Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.325
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 629(8012): 652-659, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693261

RESUMEN

The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.


Asunto(s)
Susceptibilidad a Enfermedades , Disbiosis , Padre , Microbioma Gastrointestinal , Insuficiencia Placentaria , Lesiones Prenatales , Espermatozoides , Animales , Femenino , Masculino , Ratones , Embarazo , Disbiosis/complicaciones , Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Leptina/metabolismo , Ratones Endogámicos C57BL , Placenta/metabolismo , Placenta/fisiopatología , Insuficiencia Placentaria/etiología , Insuficiencia Placentaria/metabolismo , Insuficiencia Placentaria/fisiopatología , Resultado del Embarazo , Lesiones Prenatales/etiología , Lesiones Prenatales/metabolismo , Lesiones Prenatales/fisiopatología , Transducción de Señal , Espermatozoides/metabolismo , Testículo/metabolismo , Testículo/fisiopatología , Susceptibilidad a Enfermedades/etiología
2.
J Virol ; 98(4): e0193523, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38451085

RESUMEN

Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first-trimester placenta. HCMV was found to non-productively infect TSCs, EVTs, and STBs. Immunofluorescence assays and flow cytometry experiments further revealed that infected TSCs frequently only express immediate early viral gene products. Similarly, RNA sequencing found that viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and Wingless/Integrated signaling. Thus, while HCMV does not replicate in TSCs, infection may perturb trophoblast differentiation in ways that could interfere with placental function. IMPORTANCE: Placental infection plays a central role in human cytomegalovirus (HCMV) pathogenesis during pregnancy, but the species specificity of HCMV and the limited availability and lifespan of primary trophoblasts have been persistent barriers to understanding how infection impacts this vital organ. Human trophoblast stem cells (TSCs) represent a new approach to modeling viral infection early in placental development. This study reveals that TSCs, like other stem cell types, restrict HCMV replication. However, infection perturbs the expression of genes involved in differentiation and cell fate determination, pointing to a mechanism by which HCMV could cause placental injury.


Asunto(s)
Citomegalovirus , Células Madre , Trofoblastos , Replicación Viral , Femenino , Humanos , Embarazo , Diferenciación Celular/genética , Linaje de la Célula/genética , Citomegalovirus/crecimiento & desarrollo , Citomegalovirus/patogenicidad , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/patología , Infecciones por Citomegalovirus/fisiopatología , Infecciones por Citomegalovirus/virología , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Placenta/citología , Placenta/patología , Placenta/fisiopatología , Placenta/virología , Primer Trimestre del Embarazo , Células Madre/citología , Células Madre/virología , Trofoblastos/citología , Trofoblastos/virología
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731805

RESUMEN

We are pleased to present this Special Issue of the International Journal of Molecular Sciences, entitled "Physiology and Pathophysiology of Placenta 2 [...].


Asunto(s)
Placenta , Humanos , Placenta/fisiopatología , Placenta/metabolismo , Placenta/patología , Embarazo , Femenino , Animales , Enfermedades Placentarias/fisiopatología , Enfermedades Placentarias/patología
4.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33406530

RESUMEN

OBJECTIVE: Development of novel informatics methods focused on improving pregnancy outcomes remains an active area of research. The purpose of this study is to systematically review the ways that artificial intelligence (AI) and machine learning (ML), including deep learning (DL), methodologies can inform patient care during pregnancy and improve outcomes. MATERIALS AND METHODS: We searched English articles on EMBASE, PubMed and SCOPUS. Search terms included ML, AI, pregnancy and informatics. We included research articles and book chapters, excluding conference papers, editorials and notes. RESULTS: We identified 127 distinct studies from our queries that were relevant to our topic and included in the review. We found that supervised learning methods were more popular (n = 69) than unsupervised methods (n = 9). Popular methods included support vector machines (n = 30), artificial neural networks (n = 22), regression analysis (n = 17) and random forests (n = 16). Methods such as DL are beginning to gain traction (n = 13). Common areas within the pregnancy domain where AI and ML methods were used the most include prenatal care (e.g. fetal anomalies, placental functioning) (n = 73); perinatal care, birth and delivery (n = 20); and preterm birth (n = 13). Efforts to translate AI into clinical care include clinical decision support systems (n = 24) and mobile health applications (n = 9). CONCLUSIONS: Overall, we found that ML and AI methods are being employed to optimize pregnancy outcomes, including modern DL methods (n = 13). Future research should focus on less-studied pregnancy domain areas, including postnatal and postpartum care (n = 2). Also, more work on clinical adoption of AI methods and the ethical implications of such adoption is needed.


Asunto(s)
Aborto Espontáneo/prevención & control , Biología Computacional/métodos , Nacimiento Vivo , Aprendizaje Automático/clasificación , Nacimiento Prematuro/prevención & control , Mortinato , Aborto Espontáneo/fisiopatología , Femenino , Humanos , Atención Perinatal/métodos , Fenotipo , Placenta/fisiología , Placenta/fisiopatología , Embarazo , Atención Prenatal/métodos
5.
BMC Endocr Disord ; 23(1): 48, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36814227

RESUMEN

OBJECTIVE: Gestational diabetes mellitus (GDM) is a serious complication in pregnancy. Despite controlling the plasma glucose levels with dietary intervention (GDM-D) or insulin therapy (GDM-I), children born of diabetic mothers suffer more long-term complications from childhood to early adulthood. Placental circulation and nutrient exchange play a vital role in fetal development. Additionally, placental endothelial function is an indicator of vascular health, and plays an important role in maintaining placental circulation for nutrient exchange. This study was conducted to assess changes in fetal endothelial dysfunction in GDM under different interventions during pregnancy. METHODS: The primary human umbilical vein endothelial cells (HUVECs) were obtained from normal pregnant women (n = 11), GDM-D (n = 14), and GDM-I (n = 12) patients. LC-MS/MS was used to identify differentially expressed proteins in primary HUVECs among the three groups, after which Bioinformatics analysis was performed. Glucose uptake, ATP level, apoptosis, and differentially expressed proteins were assessed to investigate changes in energy metabolism. RESULTS: A total of 8174 quantifiable proteins were detected, and 142 differentially expressed proteins were identified after comparing patients with GDM-D/GDM-I and healthy controls. Of the 142, 64 proteins were upregulated while 77 were downregulated. Bioinformatics analysis revealed that the differentially expressed proteins were involved in multiple biological processes and signaling pathways related to cellular processes, biological regulation, and metabolic processes. According to the results from KEGG analysis, there were changes in the PI3K/AKT signaling pathway after comparing the three groups. In addition, there was a decrease in glucose uptake in the GDM-I (P < 0.01) group. In GDM-I, there was a significant decrease in the levels of glucose transporter 1 (GLUT1) and glucose transporter 3 (GLUT3). Moreover, glucose uptake was significantly decreased in GDM-I, although in GDM-D, there was only a decrease in the levels of GLUT1. ATP levels decreased in GDM-I (P < 0.05) and apoptosis occurred in both the GDM-D and GDM-I groups. Compared to the normal controls, the levels of phosphate AKT and phosphate AMPK over total AKT and AMPK were reduced in the GDM-I group. CONCLUSION: In summary, endothelial dysfunction occurred in pregnancies with GDM even though the plasma glucose levels were controlled, and this dysfunction might be related to the degree of glucose tolerance. The energy dysfunction might be related to the regulation of the AKT/AMPK/mTOR signaling pathway.


Asunto(s)
Diabetes Gestacional , Endotelio , Placenta , Adulto , Femenino , Humanos , Embarazo , Adenosina Trifosfato/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Glucemia/metabolismo , Cromatografía Liquida , Diabetes Gestacional/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Placenta/fisiopatología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Espectrometría de Masas en Tándem , Endotelio/fisiopatología
6.
FASEB J ; 35(12): e22035, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34748230

RESUMEN

Epigenetic mechanisms of paternal inheritance are an emerging area of interest in our efforts to understand fetal alcohol spectrum disorders. In rodent models examining maternal alcohol exposures, different maternal genetic backgrounds protect or sensitize offspring to alcohol-induced teratogenesis. However, whether maternal background can mitigate sperm-inherited alterations in developmental programming and modify the penetrance of growth defects induced by preconception paternal alcohol exposures remains unaddressed. In our previous studies examining pure C57Bl/6J crosses, the offspring of alcohol-exposed sires exhibited fetal growth restriction, enlarged placentas, and decreased placental efficiency. Here, we find that in contrast to our previous studies, the F1 offspring of alcohol-exposed C57Bl/6J sires and CD-1 dams do not exhibit fetal growth restriction, with male fetuses developing smaller placentas and increased placental efficiencies. However, in these hybrid offspring, preconception paternal alcohol exposure induces sex-specific changes in placental morphology. Specifically, the female offspring of alcohol-exposed sires displayed structural changes in the junctional and labyrinth zones, along with increased placental glycogen content. These changes in placental organization are accompanied by female-specific alterations in the expression of imprinted genes Cdkn1c and H19. Although male placentae do not display overt changes in placental histology, using RNA-sequencing, we identified programmed alterations in genes regulating oxidative phosphorylation, mitochondrial function, and Sirtuin signaling. Collectively, our data reveal that preconception paternal alcohol exposure transmits a stressor to developing offspring, that males and females exhibit distinct patterns of placental adaptation, and that maternal genetic background can modulate the effects of paternal alcohol exposure.


Asunto(s)
Adaptación Fisiológica , Etanol/toxicidad , Trastornos del Espectro Alcohólico Fetal/patología , Retardo del Crecimiento Fetal/patología , Herencia Paterna , Penetrancia , Placenta/fisiopatología , Animales , Epigénesis Genética , Femenino , Trastornos del Espectro Alcohólico Fetal/etiología , Retardo del Crecimiento Fetal/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Embarazo , Factores Sexuales , Transcriptoma
7.
Am J Obstet Gynecol ; 226(2S): S928-S944, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33189710

RESUMEN

The placenta is a highly metabolically active organ fulfilling the bioenergetic and biosynthetic needs to support its own rapid growth and that of the fetus. Placental metabolic dysfunction is a common occurrence in preeclampsia although its causal relationship to the pathophysiology is unclear. At the outset, this may simply be seen as an "engine out of fuel." However, placental metabolism plays a vital role beyond energy production and is linked to physiological and developmental processes. In this review, we discuss the metabolic basis for placental dysfunction and propose that the alterations in energy metabolism may explain many of the placental phenotypes of preeclampsia such as reduced placental and fetal growth, redox imbalance, oxidative stress, altered epigenetic and gene expression profiles, and the functional consequences of these aberrations. We propose that placental metabolic reprogramming reflects the dynamic physiological state allowing the tissue to adapt to developmental changes and respond to preeclampsia stress, whereas the inability to reprogram placental metabolism may result in severe preeclampsia phenotypes. Finally, we discuss common tested and novel therapeutic strategies for treating placental dysfunction in preeclampsia and their impact on placental energy metabolism as possible explanations into their potential benefits or harm.


Asunto(s)
Metabolismo Energético/fisiología , Placenta/fisiopatología , Preeclampsia/fisiopatología , Antioxidantes/uso terapéutico , Epigénesis Genética , Femenino , Expresión Génica , Homeostasis/fisiología , Humanos , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Oxidación-Reducción , Placentación/fisiología , Embarazo , Especies Reactivas de Oxígeno , Factores Sexuales , Transducción de Señal/fisiología
8.
Am J Obstet Gynecol ; 226(2S): S963-S972, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33712272

RESUMEN

Maternal tolerance of the semiallogenic fetus necessitates conciliation of competing interests. Viviparity evolved with a placenta to mediate the needs of the fetus and maternal adaptation to the demands of pregnancy and to ensure optimal survival for both entities. The maternal-fetal interface is imagined as a 2-dimensional porous barrier between the mother and fetus, when in fact it is an intricate multidimensional array of tissues and resident and circulating factors at play, encompassing the developing fetus, the growing placenta, the changing decidua, and the dynamic maternal cardiovascular system. Pregnancy triggers dramatic changes to maternal hemodynamics to meet the growing demands of the developing fetus. Nearly a century of extensive research into the development and function of the placenta has revealed the role of placental dysfunction in the great obstetrical syndromes, among them preeclampsia. Recently, a debate has arisen questioning the primacy of the placenta in the etiology of preeclampsia, asserting that the maternal cardiovascular system is the instigator of the disorder. It was the clinical observation of the high rate of preeclampsia in hydatidiform mole that initiated the focus on the placenta in the etiology of the disease. Over many years of research, shallow trophoblast invasion with deficient remodeling of the maternal spiral arteries into vessels of higher capacitance and lower resistance has been recognized as hallmarks of the preeclamptic milieu. The lack of the normal decrease in uterine artery resistance is likewise predictive of preeclampsia. In abdominal pregnancies, however, an extrauterine pregnancy develops without remodeling of the spiral arteries, yet there is reduced resistance in the uterine arteries and distant vessels, such as the maternal ophthalmic arteries. Proponents of the maternal cardiovascular model of preeclampsia point to the observed maternal hemodynamic adaptations to pregnancy and maladaptation in gestational hypertension and preeclampsia and how the latter resembles the changes associated with cardiac disease states. Recognition of the importance of the angiogenic-antiangiogenic balance between placental-derived growth factor and its receptor soluble fms-like tyrosine kinase-1 and disturbance in this balance by an excess of a circulating isoform, soluble fms-like tyrosine kinase-1, which competes for and disrupts the proangiogenic receptor binding of the vascular endothelial growth factor and placental-derived growth factor, opened new avenues of research into the pathways to normal adaptation of the maternal cardiovascular and other systems to pregnancy and maladaptation in preeclampsia. The significance of the "placenta vs heart" debate goes beyond the academic: understanding the mutuality of placental and maternal cardiac etiologies of preeclampsia has far-reaching clinical implications for designing prevention strategies, such as aspirin therapy, prediction and surveillance through maternal hemodynamic studies or serum placental-derived growth factor and soluble fms-like tyrosine kinase-1 testing, and possible treatments to attenuate the effects of insipient preeclampsia on women and their fetuses, such as RNAi therapy to counteract excess soluble fms-like tyrosine kinase-1 produced by the placenta. In this review, we will present an integrated model of the maternal-placental-fetal array that delineates the commensality among the constituent parts, showing how a disruption in any component or nexus may lead to the multifaceted syndrome of preeclampsia.


Asunto(s)
Placenta/fisiopatología , Preeclampsia/fisiopatología , Complicaciones Cardiovasculares del Embarazo/fisiopatología , Adaptación Fisiológica , Decidua/patología , Ejercicio Físico/fisiología , Vesículas Extracelulares/fisiología , Femenino , Humanos , Células Asesinas Naturales/patología , Placentación/fisiología , Embarazo , Transducción de Señal/fisiología , Trofoblastos/patología , Remodelación Vascular/fisiología
9.
Am J Obstet Gynecol ; 226(2S): S954-S962, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33771361

RESUMEN

Preeclampsia is a disease whose characterization has not changed in the 150 years since the cluster of signs associated with the disorder were first described. Although our understanding of the pathophysiology of preeclampsia has advanced considerably since then, there is still little consensus regarding the true etiology of preeclampsia. As a consequence, preeclampsia has earned the moniker "disease of theories," predominantly because the underlying biological mechanisms linking clinical epidemiologic findings to observed organ dysfunction in preeclampsia are far from clear. Despite the lack of cohesive evidence, expert consensus favors the hypothesis that preeclampsia is a primary placental disorder. However, there is now emerging evidence that suboptimal maternal cardiovascular performance resulting in uteroplacental hypoperfusion is more likely to be the cause of secondary placental dysfunction in preeclampsia. Preeclampsia and cardiovascular disease share the same risk factors, preexisting cardiovascular disease is the strongest risk factor (chronic hypertension, congenital heart disease) for developing preeclampsia, and there are now abundant data from maternal echocardiography and angiogenic marker studies that cardiovascular dysfunction precedes the development of preeclampsia by several weeks or months. Importantly, cardiovascular signs and symptoms (hypertension, cerebral edema, cardiac dysfunction) predominate in preeclampsia at clinical presentation and persist into the postnatal period with a 30% risk of chronic hypertension in the decade after birth. Placental malperfusion caused by suboptimal maternal cardiovascular performance may lead to preeclampsia, thereby explaining the preponderance of cardiovascular drugs (aspirin, calcium, statins, metformin, and antihypertensives) in preeclampsia prevention strategies. Despite the seriousness of the maternal and fetal consequences, we are still developing sensitive screening, reliable diagnostic, effective therapeutic, or improvement strategies for postpartum maternal cardiovascular legacy in preeclampsia. The latter will only become clear with an acceptance and understanding of the cardiovascular etiology of preeclampsia.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Placenta/fisiopatología , Preeclampsia/fisiopatología , Femenino , Humanos , Paridad , Placenta/irrigación sanguínea , Circulación Placentaria/fisiología , Placentación/fisiología , Preeclampsia/diagnóstico , Preeclampsia/prevención & control , Embarazo , Complicaciones Cardiovasculares del Embarazo/fisiopatología , Resistencia Vascular
10.
Ultrasound Obstet Gynecol ; 59(2): 202-208, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34664753

RESUMEN

OBJECTIVE: In addition to the lungs, the placenta and the endothelium can be affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) are markers of endothelial dysfunction and could potentially serve as predictors of severe coronavirus disease 2019 (COVID-19). We aimed to investigate the association of serum concentrations of sFlt-1 and PlGF with the severity of COVID-19 in pregnancy. METHODS: This was a prospective cohort study carried out in a tertiary care hospital in Mexico City, Mexico. Symptomatic pregnant women with a positive reverse-transcription quantitative polymerase chain reaction test for SARS-CoV-2 infection who fulfilled the criteria for hospitalization were included. The primary outcome was severe pneumonia due to COVID-19. Secondary outcomes were intensive care unit (ICU) admission, viral sepsis and maternal death. sFlt-1 levels were expressed as multiples of the median (MoM). The association between sFlt-1 and each adverse outcome was explored by logistic regression analysis, adjusted for gestational age for outcomes occurring in more than five patients, and the predictive performance was assessed by receiver-operating-characteristics-curve analysis. RESULTS: Among 113 pregnant women with COVID-19, higher sFlt-1 MoM was associated with an increased probability of severe pneumonia (adjusted odds ratio (aOR), 1.817 (95% CI, 1.365-2.418)), ICU admission (aOR, 2.195 (95% CI, 1.582-3.047)), viral sepsis (aOR, 2.318 (95% CI, 1.407-3.820)) and maternal death (unadjusted OR, 5.504 (95% CI, 1.079-28.076)). At a 10% false-positive rate, sFlt-1 MoM had detection rates of 45.2%, 66.7%, 83.3% and 100% for severe COVID-19 pneumonia, ICU admission, viral sepsis and maternal death, respectively. PlGF values were similar between women with severe and those with non-severe COVID-19 pneumonia. CONCLUSION: sFlt-1 MoM is higher in pregnant women with severe COVID-19 and has the capability to predict serious adverse pregnancy events, such as severe pneumonia, ICU admission, viral sepsis and maternal death. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.


Asunto(s)
COVID-19 , Unidades de Cuidados Intensivos/estadística & datos numéricos , Neumonía Viral , Complicaciones Infecciosas del Embarazo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/sangre , Adulto , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/terapia , Estudios de Cohortes , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Femenino , Edad Gestacional , Humanos , México/epidemiología , Mortalidad , Placenta/metabolismo , Placenta/fisiopatología , Factor de Crecimiento Placentario/sangre , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Neumonía Viral/etiología , Embarazo , Complicaciones Infecciosas del Embarazo/sangre , Complicaciones Infecciosas del Embarazo/diagnóstico , Complicaciones Infecciosas del Embarazo/epidemiología , Complicaciones Infecciosas del Embarazo/terapia , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad
11.
Environ Res ; 212(Pt B): 113263, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35430275

RESUMEN

Placental senescence is a normal physiological process of placenta, while premature placental senescence has been confirmed to be associated with some adverse pregnancy complications. Epidemiological studies indicate that NO2 exposure can aggravate placental senescence which is represented by fibrosis and abnormal telomere homeostasis, etc. In this study, pregnant C57BL/6 mice were exposed to NO2 (2.5 ppm, 5 h/day) daily in a dynamic exposure chamber throughout the gestation period, and were sacrificed at embryonic day 13.5 (E13.5), E15.5 and E18.5. Placenta were harvested and conducted for histopathological examination and telomere evaluation. Our results showed that gestational NO2 exposure significantly aggravated placental fibrosis and calcification, and up-regulated the related bio-markers (connective tissue growth factor (Ctgf) and transforming growth factor-ß1 (Tgf-ß1)) at E18.5. In addition, gestational exposure to NO2 also activated senescence related pathway (p53/p21) at E18.5. Furthermore, gestational NO2 exposure significantly shortened telomere length at E18.5, and the expression of telomere homeostasis regulation genes telomeric repeat binding factor 1 (Trf1), protection of telomeres 1a (Pot1a) and Pot1b were significantly increased while telomerase reverse transcriptase (Tert) was suppressed after NO2 exposure at E13.5 or E18.5, respectively. Importantly, DNA methylation status of the 22nd at E13.5 and 32nd at E18.5 site in sub-telomeric region of chromosome 1 was significantly altered. Based on the above results, our present study indicated that gestational NO2 exposure could lead to premature placental senescence during the late trimester of pregnancy via aggravation of fibrosis and telomere length shortening regulated by telomere regulatory enzyme and DNA methylation.


Asunto(s)
Dióxido de Nitrógeno , Placenta , Acortamiento del Telómero , Animales , Senescencia Celular/genética , Proteínas de Unión al ADN/genética , Femenino , Fibrosis , Ratones , Ratones Endogámicos C57BL , Dióxido de Nitrógeno/efectos adversos , Placenta/metabolismo , Placenta/fisiopatología , Embarazo , Telómero/metabolismo
12.
Proc Natl Acad Sci U S A ; 116(5): 1621-1626, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30655345

RESUMEN

Mitochondria respond to a range of stimuli and function in energy production and redox homeostasis. However, little is known about the developmental and environmental control of mitochondria in the placenta, an organ vital for fetal growth and pregnancy maintenance in eutherian mammals. Using respirometry and molecular analyses, the present study examined mitochondrial function in the distinct transport and endocrine zones of the mouse placenta during normal pregnancy and maternal inhalation hypoxia. The data show that mitochondria of the two zones adopt different strategies in modulating their respiration, substrate use, biogenesis, density, and efficiency to best support the growth and energy demands of fetoplacental tissues during late gestation in both normal and hypoxic conditions. The findings have important implications for environmentally induced adaptations in mitochondrial function in other tissues and for compromised human pregnancy in which hypoxia and alterations in placental mitochondrial function are associated with poor outcomes like fetal growth restriction.


Asunto(s)
Desarrollo Fetal/fisiología , Hipoxia/fisiopatología , Mitocondrias/fisiología , Placenta/fisiopatología , Animales , Femenino , Retardo del Crecimiento Fetal/fisiopatología , Ratones , Ratones Endogámicos C57BL , Embarazo
13.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054845

RESUMEN

Obstetric and newborn outcomes of assisted reproductive technology (ART) pregnancies are associated with significative prevalence of maternal and neonatal adverse health conditions, such as cardiovascular and metabolic diseases. These data are interpreted as anomalies in placentation involving a dysregulation of several molecular factors and pathways. It is not clear which extent of the observed placental alterations are the result of ART and which originate from infertility itself. These two aspects probably act synergically for the final obstetric risk. Data show that mechanisms of inappropriate trophoblast invasion and consequent altered vascular remodeling sustain several clinical conditions, leading to obstetric and perinatal risks often found in ART pregnancies, such as preeclampsia, fetal growth restriction and placenta previa or accreta. The roles of factors such as VEGF, GATA3, PIGF, sFLT-1, sEndoglin, EGFL7, melatonin and of ART conditions, such as short or long embryo cultures, trophectoderm biopsy, embryo cryopreservation, and supraphysiologic endometrium preparation, are discussed. Inflammatory local conditions and epigenetic influence on embryos of ART procedures are important research topics since they may have important consequences on obstetric risk. Prevention and treatment of these conditions represent new frontiers for clinicians and biologists involved in ART, and synergic actions with researchers at molecular levels are advocated.


Asunto(s)
Placenta/fisiopatología , Técnicas Reproductivas Asistidas , Adulto , Epigénesis Genética , Femenino , Humanos , Recién Nacido , Intercambio Materno-Fetal/genética , Intercambio Materno-Fetal/fisiología , Placentación/genética , Placentación/fisiología , Embarazo , Factores de Riesgo
14.
Front Neuroendocrinol ; 57: 100834, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32084515

RESUMEN

The maternal environment during pregnancy is critical for fetal development and perinatal perturbations can prime offspring disease risk. Here, we briefly review evidence linking two well-characterized maternal stressors - psychosocial stress and infection - to increased neuropsychiatric risk in offspring. In the current climate of increasing obesity and globalization of the Western-style diet, maternal overnutrition emerges as a pressing public health concern. We focus our attention on recent epidemiological and animal model evidence showing that, like psychosocial stress and infection, maternal overnutrition can also increase offspring neuropsychiatric risk. Using lessons learned from the psychosocial stress and infection literature, we discuss how altered maternal and placental physiology in the setting of overnutrition may contribute to abnormal fetal development and resulting neuropsychiatric outcomes. A better understanding of converging pathophysiological pathways shared between stressors may enable development of interventions against neuropsychiatric illnesses that may be beneficial across stressors.


Asunto(s)
Síntomas Afectivos/etiología , Trastornos Mentales/etiología , Complicaciones del Embarazo/fisiopatología , Efectos Tardíos de la Exposición Prenatal/psicología , Estrés Fisiológico/fisiología , Estrés Psicológico/fisiopatología , Animales , Disfunción Cognitiva/etiología , Ambiente , Femenino , Desarrollo Fetal , Humanos , Hipernutrición/complicaciones , Hipernutrición/fisiopatología , Placenta/fisiopatología , Embarazo , Complicaciones del Embarazo/inmunología , Complicaciones del Embarazo/psicología , Efectos Tardíos de la Exposición Prenatal/inmunología , Factores de Riesgo , Estrés Psicológico/inmunología , Estrés Psicológico/psicología
15.
BMC Med ; 19(1): 47, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33602219

RESUMEN

BACKGROUND: The micronutrient iodine is essential for a healthy intrauterine environment and is required for optimal fetal growth and neurodevelopment. Evidence linking urinary iodine concentrations, which mainly reflects short-term iodine intake, to gestational diabetes mellitus (GDM) is inconclusive. Although the placental concentrations would better reflect the long-term gestational iodine status, no studies to date have investigated the association between the placental iodine load and the risk at GDM. Moreover, evidence is lacking whether placental iodine could play a role in biomarkers of insulin resistance and ß-cell activity. METHODS: We assessed the incidence of GDM between weeks 24 and 28 of gestation for 471 mother-neonate pairs from the ENVIRONAGE birth cohort. In placentas, we determined the iodine concentrations. In maternal and cord blood, we measured the insulin concentrations, the Homeostasis Model Assessment (HOMA) for insulin resistance (IR) index, and ß-cell activity. Logistic regression was used to estimate the odds ratios (OR) of GDM, and the population attributable factor (PAF) was calculated. Generalized linear models estimated the changes in insulin, HOMA-IR, and ß-cell activity for a 5 µg/kg increase in placental iodine. RESULTS: Higher placental iodine concentrations decreased the risk at GDM (OR = 0.82; 95%CI 0.72 to 0.93; p = 0.003). According to the PAF, 54.2% (95%CI 11.4 to 82.3%; p = 0.0006) of the GDM cases could be prevented if the mothers of the lowest tertile of placental iodine would have placental iodine levels as those belonging to the highest tertile. In cord blood, the plasma insulin concentration was inversely associated with the placental iodine load (ß = - 4.8%; 95%CI - 8.9 to - 0.6%; p = 0.026). CONCLUSIONS: Higher concentrations of placental iodine are linked with a lower incidence of GDM. Moreover, a lower placental iodine load is associated with an altered plasma insulin concentration, HOMA-IR index, and ß-cell activity. These findings postulate that a mild-to-moderate iodine deficiency could be linked with subclinical and early-onset alterations in the normal insulin homeostasis in healthy pregnant women. Nevertheless, the functional link between gestational iodine status and GDM warrants further research.


Asunto(s)
Diabetes Gestacional/etiología , Yodo/deficiencia , Placenta/fisiopatología , Adulto , Diabetes Gestacional/patología , Femenino , Humanos , Recién Nacido , Embarazo
16.
Mol Hum Reprod ; 27(3)2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33528567

RESUMEN

Prenatal exposure to glucocorticoids (GC) is a central topic of interest in medicine since GCs are essential for the maturation of fetal organs and intrauterine growth. Synthetic glucocorticoids, which are used in obstetric practice, exert beneficial effects on the fetus, but have also been reported to lead to intrauterine growth retardation (IUGR). In this study, a model of growth restriction in mice was established through maternal administration of dexamethasone during late gestation. We hypothesised that GC overexposure may adversely affect placental angiogenesis and fetal and placental growth. Female BALB/c mice were randomly assigned to control or dexamethasone treatment, either left to give birth or euthanised on days 15, 16, 17 and 18 of gestation followed by collection of maternal and fetal tissue. The IUGR rate increased to 100% in the dexamethasone group (8 mg/kg body weight on gestational days 14 and 15) and pups had clinical features of symmetrical IUGR at birth. Dexamethasone administration significantly decreased maternal body weight gain and serum corticosterone levels. Moreover, prenatal dexamethasone treatment not only induced fetal growth retardation but also decreased placental weight. In IUGR placentas, VEGFA protein levels and mRNA expression of VEGF receptors were reduced and NOS activity was lower. Maternal dexamethasone administration also reduced placental expression of the GC receptor, αGR. We demonstrated that maternal dexamethasone administration causes fetal and placental growth restriction. Furthermore, we propose that the growth retardation induced by prenatal GC overexposure may be caused, at least partially, by an altered placental angiogenic profile.


Asunto(s)
Dexametasona , Retardo del Crecimiento Fetal/metabolismo , Placenta/metabolismo , Placentación , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Retardo del Crecimiento Fetal/inducido químicamente , Retardo del Crecimiento Fetal/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Ratones Endogámicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Placenta/fisiopatología , Embarazo , Receptores de Glucocorticoides/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética
17.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R833-R843, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668428

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is a membrane-bound protein containing 805 amino acids. ACE2 shows approximately 42% sequence similarity to somatic ACE but has different biochemical activities. The key role of ACE2 is to catalyze the vasoconstrictor peptide angiotensin (ANG) II to Ang-(1-7), thus regulating the two major counterbalancing pathways of the renin-angiotensin system (RAS). In this way, ACE2 plays a protective role in end-organ damage by protecting tissues from the proinflammatory actions of ANG II. The circulating RAS is activated in normal pregnancy and is essential for maintaining fluid and electrolyte homeostasis and blood pressure. Renin-angiotensin systems are also found in the conceptus. In this review, we summarize the current knowledge on the regulation and function of circulating and uteroplacental ACE2 in uncomplicated and complicated pregnancies, including those affected by preeclampsia and fetal growth restriction. Since ACE2 is the receptor for SARS-CoV-2, and COVID-19 in pregnancy is associated with more severe disease and increased risk of abnormal pregnancy outcomes, we also discuss the role of ACE2 in mediating some of these adverse consequences. We propose that dysregulation of ACE2 plays a critical role in the development of preeclampsia, fetal growth restriction, and COVID-19-associated pregnancy pathologies and suggest that human recombinant soluble ACE2 could be a novel therapeutic to treat and/or prevent these pregnancy complications.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Placenta/enzimología , Complicaciones del Embarazo/enzimología , Sistema Renina-Angiotensina , Útero/enzimología , Enzima Convertidora de Angiotensina 2/uso terapéutico , Animales , Presión Sanguínea , COVID-19/enzimología , COVID-19/fisiopatología , COVID-19/virología , Femenino , Retardo del Crecimiento Fetal/enzimología , Retardo del Crecimiento Fetal/fisiopatología , Humanos , Mediadores de Inflamación/metabolismo , Placenta/fisiopatología , Preeclampsia/enzimología , Preeclampsia/fisiopatología , Embarazo , Complicaciones del Embarazo/tratamiento farmacológico , Complicaciones del Embarazo/fisiopatología , Complicaciones Infecciosas del Embarazo/enzimología , Complicaciones Infecciosas del Embarazo/fisiopatología , Complicaciones Infecciosas del Embarazo/virología , SARS-CoV-2/patogenicidad , Útero/fisiopatología , Equilibrio Hidroelectrolítico
18.
Clin Sci (Lond) ; 135(17): 2049-2066, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34406367

RESUMEN

Fetal growth restriction (FGR) is a complication of pregnancy that reduces birth weight, markedly increases infant mortality and morbidity and is associated with later-life cardiometabolic disease. No specific treatment is available for FGR. Placentas of human FGR infants have low abundance of sodium-coupled neutral amino acid transporter 2 (Slc38a2/SNAT2), which supplies the fetus with amino acids required for growth. We determined the mechanistic role of placental Slc38a2/SNAT2 deficiency in the development of restricted fetal growth, hypothesizing that placenta-specific Slc38a2 knockdown causes FGR in mice. Using lentiviral transduction of blastocysts with a small hairpin RNA (shRNA), we achieved 59% knockdown of placental Slc38a2, without altering fetal Slc38a2 expression. Placenta-specific Slc38a2 knockdown reduced near-term fetal and placental weight, fetal viability, trophoblast plasma membrane (TPM) SNAT2 protein abundance, and both absolute and weight-specific placental uptake of the amino acid transport System A tracer, 14C-methylaminoisobutyric acid (MeAIB). We also measured human placental SLC38A2 gene expression in a well-defined term clinical cohort and found that SLC38A2 expression was decreased in late-onset, but not early-onset FGR, compared with appropriate for gestational age (AGA) control placentas. The results demonstrate that low placental Slc38a2/SNAT2 causes FGR and could be a target for clinical therapies for late-onset FGR.


Asunto(s)
Sistema de Transporte de Aminoácidos A/deficiencia , Desarrollo Fetal , Retardo del Crecimiento Fetal/metabolismo , Placenta/metabolismo , Placentación , Sistema de Transporte de Aminoácidos A/genética , Animales , Estudios de Casos y Controles , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Placenta/fisiopatología , Embarazo , Estudios Prospectivos , Interferencia de ARN
19.
Clin Sci (Lond) ; 135(9): 1127-1143, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33904582

RESUMEN

Pregnancies complicated by severe, early-onset fetal growth restriction with abnormal Doppler velocimetry (FGRadv) have a sparse villous vascular tree secondary to impaired angiogenesis. As endothelial cell (EC) and stromal matrix interactions are key regulators of angiogenesis, we investigated the role of placental stromal villous matrix on fetoplacental EC angiogenesis. We have developed a novel model of generating placental fibroblast (FB) cell-derived matrices (CDMs), allowing us to interrogate placenta-specific human EC and stromal matrix interactions and their effects on fetoplacental angiogenesis. We found that as compared with control ECs plated on control matrix, FGRadv ECs plated on FGRadv matrix exhibited severe migrational defects, as measured by velocity, directionality, accumulated distance, and Euclidean distance in conjunction with less proliferation. However, control ECs, when interacting with FGRadv CDM, also demonstrated significant impairment in proliferation and migratory properties. Conversely several angiogenic attributes were rescued in FGRadv ECs subjected to control matrix, demonstrating the importance of placental villous stromal matrix and EC-stromal matrix interactions in regulation of fetoplacental angiogenesis.


Asunto(s)
Células Endoteliales/fisiología , Matriz Extracelular/fisiología , Retardo del Crecimiento Fetal/etiología , Neovascularización Fisiológica , Placenta/fisiopatología , Adulto , Estudios de Casos y Controles , Movimiento Celular , Microambiente Celular , Femenino , Retardo del Crecimiento Fetal/fisiopatología , Humanos , Embarazo
20.
Clin Sci (Lond) ; 135(19): 2307-2327, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34643675

RESUMEN

Preeclampsia (PE), the leading cause of maternal and fetal morbidity and mortality, is associated with poor fetal growth, intrauterine growth restriction (IUGR) and low birth weight (LBW). Offspring of women who had PE are at increased risk for cardiovascular (CV) disease later in life. However, the exact etiology of PE is unknown. Moreover, there are no effective interventions to treat PE or alleviate IUGR and the developmental origins of chronic disease in the offspring. The placenta is critical to fetal growth and development. Epigenetic regulatory processes such as histone modifications, microRNAs and DNA methylation play an important role in placental development including contributions to the regulation of trophoblast invasion and remodeling of the spiral arteries. Epigenetic processes that lead to changes in placental gene expression in PE mediate downstream effects that contribute to the development of placenta dysfunction, a critical mediator in the onset of PE, impaired fetal growth and IUGR. Therefore, this review will focus on epigenetic processes that contribute to the pathogenesis of PE and IUGR. Understanding the epigenetic mechanisms that contribute to normal placental development and the initiating events in PE may lead to novel therapeutic targets in PE that improve fetal growth and mitigate increased CV risk in the offspring.


Asunto(s)
Enfermedades Cardiovasculares/genética , Epigénesis Genética , Desarrollo Fetal , Retardo del Crecimiento Fetal/genética , Regulación del Desarrollo de la Expresión Génica , Placenta/metabolismo , Preeclampsia/genética , Animales , Presión Sanguínea/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Ensamble y Desensamble de Cromatina , Metilación de ADN , Femenino , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/fisiopatología , Humanos , Recién Nacido de Bajo Peso , Recién Nacido , Placenta/fisiopatología , Placentación/genética , Preeclampsia/metabolismo , Preeclampsia/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal , Pronóstico , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA