circuitry that regulates the input-dependent timing of vocal replies. Previous work in vocally interacting zebra finches has highlighted the importance of premotor inhibition for precisely timed vocal output. By developing physiologically constrained mathematical models, we derived circuit mechanisms based on feedforward inhibition that enable both the temporal modulation of vocal premotor drive as well as auditory suppression of vocalization during listening. Extracellular recordings in HVC during the listening phase confirmed the presence of auditory-evoked response patterns in putative inhibitory interneurons, along with corresponding signatures of auditory-evoked activity suppression. Further, intracellular recordings of identified neurons projecting to HVC from the upstream sensorimotor nucleus, nucleus interfacialis (NIf), shed light on the timing of auditory inputs to this network. The analysis of incrementally time-lagged interactions between auditory and premotor activity in the model resulted in the prediction of a window of auditory suppression, which could be, in turn, verified in behavioral data. A phasic feedforward inhibition model consistently explained the experimental results. This mechanism highlights a parsimonious and generalizable principle for how different driving inputs (vocal and auditory related) can be integrated in a single sensorimotor circuit to regulate two opposing vocal behavioral outcomes: the controlled timing of vocal output or the suppression of overlapping vocalizations.


Asunto(s)
Pinzones , Animales , Percepción Auditiva/fisiología , Pinzones/fisiología , Inhibición Psicológica , Vocalización Animal/fisiología
14.
J Neurosci ; 43(14): 2579-2596, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36859308

RESUMEN

Many social animals can recognize other individuals by their vocalizations. This requires a memory system capable of mapping incoming acoustic signals to one of many known individuals. Using the zebra finch, a social songbird that uses songs and distance calls to communicate individual identity (Elie and Theunissen, 2018), we tested the role of two cortical-like brain regions in a vocal recognition task. We found that the rostral region of the Cadomedial Nidopallium (NCM), a secondary auditory region of the avian pallium, was necessary for maintaining auditory memories for conspecific vocalizations in both male and female birds, whereas HVC (used as a proper name), a premotor areas that gates auditory input into the vocal motor and song learning pathways in male birds (Roberts and Mooney, 2013), was not. Both NCM and HVC have previously been implicated for processing the tutor song in the context of song learning (Sakata and Yazaki-Sugiyama, 2020). Our results suggest that NCM might not only store songs as templates for future vocal imitation but also songs and calls for perceptual discrimination of vocalizers in both male and female birds. NCM could therefore operate as a site for auditory memories for vocalizations used in various facets of communication. We also observed that new auditory memories could be acquired without intact HVC or NCM but that for these new memories NCM lesions caused deficits in either memory capacity or auditory discrimination. These results suggest that the high-capacity memory functions of the avian pallial auditory system depend on NCM.SIGNIFICANCE STATEMENT Many aspects of vocal communication require the formation of auditory memories. Voice recognition, for example, requires a memory for vocalizers to identify acoustical features. In both birds and primates, the locus and neural correlates of these high-level memories remain poorly described. Previous work suggests that this memory formation is mediated by high-level sensory areas, not traditional memory areas such as the hippocampus. Using lesion experiments, we show that one secondary auditory brain region in songbirds that had previously been implicated in storing song memories for vocal imitation is also implicated in storing vocal memories for individual recognition. The role of the neural circuits in this region in interpreting the meaning of communication calls should be investigated in the future.


Asunto(s)
Pinzones , Vocalización Animal , Animales , Masculino , Femenino , Estimulación Acústica , Aprendizaje , Encéfalo , Percepción Auditiva
15.
J Neurosci ; 43(41): 6872-6883, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37648449

RESUMEN

The acoustic environment an animal experiences early in life shapes the structure and function of its auditory system. This process of experience-dependent development is thought to be primarily orchestrated by potentiation and depression of synapses, but plasticity of intrinsic voltage dynamics may also contribute. Here, we show that in juvenile male and female zebra finches, neurons in a cortical-level auditory area, the caudal mesopallium (CM), can rapidly change their firing dynamics. This plasticity was only observed in birds that were reared in a complex acoustic and social environment, which also caused increased expression of the low-threshold potassium channel Kv1.1 in the plasma membrane and endoplasmic reticulum (ER). Intrinsic plasticity depended on activity, was reversed by blocking low-threshold potassium currents, and was prevented by blocking intracellular calcium signaling. Taken together, these results suggest that Kv1.1 is rapidly mobilized to the plasma membrane by activity-dependent elevation of intracellular calcium. This produces a shift in the excitability and temporal integration of CM neurons that may be permissive for auditory learning in complex acoustic environments during a crucial period for the development of vocal perception and production.SIGNIFICANCE STATEMENT Neurons can change not only the strength of their connections to other neurons, but also how they integrate synaptic currents to produce patterns of action potentials. In contrast to synaptic plasticity, the mechanisms and functional roles of intrinisic plasticity remain poorly understood. We found that neurons in the zebra finch auditory cortex can rapidly shift their spiking dynamics within a few minutes in response to intracellular stimulation. This plasticity involves increased conductance of a low-threshold potassium current associated with the Kv1.1 channel, but it only occurs in birds reared in a rich acoustic environment. Thus, auditory experience regulates a mechanism of neural plasticity that allows neurons to rapidly adapt their firing dynamics to stimulation.


Asunto(s)
Corteza Auditiva , Pinzones , Animales , Masculino , Femenino , Corteza Auditiva/fisiología , Pinzones/fisiología , Neuronas/fisiología , Potenciales de Acción , Potasio , Vocalización Animal/fisiología , Estimulación Acústica , Plasticidad Neuronal/fisiología , Percepción Auditiva/fisiología
16.
BMC Genomics ; 25(1): 694, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009985

RESUMEN

Animals plastically adjust their physiological and behavioural phenotypes to conform to their social environment-social niche conformance. The degree of sexual competition is a critical part of the social environment to which animals adjust their phenotypes, but the underlying genetic mechanisms are poorly understood. We conducted a study to investigate how differences in sperm competition risk affect the gene expression profiles of the testes and two brain areas (posterior pallium and optic tectum) in breeding male zebra finches (Taeniopygia castanotis). In this pre-registered study, we investigated a large sample of 59 individual transcriptomes. We compared two experimental groups: males held in single breeding pairs (low sexual competition) versus those held in two pairs (elevated sexual competition) per breeding cage. Using weighted gene co-expression network analysis (WGCNA), we observed significant effects of the social treatment in all three tissues. However, only the treatment effects found in the pallium were confirmed by an additional randomisation test for statistical robustness. Likewise, the differential gene expression analysis revealed treatment effects only in the posterior pallium (ten genes) and optic tectum (six genes). No treatment effects were found in the testis at the single gene level. Thus, our experiments do not provide strong evidence for transcriptomic adjustment specific to manipulated sperm competition risk. However, we did observe transcriptomic adjustments to the manipulated social environment in the posterior pallium. These effects were polygenic rather than based on few individual genes with strong effects. Our findings are discussed in relation to an accompanying paper using the same animals, which reports behavioural results consistent with the results presented here.


Asunto(s)
Pinzones , Transcriptoma , Animales , Masculino , Pinzones/genética , Pinzones/fisiología , Testículo/metabolismo , Perfilación de la Expresión Génica , Conducta Sexual Animal , Colículos Superiores/metabolismo , Espermatozoides/metabolismo , Conducta Social
17.
BMC Genomics ; 25(1): 771, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118023

RESUMEN

Prolonged or chronic social isolation has pronounced effects on animals, ranging from altered stress responses, increased anxiety and aggressive behaviour, and even increased mortality. The effects of shorter periods of isolation are much less well researched; however, short periods of isolation are used routinely for testing animal behaviour and physiology. Here, we studied how a 3 h period of isolation from a cagemate affected neural gene expression in three brain regions that contain important components of the social decision-making network, the hypothalamus, the nucleus taeniae of the amygdala, and the bed nucleus of the stria terminalis, using a gregarious bird as a model (zebra finches). We found evidence suggestive of altered neural activity, synaptic transmission, metabolism, and even potentially pain perception, all of which could create cofounding effects on experimental tests that involve isolating animals. We recommend that the effects of short-term social isolation need to be better understood and propose alternatives to isolating animals for testing.


Asunto(s)
Toma de Decisiones , Pinzones , Aislamiento Social , Animales , Aislamiento Social/psicología , Pinzones/fisiología , Masculino , Conducta Animal , Encéfalo/metabolismo , Encéfalo/fisiología , Núcleos Septales/metabolismo , Conducta Social , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Hipotálamo/metabolismo
18.
J Neurophysiol ; 131(2): 304-310, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116612

RESUMEN

Motor performance is monitored continuously by specialized brain circuits and used adaptively to modify behavior on a moment-to-moment basis and over longer time periods. During vocal behaviors, such as singing in songbirds, internal evaluation of motor performance relies on sensory input from the auditory and vocal-respiratory systems. Sensory input from the auditory system to the motor system, often referred to as auditory feedback, has been well studied in singing zebra finches (Taeniopygia guttata), but little is known about how and where nonauditory sensory feedback is evaluated. Here we show that brief perturbations in air sac pressure cause short-latency neural responses in the higher-order song control nucleus HVC (used as proper name), an area necessary for song learning and song production. Air sacs were briefly pressurized through a cannula in anesthetized or sedated adult male zebra finches, and neural responses were recorded in both nucleus parambigualis (PAm), a brainstem inspiratory center, and HVC, a cortical premotor nucleus. These findings show that song control nuclei in the avian song system are sensitive to perturbations directly targeted to vocal-respiratory, or viscerosensory, afferents and support a role for multimodal sensory feedback integration in modifying and controlling vocal control circuits.NEW & NOTEWORTHY This study presents the first evidence of sensory input from the vocal-respiratory periphery directly activating neurons in a motor circuit for vocal production in songbirds. It was previously thought that this circuit relies exclusively on sensory input from the auditory system, but we provide groundbreaking evidence for nonauditory sensory input reaching the higher-order premotor nucleus HVC, expanding our understanding of what sensory feedback may be available for vocal control.


Asunto(s)
Pinzones , Animales , Masculino , Pinzones/fisiología , Aprendizaje/fisiología , Tronco Encefálico , Retroalimentación Sensorial , Vocalización Animal/fisiología
19.
J Neurophysiol ; 132(1): 226-239, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38842506

RESUMEN

Our understanding of human brain function can be greatly aided by studying analogous brain structures in other organisms. One brain structure with neurochemical and anatomical homology throughout vertebrate species is the locus coeruleus (LC), a small collection of norepinephrine (NE)-containing neurons in the brainstem that project throughout the central nervous system. The LC is involved in nearly every aspect of brain function, including arousal and learning, which has been extensively examined in rats and nonhuman primates using single-unit recordings. Recent work has expanded into putative LC single-unit electrophysiological recordings in a nonmodel species, the zebra finch. Given the importance of correctly identifying analogous structures as research efforts expand to other vertebrates, we suggest adoption of consensus anatomical and electrophysiological guidelines for identifying LC neurons across species when evaluating brainstem single-unit spiking or calcium imaging. Such consensus criteria will allow for confident cross-species understanding of the roles of the LC in brain function and behavior.


Asunto(s)
Pinzones , Locus Coeruleus , Animales , Locus Coeruleus/fisiología , Locus Coeruleus/anatomía & histología , Pinzones/fisiología , Ratones , Neuronas/fisiología , Humanos
20.
J Neurophysiol ; 131(5): 950-963, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629163

RESUMEN

Rare disruptions of the transcription factor FOXP1 are implicated in a human neurodevelopmental disorder characterized by autism and/or intellectual disability with prominent problems in speech and language abilities. Avian orthologues of this transcription factor are evolutionarily conserved and highly expressed in specific regions of songbird brains, including areas associated with vocal production learning and auditory perception. Here, we investigated possible contributions of FoxP1 to song discrimination and auditory perception in juvenile and adult female zebra finches. They received lentiviral knockdowns of FoxP1 in one of two brain areas involved in auditory stimulus processing, HVC (proper name) or CMM (caudomedial mesopallium). Ninety-six females, distributed over different experimental and control groups were trained to discriminate between two stimulus songs in an operant Go/Nogo paradigm and subsequently tested with an array of stimuli. This made it possible to assess how well they recognized and categorized altered versions of training stimuli and whether localized FoxP1 knockdowns affected the role of different features during discrimination and categorization of song. Although FoxP1 expression was significantly reduced by the knockdowns, neither discrimination of the stimulus songs nor categorization of songs modified in pitch, sequential order of syllables or by reversed playback were affected. Subsequently, we analyzed the full dataset to assess the impact of the different stimulus manipulations for cue weighing in song discrimination. Our findings show that zebra finches rely on multiple parameters for song discrimination, but with relatively more prominent roles for spectral parameters and syllable sequencing as cues for song discrimination.NEW & NOTEWORTHY In humans, mutations of the transcription factor FoxP1 are implicated in speech and language problems. In songbirds, FoxP1 has been linked to male song learning and female preference strength. We found that FoxP1 knockdowns in female HVC and caudomedial mesopallium (CMM) did not alter song discrimination or categorization based on spectral and temporal information. However, this large dataset allowed to validate different cue weights for spectral over temporal information for song recognition.


Asunto(s)
Señales (Psicología) , Aprendizaje Discriminativo , Pinzones , Factores de Transcripción Forkhead , Técnicas de Silenciamiento del Gen , Vocalización Animal , Animales , Pinzones/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Femenino , Aprendizaje Discriminativo/fisiología , Vocalización Animal/fisiología , Percepción Auditiva/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Estimulación Acústica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA