Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.069
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 104919, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315792

RESUMEN

Coenzymes are important for all classes of enzymatic reactions and essential for cellular metabolism. Most coenzymes are synthesized from dedicated precursors, also referred to as vitamins, which prototrophic bacteria can either produce themselves from simpler substrates or take up from the environment. The extent to which prototrophs use supplied vitamins and whether externally available vitamins affect the size of intracellular coenzyme pools and control endogenous vitamin synthesis is currently largely unknown. Here, we studied coenzyme pool sizes and vitamin incorporation into coenzymes during growth on different carbon sources and vitamin supplementation regimes using metabolomics approaches. We found that the model bacterium Escherichia coli incorporated pyridoxal, niacin, and pantothenate into pyridoxal 5'-phosphate, NAD, and coenzyme A (CoA), respectively. In contrast, riboflavin was not taken up and was produced exclusively endogenously. Coenzyme pools were mostly homeostatic and not affected by externally supplied precursors. Remarkably, we found that pantothenate is not incorporated into CoA as such but is first degraded to pantoate and ß-alanine and then rebuilt. This pattern was conserved in various bacterial isolates, suggesting a preference for ß-alanine over pantothenate utilization in CoA synthesis. Finally, we found that the endogenous synthesis of coenzyme precursors remains active when vitamins are supplied, which is consistent with described expression data of genes for enzymes involved in coenzyme biosynthesis under these conditions. Continued production of endogenous coenzymes may ensure rapid synthesis of the mature coenzyme under changing environmental conditions, protect against coenzyme limitation, and explain vitamin availability in naturally oligotrophic environments.


Asunto(s)
Coenzimas , Escherichia coli , beta-Alanina , beta-Alanina/metabolismo , Coenzima A/biosíntesis , Coenzimas/biosíntesis , Piridoxal , Fosfato de Piridoxal/metabolismo , Vitaminas/metabolismo , Escherichia coli/metabolismo , NAD/metabolismo , Medios de Cultivo/química , Medios de Cultivo/metabolismo
2.
Acc Chem Res ; 56(9): 1097-1117, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37071776

RESUMEN

One of the fundamental goals of chemists is to develop highly efficient methods for producing optically active compounds, given their wide range of applications in chemistry, pharmaceutical industry, chemical biology, and material science. Biomimetic asymmetric catalysis, which imitates the structures and functions of enzymes, has emerged as an extremely attractive strategy for producing chiral compounds. This field has drawn tremendous research interest and has led to various protocols for constructing complex molecular scaffolds. The Vitamin B6 family, including pyridoxal, pyridoxamine, pyridoxine, and the corresponding phosphorylated derivatives, serves as the cofactors to catalyze more than 200 enzymatic functions, accounting for ∼4% of all enzyme activities. Although significant progress has been made in simulating the biological roles of vitamin B6 during the past several decades, its extraordinary catalytic power has not yet been successfully applied into asymmetric synthesis. In recent years, our group has been devoted to developing vitamin B6-based biomimetic asymmetric catalysis using chiral pyridoxals/pyridoxamines as catalysts. We are particularly interested in mimicking the processes of enzymatic transamination and biological aldol reaction of glycine, respectively, developing asymmetric biomimetic transamination and carbonyl catalysis enabled α-C-H transformation of primary amines. Using a chiral α,α-diarylprolinol-derived pyridoxal as the catalyst, we reported the first chiral pyridoxal catalyzed asymmetric transamination of α-keto acids in 2015. A significant breakthrough in biomimetic transamination was achieved by using an axially chiral biaryl pyridoxamine catalyst that bears a lateral amine side arm. The amine side arm acts as an intramolecular base, accelerating the transamination and proving highly effective for transamination of α-keto acids and α-keto amides. In addition, we discovered the catalytic power of chiral pyridoxals as carbonyl catalysts for asymmetric biomimetic Mannich/aldol reactions of glycinates. These chiral pyridoxals also enabled more α-C-H conversions of glycinates, such as asymmetric 1,4-addition toward α,ß-unsaturated esters and asymmetric α-allylation with Morita-Baylis-Hillman acetates. Moreover, carbonyl catalysis can be further applied to highly challenging primary amines with inert α-C-H bonds, such as propargylamines and benzylamines, which represents a powerful strategy for direct asymmetric α-C-H functionalization of various primary amines without protection of the NH2 group. These biomimetic/bioinspired transformations provide efficient new protocols for the synthesis of chiral amines. Herein, we summarize our recent efforts on the development of the vitamin B6-based biomimetic asymmetric catalysis.


Asunto(s)
Piridoxina , Vitamina B 6 , Biomimética , Piridoxamina , Aminas/química , Cetoácidos , Piridoxal , Catálisis , Vitaminas , Estereoisomerismo
3.
Med Microbiol Immunol ; 213(1): 2, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430452

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children and travelers, especially in low- and middle-income countries. ETEC is a non-invasive gut pathogen colonizing the small intestinal wall before secreting diarrhea-inducing enterotoxins. We sought to investigate the impact of ETEC infection on local and systemic host defenses by examining plasma markers of inflammation and mucosal injury as well as kynurenine pathway metabolites. Plasma samples from 21 volunteers experimentally infected with ETEC were collected before and 1, 2, 3, and 7 days after ingesting the ETEC dose, and grouped based on the level of intestinal ETEC proliferation: 14 volunteers experienced substantial proliferation (SP) and 7 had low proliferation (LP). Plasma markers of inflammation, kynurenine pathway metabolites, and related cofactors (vitamins B2 and B6) were quantified using targeted mass spectrometry, whereas ELISA was used to quantify the mucosal injury markers, regenerating islet-derived protein 3A (Reg3a), and intestinal fatty acid-binding protein 2 (iFABP). We observed increased concentrations of plasma C-reactive protein (CRP), serum amyloid A (SAA), neopterin, kynurenine/tryptophan ratio (KTR), and Reg3a in the SP group following dose ingestion. Vitamin B6 forms, pyridoxal 5'-phosphate and pyridoxal, decreased over time in the SP group. CRP, SAA, and pyridoxic acid ratio correlated with ETEC proliferation levels. The changes following experimental ETEC infection indicate that ETEC, despite causing a non-invasive infection, induces systemic inflammation and mucosal injury when proliferating substantially, even in cases without diarrhea. It is conceivable that ETEC infections, especially when repeated, contribute to negative health impacts on children in ETEC endemic areas.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Niño , Humanos , Quinurenina , Diarrea , Inflamación , Piridoxal
4.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732264

RESUMEN

Pyridoxal and pyridoxal 5'-phosphate are aldehyde forms of B6 vitamin that can easily be transformed into each other in the living organism. The presence of a phosphate group, however, provides the related compounds (e.g., hydrazones) with better solubility in water. In addition, the phosphate group may sometimes act as a binding center for metal ions. In particular, a phosphate group can be a strong ligand for a gold(III) ion, which is of interest for researchers for the anti-tumor and antimicrobial potential of gold(III). This paper aims to answer whether the phosphate group is involved in the complex formation between gold(III) and hydrazones derived from pyridoxal 5'-phosphate. The answer is negative, since the comparison of the stability constants determined for the gold(III) complexes with pyridoxal- and pyridoxal 5'-phosphate-derived hydrazones showed a negligible difference. In addition, quantum chemical calculations confirmed that the preferential coordination of two series of phosphorylated and non-phosphorylated hydrazones to gold(III) ion is similar. The preferential protonation modes for the gold(III) complexes were also determined using experimental and calculated data.


Asunto(s)
Oro , Hidrazonas , Piridoxal , Hidrazonas/química , Oro/química , Piridoxal/química , Fosfato de Piridoxal/química , Complejos de Coordinación/química , Espectrofotometría Ultravioleta , Estructura Molecular
5.
J Am Chem Soc ; 145(24): 13357-13370, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37278531

RESUMEN

Coenzymes are involved in ≥30% of enzymatic reactions and likely predate enzymes, going back to prebiotic chemistry. However, they are considered poor organocatalysts, and thus their pre-enzymatic function remains unclear. Since metal ions are known to catalyze metabolic reactions in the absence of enzymes, here we explore the influence of metal ions on coenzyme catalysis under conditions relevant to the origin of life (20-75 °C, pH 5-7.5). Specifically, Fe or Al, the two most abundant metals in the Earth's crust, were found to exhibit substantial cooperative effects in transamination reactions catalyzed by pyridoxal (PL), a coenzyme scaffold used by roughly 4% of all enzymes. At 75 °C and 7.5 mol % loading of PL/metal ion, Fe3+-PL was found to be 90-fold faster at catalyzing transamination than PL alone and 174-fold faster than Fe3+ alone, whereas Al3+-PL was 85-fold faster than PL alone and 38-fold faster than Al3+ alone. Under milder conditions, reactions catalyzed by Al3+-PL were >1000 times faster than those catalyzed by PL alone. Pyridoxal phosphate (PLP) exhibited similar behavior to PL. Experimental and theoretical mechanistic studies indicate that the rate-determining step in the PL-metal-catalyzed transamination is different from metal-free and biological PL-based catalysis. Metal coordination to PL lowers the pKa of the PL-metal complex by several units and slows the hydrolysis of imine intermediates by up to 259-fold. Coenzymes, specifically pyridoxal derivatives, could have exhibited useful catalytic function even before enzymes.


Asunto(s)
Fosfato de Piridoxal , Piridoxal , Fosfato de Piridoxal/metabolismo , Metales , Coenzimas/metabolismo , Aminación , Catálisis
6.
Chembiochem ; 24(23): e202300561, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37779345

RESUMEN

α-Deuterated amino acids are valuable building blocks for developing deuterated drugs, and are important tools for studying biological systems. Biocatalytic deuteration represents an attractive strategy to directly access enantiopure α-deuterated amino acids. Here, we show that a PLP-dependent Mannich cyclase, LolT, involved in the biosynthesis of loline alkaloids, is capable of deuterating a diverse range of L-amino acids, including basic and acidic, nonpolar and polar, aliphatic and aromatic amino acids. Furthermore, complete deuteration of many amino acids can be achieved within minutes with exquisite control on the site- and stereoselectivity. During the course of this investigation, we also unexpectedly discovered that LolT exhibits ß-elimination activity with L-cystine and O-acetyl-L-serine, confirming our previous hypothesis based on structural and phylogenetic analysis that LolT, a Cα-C bond forming enzyme, is evolved from a primordial Cß-S lyase family. Overall, our study demonstrates that LolT is an extremely versatile biocatalyst, and can be used for not only heterocyclic quaternary amino acid biosynthesis, but also biocatalytic amino acid deuteration.


Asunto(s)
Aminoácidos , Serina , Aminoácidos/metabolismo , Filogenia , Fosfatos , Piridoxal , Fosfato de Piridoxal/metabolismo
7.
Br J Nutr ; 130(8): 1403-1415, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36789783

RESUMEN

Reduction in dietary vitamin B6 intake is associated with an increased relative risk of diseases such as cancer, atherosclerosis and cognitive dysfunction. The current research has assessed vitamin B6 intakes and PLP concentrations as a marker of vitamin B6 status among the UK adult (≥ 19 years) population. This study was carried out using a cross-sectional analysis of the National Diet and Nutrition Survey Rolling Programme (NDNS) (2008-2017). The impacts of lifestyle factors, including type of diet, smoking, alcohol consumption, and commonly used medications grouped by therapeutic usage, were determined, and data were analysed using IBM SPSS®. Results are expressed as medians (25th-75th percentiles), with P values ≤ 0·05 considered statistically significant. Among UK adults, the median intakes of total population of dietary vitamin B6 met the reference nutrient intake and median plasma PLP concentrations were above the cut-off of vitamin B6 deficiency; however, we found an association between reduction in vitamin B6 intake and plasma PLP concentration and age group (P < 0·001). Smokers had significantly lower plasma PLP concentrations than non-smokers (P < 0·001). Moreover, regression analysis showed some commonly used medications were associated with plasma PLP levels reduction (P < 0·05). Taken together, we report on a tendency for dietary vitamin B6 intake and plasma PLP concentrations to decrease with age and lifestyle factors such as smoking and medication usage. This information could have important implications for smokers and in the elderly population using multiple medications (polypharmacy).


Asunto(s)
Dieta , Vitamina B 6 , Adulto , Humanos , Anciano , Estudios Transversales , Estilo de Vida , Encuestas Nutricionales , Piridoxal , Reino Unido , Fosfatos , Vitaminas , Fosfato de Piridoxal
8.
J Pharmacol Sci ; 152(1): 39-49, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37059490

RESUMEN

Differentiation-inducing factor 1 (DIF-1) is a morphogen produced by Dictyostelium discoideum that inhibits the proliferation and migration of both D. discoideum and most mammalian cells. Herein, we assessed the effect of DIF-1 on mitochondria, because DIF-3, which is similar to DIF-1, reportedly localizes in the mitochondria when added exogenously, however the significance of this localization remains unclear. Cofilin is an actin depolymerization factor that is activated by dephosphorylation at Ser-3. By regulating the actin cytoskeleton, cofilin induces mitochondrial fission, the first step in mitophagy. Here, we report that DIF-1 activates cofilin and induces mitochondrial fission and mitophagy mainly using human umbilical vein endothelial cells (HUVECs). AMP-activated kinase (AMPK), a downstream molecule of DIF-1 signaling, is required for cofilin activation. Pyridoxal phosphatase (PDXP)-known to directly dephosphorylate cofilin-is also required for the effect of DIF-1 on cofilin, indicating that DIF-1 activates cofilin through AMPK and PDXP. Cofilin knockdown inhibits mitochondrial fission and decreases mitofusin 2 (Mfn2) protein levels, a hallmark of mitophagy. Taken together, these results indicate that cofilin is required for DIF-1- induced mitochondrial fission and mitophagy.


Asunto(s)
Dictyostelium , Hexanonas , Animales , Humanos , Proteínas Quinasas Activadas por AMP , Factores Despolimerizantes de la Actina/metabolismo , Factores Despolimerizantes de la Actina/farmacología , Dinámicas Mitocondriales , Dictyostelium/metabolismo , Células Endoteliales/metabolismo , Diferenciación Celular , Monoéster Fosfórico Hidrolasas , Piridoxal/farmacología , Hexanonas/farmacología , Mamíferos/metabolismo
9.
J Fluoresc ; 33(2): 587-594, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36456791

RESUMEN

The glutathione (GSH) functionalized Mn-doped ZnS quantum dots (GSH_Mn_ZnS QDs) was conjugated with pyridoxal 5'-phosphate (PLP). The -CHO group of vitamin B6 cofactor PLP interacted with the -NH2 group of GSH functionalized Mn_ZnS QDs. The conjugation of PLP quenched the fluorescence emission of GSH_Mn_ZnS QDs at 601 nm. Addition of alkaline phosphatase (ALP) catalytically dephosphorylated the PLP into pyridoxal that restored the fluorescence emission of GSH_Mn_ZnS QDs. With a sensitivity of 0.035 U/L, the PLP conjugated GSH_Mn_ZnS QDs was applied to quantify ALP activity in human serum and plasma. Further, the developed nanoprobe PLP conjugated GSH_Mn_ZnS QDs was also applied to detect Al3+. The complexation-induced fluorescence enhancement was observed at 492 nm upon the interaction of Al3+ with the PLP conjugated GSH_Mn_ZnS QDs. Without any interference from other tested metal ions, this nanoprobe can be employed to detect Al3+ down to 2.30 µM.


Asunto(s)
Puntos Cuánticos , Humanos , Fosfatasa Alcalina , Fluorescencia , Glutatión , Piridoxal , Sulfuros , Vitamina B 6 , Vitaminas , Compuestos de Zinc , Aluminio/farmacología
10.
J Fluoresc ; 33(2): 601-611, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36469208

RESUMEN

Schiff base 4-((E)-((E)-(2-hydroxybenzylidene)hydrazono)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (HSP) was synthesized by condensing vitamin B6 cofactor pyridoxal with salicylaldehyde hydrazone, and characterized by standard spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and ESI-MS). The solution of HSP in DMSO/HEPES (10 mM, pH = 7.4) mixed solvents with varying HEPES fractions (fw) from 0 to 95% showed aggregation-induced emission (AIE). The AIE active HSP in 95% HEPES gave intense fluorescent emission at 570 nm was employed for the detection of metal ions. The fluorescence of HSP was quenched upon adding Cu2+ and Fe2+ ions. The association constant (Ka) of the Schiff base HSP with Cu2+ and Fe2+ ions was estimated as 4.08 × 105 M-1 and 1.23 × 105 M-1, respectively by using the online analysis tool BindFit v0.5. The HSP showed the detection limit down to 1.75 µM and 1.89 µM for Cu2+ and Fe2+ ions, respectively. Further, the aggregates of HSP were applied to visualize latent fingerprints (LFPs) over a non-porous glass slide.


Asunto(s)
Cobre , Piridoxal , Cobre/análisis , Colorantes Fluorescentes/química , HEPES , Iones , Imagen Óptica , Bases de Schiff/química , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Hierro/análisis
11.
Nutr Metab Cardiovasc Dis ; 33(6): 1225-1234, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37085414

RESUMEN

BACKGROUND AND AIM: This study was to assess the association between vitamin B6 turnover rate and mortality in hypertensive adults. METHODS AND RESULTS: Vitamin B6 status including serum pyridoxal-5'-phosphate (PLP) levels, serum 4-pyridoxal acid (4-PA) levels, and vitamin B6 turnover rate (4-PA/PLP) were obtained from the 2005-2010 National Health and Nutrition Examination Survey (NHANES) dataset of hypertensive adults with follow-up through December 30, 2019. Using Cox proportional risk regression models, Hazard ratios (HRs) and 95% confidence intervals (CIs) were analyzed for PLP, 4-PA and 4-PA/PLP quartiles in relation to cardiovascular and all-cause mortality. A total of 5434 participants were included in this study (mean age, 58.48 years; 50.4% men), and the median 4-PA/PLP was 0.75. The median follow-up time was 11.0 years, with 375 and 1387 cardiovascular and all-cause deaths, respectively. In multivariate COX regression models, PLP was negatively associated with cardiovascular mortality (HR [95% CI] quartile 4 vs. 1: 0.66 [0.47-0.94], Ptrend = 0.03) and 4-PA/PLP was positively associated with cardiovascular mortality (HR [95% CI] quartile 4 vs.1: 1.80 [1.21-2.67], Ptrend = 0.01). Similarly, the higher the quartile of PLP, the lower the risk of all-cause mortality (HR [95% CI] quartile 4 vs. 1: 0.67 [0.56-0.80], Ptrend < 0.01). The higher the quartile of 4-PA and 4-PA/PLP, the higher the risk of all-cause mortality (HR [95% CI] quartile 4 vs. 1: 1.22 [1.01-1.48], Ptrend < 0.01; and 2.09 [1.71-2.55], Ptrend < 0.01). CONCLUSION: The findings suggested that higher vitamin B6 turnover rate was associated with an increased risk of cardiovascular and all-cause mortality in hypertensive adults.


Asunto(s)
Enfermedades Cardiovasculares , Vitamina B 6 , Masculino , Adulto , Humanos , Persona de Mediana Edad , Femenino , Encuestas Nutricionales , Ácido Piridóxico , Fosfato de Piridoxal , Piridoxal , Enfermedades Cardiovasculares/diagnóstico
12.
Biochemistry (Mosc) ; 88(7): 1022-1033, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37751871

RESUMEN

Pyridoxal-5'-phosphate (PLP), a phosphorylated form of vitamin B6, acts as a coenzyme for numerous reactions, including those changed in cancer and/or associated with the disease prognosis. Since highly reactive PLP can modify cellular proteins, it is hypothesized to be directly transferred from its donors to acceptors. Our goal is to validate the hypothesis by finding common motif(s) in the multitude of PLP-dependent enzymes for binding the limited number of PLP donors, namely pyridoxal kinase (PdxK), pyridox(am)in-5'-phosphate oxidase (PNPO), and PLP-binding protein (PLPBP). Experimentally confirmed interactions between the PLP donors and acceptors reveal that PdxK and PNPO interact with the most abundant PLP acceptors belonging to structural folds I and II, while PLPBP - with those belonging to folds III and V. Aligning sequences and 3D structures of the identified interactors of PdxK and PNPO, we have identified a common motif in the PLP-dependent enzymes of folds I and II. The motif extends from the enzyme surface to the neighborhood of the PLP binding site, represented by an exposed alfa-helix, a partially buried beta-strand, and residual loops. Pathogenicity of mutations in the human PLP-dependent enzymes within or in the vicinity of the motif, but outside of the active sites, supports functional significance of the motif that may provide an interface for the direct transfer of PLP from the sites of its synthesis to those of coenzyme binding. The enzyme-specific amino acid residues of the common motif may be useful to develop selective inhibitors blocking PLP delivery to the PLP-dependent enzymes critical for proliferation of malignant cells.


Asunto(s)
Aminoácidos , Coenzimas , Humanos , Sitios de Unión , Fosfatos , Piridoxal
13.
Neurocrit Care ; 38(1): 41-51, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36071331

RESUMEN

BACKGROUND: The objective of this study was to determine the prevalence of pyridoxine deficiency, measured by pyridoxal phosphate (PLP) levels, in patients admitted to the hospital with established (benzodiazepine-resistant) status epilepticus (SE) (eSE) and to compare to three control groups: intensive care unit (ICU) patients without SE (ICU-noSE), non-ICU inpatients without SE (non-ICU), and outpatients with or without a history of epilepsy (outpatient). METHODS: This retrospective cohort study was conducted at the University of North Carolina Hospitals and Yale New Haven Hospital. Participants included inpatients and outpatients who had serum PLP levels measured during clinical care between January 2018 and March 2021. The first PLP level obtained was categorized as normal (> 30 nmol/L), marginal (≤ 30 nmol/L), deficient (≤ 20 nmol/L), and severely deficient (≤ 5 nmol/L). RESULTS: A total of 293 patients were included (52 eSE, 40 ICU-noSE, 44 non-ICU, and 157 outpatient). The median age was 55 (range 19-99) years. The median PLP level of the eSE group (12 nmol/L) was lower than that of the ICU-noSE (22 nmol/L, p = 0.003), non-ICU (16 nmol/L, p = 0.05), and outpatient groups (36 nmol/L, p < 0.001). Patients with eSE had a significantly higher prevalence of marginal and deficient PLP levels (90 and 80%, respectively) than patients in each of the other three groups (ICU-noSE: 70, 50%; non-ICU: 63, 54%; outpatient: 38, 21%). This significantly higher prevalence persisted after correcting for critical illness severity and timing of PLP level collection. CONCLUSIONS: Our study confirms previous findings indicating a high prevalence of pyridoxine deficiency (as measured by serum PLP levels) in patients with eSE, including when using a more restricted definition of pyridoxine deficiency. Prevalence is higher in patients with eSE than in patients in all three control groups (ICU-noSE, non-ICU, and outpatient). Considering the role of pyridoxine, thus PLP, in the synthesis of γ-aminobutyric acid and its easy and safe administration, prospective studies on pyridoxine supplementation in patients with eSE are needed.


Asunto(s)
Estado Epiléptico , Deficiencia de Vitamina B 6 , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Piridoxal , Piridoxina , Fosfato de Piridoxal , Deficiencia de Vitamina B 6/epidemiología , Estudios Prospectivos , Estudios Retrospectivos , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/epidemiología
14.
BMC Biol ; 20(1): 280, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36514051

RESUMEN

BACKGROUND: The rumen is the hallmark organ of ruminants, playing a vital role in their nutrition and providing products for humans. In newborn suckling ruminants milk bypasses the rumen, while in adults this first chamber of the forestomach has developed to become the principal site of microbial fermentation of plant fibers. With the advent of single-cell transcriptomics, it is now possible to study the underlying cell composition of rumen tissues and investigate how this relates the development of mutualistic symbiosis between the rumen and its epithelium-attached microbes. RESULTS: We constructed a comprehensive cell landscape of the rumen epithelium, based on single-cell RNA sequencing of 49,689 high-quality single cells from newborn and adult rumen tissues. Our single-cell analysis identified six immune cell subtypes and seventeen non-immune cell subtypes of the rumen. On performing cross-species analysis of orthologous genes expressed in epithelial cells of cattle rumen and the human stomach and skin, we observed that the species difference overrides any cross-species cell-type similarity. Comparing adult with newborn cattle samples, we found fewer epithelial cell subtypes and more abundant immune cells, dominated by T helper type 17 cells in the rumen tissue of adult cattle. In newborns, there were more fibroblasts and myofibroblasts, an IGFBP3+ epithelial cell subtype not seen in adults, while dendritic cells were the most prevalent immune cell subtype. Metabolism-related functions and the oxidation-reduction process were significantly upregulated in adult rumen epithelial cells. Using 16S rDNA sequencing, fluorescence in situ hybridization, and absolute quantitative real-time PCR, we found that epithelial Desulfovibrio was significantly enriched in the adult cattle. Integrating the microbiome and metabolome analysis of rumen tissues revealed a high co-occurrence probability of Desulfovibrio with pyridoxal in the adult cattle compared with newborn ones while the scRNA-seq data indicated a stronger ability of pyroxidal binding in the adult rumen epithelial cell subtypes. These findings indicate that Desulfovibrio and pyridoxal likely play important roles in maintaining redox balance in the adult rumen. CONCLUSIONS: Our integrated multi-omics analysis provides novel insights into rumen development and function and may facilitate the future precision improvement of rumen function and milk/meat production in cattle.


Asunto(s)
Microbiota , Rumen , Recién Nacido , Humanos , Bovinos , Animales , Rumen/metabolismo , Hibridación Fluorescente in Situ , Microbiota/genética , Rumiantes/genética , Piridoxal/metabolismo , Alimentación Animal/análisis
15.
Int J Mol Sci ; 24(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37176119

RESUMEN

Gold(III) complexes with different ligands can provide researchers with a measure against pathogenic microorganisms with antibiotic resistance. We reported in our previous paper that the UV-Vis spectra of different protonated species of complexes formed by gold(III) and five hydrazones derived from pyridoxal 5'-phosphate are similar to each other and to the spectra of free protonated hydrazones. The present paper focuses on the reasons of the noted similarity in electron absorption spectra. The geometry of different protonated species of complexes of gold(III) and hydrazones (15 structures in total) was optimized using the density functional theory (DFT). The coordination polyhedron of gold(III) bond critical points were further studied to identify the symmetry of the gold coordination sphere and the type of interactions that hold the complex together. The UV-Vis spectra were calculated using TD DFT methods. The molecular orbitals were analyzed to interpret the calculated spectra.


Asunto(s)
Oro , Hidrazonas , Hidrazonas/química , Fosfatos , Piridoxal
16.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569285

RESUMEN

Thiosemicarbazones and their transition metal complexes are biologically active compounds and anticancer agents with versatile structural properties. In this contribution, the structural features and stability of four pyridoxal-thiosemicarbazone (PLTSC) complexes with Fe, Co, Ni, and Cu were investigated using the density functional theory and natural bond orbital approach. Special emphasis was placed on the analysis of the donor atom-metal interactions. The geometry of compounds and crystallographic structures were further examined by Hirshfeld surface analysis, and the main intermolecular interactions were outlined. It has been shown that the geometry and the number of PLTSC units in the structure determine the type and contribution of the specific interactions. The binding of all four complexes to bovine and human serum albumin was investigated through spectrofluorometric titration. The dependency of the thermodynamic parameters on the present metal ion and geometry was explained by the possible interactions through molecular docking simulations. The binding of complexes to DNA, as one of the possible ways the compounds could induce cell death, was examined by molecular docking. The cytotoxicity was measured towards HCT116, A375, MCF-7, A2780, and MCF5 cell lines, with Cu-PLTSC being the most active, as it had the highest affinity towards DNA and proteins.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias Ováricas , Tiosemicarbazonas , Femenino , Animales , Bovinos , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Unión Proteica , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Metales , ADN/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Piridoxal/farmacología , Cobre/química
17.
J Bacteriol ; 204(1): e0045021, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34662241

RESUMEN

Microbial metabolism is often considered modular, but metabolic engineering studies have shown that transferring pathways, or modules, between organisms is not always straightforward. The Thi5-dependent pathway(s) for synthesis of the pyrimidine moiety of thiamine from Saccharomyces cerevisiae and Legionella pneumophila functioned differently when incorporated into the metabolic network of Salmonella enterica. Function of Thi5 from Saccharomyces cerevisiae (ScThi5) required modification of the underlying metabolic network, while LpThi5 functioned with the native network. Here we probe the metabolic requirements for heterologous function of ScThi5 and report strong genetic and physiological evidence for a connection between alpha-ketoglutarate (αKG) levels and ScThi5 function. The connection was built with two classes of genetic suppressors linked to metabolic flux or metabolite pool changes. Further, direct modulation of nitrogen assimilation through nutritional or genetic modification implicated αKG levels in Thi5 function. Exogenous pyridoxal similarly improved ScThi5 function in S. enterica. Finally, directly increasing αKG and PLP with supplementation improved function of both ScThi5 and relevant variants of Thi5 from Legionella pneumophila (LpThi5). The data herein suggest structural differences between ScThi5 and LpThi5 impact their level of function in vivo and implicate αKG in supporting function of the Thi5 pathway when placed in the heterologous metabolic network of S. enterica. IMPORTANCE Thiamine biosynthesis is a model metabolic node that has been used to extend our understanding of metabolic network structure and individual enzyme function. The requirements for in vivo function of the Thi5-dependent pathway found in Legionella and yeast are poorly characterized. Here we suggest that αKG modulates function of the Thi5 pathway in S. enterica and provide evidence that structural variation between ScThi5 and LpThi5 contributes to their functional differences in a Salmonella enterica host.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Fúngicas/farmacología , Ácidos Cetoglutáricos/metabolismo , Piridoxal/metabolismo , Saccharomyces cerevisiae/química , Salmonella enterica/efectos de los fármacos , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Glucosa , Ácidos Cetoglutáricos/farmacología , Redes y Vías Metabólicas/fisiología , Mutación , Piridoxal/farmacología
18.
BMC Genomics ; 23(1): 243, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35350974

RESUMEN

BACKGROUND: External environmental factors, such as salt, alkali and drought, severely limit the acreage and yield of alfalfa. The mining of tolerance-related genes in alfalfa and improving the stress resistance of this plant are essential for increasing alfalfa yield. PLD is the main phospholipid hydrolase in plants and plays an important role in plant growth, development, signaling, and resistance to adverse stress. With the availability of whole genome sequences, the annotation and expression of PLDs in alfalfa can now be achieved. At present, few studies have investigated PLDs in alfalfa. Here, we conducted a study of PLDs in alfalfa and identified and analyzed the expression pattern of PLDs under different treatments. RESULTS: Fifty-nine MsPLDs were identified in alfalfa and classified into six subtypes: MsPLDα, ß, γ, δ and ε belong to the C2-PLD subfamily, and MsPLDζ belongs to the PXPH-PLD subfamily. Members of the same PLD subtype have similar physicochemical properties, sequence structure and domains, but their cis-acting elements are different. A qRT-PCR analysis revealed that MsPLDs are expressed in multiple tissues. MsPLDs can respond to alkali, drought, ABA, IAA, and GA3 treatments and particularly to salt stress. Different expression patterns were found for the same gene under different treatments and different genes under the same treatment. Expression of MsPLD05 improved salt tolerance in yeast. CONCLUSION: This study represents the first genome-wide characterization of MsPLDs in alfalfa. Most MsPLDs are expressed mainly in mature leaves and respond positively to abiotic stresses and hormonal treatments. This study further expands the resistance gene pool in legume forage grasses and provides a reference for further in-depth study of MsPLDs in alfalfa.


Asunto(s)
Sequías , Medicago sativa , Medicago sativa/genética , Piridoxal/análogos & derivados , Tolerancia a la Sal/genética , Estrés Fisiológico/genética
19.
Plant Biotechnol J ; 20(8): 1591-1605, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35514030

RESUMEN

Global warming is a major abiotic stress factor, which limit rice production. Exploiting the genetic basis of the natural variation in heat resistance at different reproductive stages among diverse exotic Oryza germplasms can help breeding heat-resistant rice cultivars. Here, we identified a stable quantitative trait locus (QTL) for heat tolerance at the heading stage on chromosome 5 (qHTH5) in O. rufipogon Griff. The corresponding gene, HTH5, pertains to the pyridoxal phosphate-binding protein PLPBP (formerly called PROSC) family, which is predicted to encode pyridoxal phosphate homeostasis protein (PLPHP) localized to the mitochondrion. Overexpression of HTH5 increased the seed-setting rate of rice plants under heat stress at the heading stage, whereas suppression of HTH5 resulted in greater susceptibility to heat stress. Further investigation indicated that HTH5 reduces reactive oxygen species accumulation at high temperatures by increasing the heat-induced pyridoxal 5'-phosphate (PLP) content. Moreover, we found that two SNPs located in the HTH5 promoter region are involved with its expression level and associated with heat tolerance diversity. These findings suggest that the novel gene HTH5 might have great potential value for heightening rice tolerance to heat stress to the on-going threat of global warming.


Asunto(s)
Oryza , Oryza/genética , Fenotipo , Fitomejoramiento , Piridoxal , Sitios de Carácter Cuantitativo/genética , Temperatura
20.
Nitric Oxide ; 128: 12-24, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35973674

RESUMEN

Epigallocatechin gallate (EGCG) is the main bioactive component of green tea. Through screening of a small library of natural compounds, we discovered that EGCG inhibits cystathionine ß-synthase (CBS), a major H2S-generating enzyme. Here we characterize EGCG's mechanism of action in the context of CBS-derived H2S production. In the current project, biochemical, pharmacological and cell biology approaches were used to characterize the effect of EGCG on CBS in cellular models of cancer and Down syndrome (DS). The results show that EGCG binds to CBS and inhibits H2S-producing CBS activity almost 30-times more efficiently than the canonical cystathionine formation (IC50 0.12 versus 3.3 µM). Through screening structural analogs and building blocks, we identified that gallate moiety of EGCG represents the pharmacophore responsible for CBS inhibition. EGCG is a mixed-mode, CBS-specific inhibitor with no effect on the other two major enzymatic sources of H2S, CSE and 3-MST. Unlike the prototypical CBS inhibitor aminooxyacetate, EGCG does not bind the catalytic cofactor of CBS pyridoxal-5'-phosphate. Molecular modeling suggests that EGCG blocks a substrate access channel to pyridoxal-5'-phosphate. EGCG inhibits cellular H2S production in HCT-116 colon cancer cells and in DS fibroblasts. It also exerts effects that are consistent with the functional role of CBS in these cells: in HCT-116 cells it decreases, while in DS cells it improves viability and proliferation. In conclusion, EGCG is a potent inhibitor of CBS-derived H2S production. This effect may contribute to its pharmacological effects in various pathophysiological conditions.


Asunto(s)
Cistationina betasintasa , Sulfuro de Hidrógeno , Catequina/análogos & derivados , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Fosfatos , Piridoxal , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA