Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.341
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(11): 2894-2894.e1, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788692

RESUMEN

Plant cells share a number of biological condensates with cells from other eukaryotes. There are, however, a growing number of plant-specific condensates that support different cellular functions. Condensates operating in different plant tissues contribute to aspects of development and stress responses. To view this SnapShot, open or download the PDF.


Asunto(s)
Condensados Biomoleculares , Células Vegetales , Plantas , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Células Vegetales/química , Células Vegetales/metabolismo , Fenómenos Fisiológicos de las Plantas , Plantas/química , Plantas/metabolismo
2.
Nature ; 619(7970): 500-505, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37286609

RESUMEN

Hygroscopic biological matter in plants, fungi and bacteria make up a large fraction of Earth's biomass1. Although metabolically inert, these water-responsive materials exchange water with the environment and actuate movement2-5 and have inspired technological uses6,7. Despite the variety in chemical composition, hygroscopic biological materials across multiple kingdoms of life exhibit similar mechanical behaviours including changes in size and stiffness with relative humidity8-13. Here we report atomic force microscopy measurements on the hygroscopic spores14,15 of a common soil bacterium and develop a theory that captures the observed equilibrium, non-equilibrium and water-responsive mechanical behaviours, finding that these are controlled by the hydration force16-18. Our theory based on the hydration force explains an extreme slowdown of water transport and successfully predicts a strong nonlinear elasticity and a transition in mechanical properties that differs from glassy and poroelastic behaviours. These results indicate that water not only endows biological matter with fluidity but also can-through the hydration force-control macroscopic properties and give rise to a 'hydration solid' with unusual properties. A large fraction of biological matter could belong to this distinct class of solid matter.


Asunto(s)
Esporas Bacterianas , Agua , Humectabilidad , Transporte Biológico , Hongos/química , Hongos/metabolismo , Microscopía de Fuerza Atómica , Agua/metabolismo , Plantas/química , Plantas/metabolismo , Bacterias/química , Bacterias/citología , Bacterias/metabolismo , Esporas Bacterianas/química , Esporas Bacterianas/metabolismo , Humedad , Elasticidad
3.
Nucleic Acids Res ; 52(D1): D1579-D1587, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37819039

RESUMEN

The Plant Metabolome Hub (PMhub), available at https://pmhub.org.cn, is a valuable resource designed to provide scientists with comprehensive information on plant metabolites. It offers extensive details about their reference spectra, genetic foundations, chemical reactions, metabolic pathways and biological functions. The PMhub contains chemical data for 188 837 plant metabolites gathered from various sources, with 1 467 041 standard/in-silico high-resolution tandem mass-spectrometry (HRMS/MS) spectra corresponding to these metabolites. Beyond its extensive literature-derived data, PMhub also boasts a sizable collection of experimental metabolites; it contains 144 366 detected features in 10 typical plant species, with 16 423 successfully annotated by using standard/in-silico HRMS/MS data, this collection is further supplemented with thousands of features gathered from reference metabolites. For each metabolite, the PMhub enables the reconstructed of a simulated network based on structural similarities and existing metabolic pathways. Unlike previous plant-specific metabolome databases, PMhub not only contains a vast amount of metabolic data but also assembles the corresponding genomic and/or transcriptomic information, incorporating multiple methods for the comprehensive genetic analysis of metabolites. To validate the practicality, we verified a synthetic pathway for N-p-coumaroyltyramine by in vitro enzymatic activity experiments. In summary, the robust functionality provided by the PMhub will make it an indispensable tool for studying plant metabolomics.


Asunto(s)
Bases de Datos Factuales , Metaboloma , Plantas , Redes y Vías Metabólicas , Metaboloma/genética , Metabolómica/métodos , Espectrometría de Masas en Tándem , Plantas/química , Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(40): e2205857119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161953

RESUMEN

Horizontal gene transfer (HGT) provides an evolutionary shortcut for recipient organisms to gain novel functions. Although reports of HGT in higher eukaryotes are rapidly accumulating, in most cases the evolutionary trajectory, metabolic integration, and ecological relevance of acquired genes remain unclear. Plant cell wall degradation by HGT-derived enzymes is widespread in herbivorous insect lineages. Pectin is an abundant polysaccharide in the walls of growing parts of plants. We investigated the significance of horizontally acquired pectin-digesting polygalacturonases (PGs) of the leaf beetle Phaedon cochleariae. Using a CRISPR/Cas9-guided gene knockout approach, we generated a triple knockout and a quadruple PG-null mutant in order to investigate the enzymatic, biological, and ecological effects. We found that pectin-digestion 1) is exclusively linked to the horizontally acquired PGs from fungi, 2) became fixed in the host genome by gene duplication leading to functional redundancy, 3) compensates for nutrient-poor diet by making the nutritious cell contents more accessible, and 4) facilitates the beetles development and survival. Our analysis highlights the selective advantage PGs provide to herbivorous insects and demonstrate the impact of HGT on the evolutionary success of leaf-feeding beetles, major contributors to species diversity.


Asunto(s)
Escarabajos , Transferencia de Gen Horizontal , Poligalacturonasa , Animales , Escarabajos/enzimología , Escarabajos/genética , Técnicas de Inactivación de Genes , Pectinas/metabolismo , Filogenia , Plantas/química , Poligalacturonasa/genética
5.
Annu Rev Biochem ; 78: 273-304, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19355820

RESUMEN

The packaging of chromosomal DNA by nucleosomes condenses and organizes the genome, but occludes many regulatory DNA elements. However, this constraint also allows nucleosomes and other chromatin components to actively participate in the regulation of transcription, chromosome segregation, DNA replication, and DNA repair. To enable dynamic access to packaged DNA and to tailor nucleosome composition in chromosomal regions, cells have evolved a set of specialized chromatin remodeling complexes (remodelers). Remodelers use the energy of ATP hydrolysis to move, destabilize, eject, or restructure nucleosomes. Here, we address many aspects of remodeler biology: their targeting, mechanism, regulation, shared and unique properties, and specialization for particular biological processes. We also address roles for remodelers in development, cancer, and human syndromes.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Animales , Humanos , Nucleosomas/metabolismo , Plantas/química , Plantas/genética , Plantas/metabolismo
6.
Chem Soc Rev ; 53(12): 6445-6510, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38747901

RESUMEN

Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.


Asunto(s)
Biocatálisis , Péptidos , Péptidos/química , Péptidos/metabolismo , Humanos , Microplásticos/química , Microplásticos/metabolismo , Plantas/metabolismo , Plantas/química , Ingeniería de Proteínas
7.
Chembiochem ; 25(12): e202400133, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38607659

RESUMEN

Today, the use of artificial pesticides is questionable and the adaptation to global warming is a necessity. The promotion of favorable natural interactions in the rhizosphere offers interesting perspectives for changing the type of agriculture. Strigolactones (SLs), the latest class of phytohormones to be discovered, are also chemical mediators in the rhizosphere. We present in this review the diversity of natural SLs, their analogs, mimics, and probes essential for the biological studies of this class of compounds. Their biosynthesis and access by organic synthesis are highlighted especially concerning noncanonical SLs, the more recently discovered natural SLs. Organic synthesis of analogs, stable isotope-labeled standards, mimics, and probes are also reviewed here. In the last part, the knowledge about the SL perception is described as well as the different inhibitors of SL receptors that have been developed.


Asunto(s)
Lactonas , Reguladores del Crecimiento de las Plantas , Plantas , Lactonas/química , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/síntesis química , Plantas/metabolismo , Plantas/química
8.
Biol Chem ; 405(6): 367-381, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662449

RESUMEN

Structural and allergenic characterization of mite profilins has not been previously pursued to a similar extent as plant profilins. Here, we describe structures of profilins originating from Tyrophagus putrescentiae (registered allergen Tyr p 36.0101) and Dermatophagoides pteronyssinus (here termed Der p profilin), which are the first structures of profilins from Arachnida. Additionally, the thermal stabilities of mite and plant profilins are compared, suggesting that the high number of cysteine residues in mite profilins may play a role in their increased stability. We also examine the cross-reactivity of plant and mite profilins as well as investigate the relevance of these profilins in mite inhalant allergy. Despite their high structural similarity to other profilins, mite profilins have low sequence identity with plant and human profilins. Subsequently, these mite profilins most likely do not display cross-reactivity with plant profilins. At the same time the profilins have highly conserved poly(l-proline) and actin binding sites.


Asunto(s)
Reacciones Cruzadas , Profilinas , Animales , Reacciones Cruzadas/inmunología , Profilinas/inmunología , Profilinas/química , Profilinas/metabolismo , Humanos , Ácaros/inmunología , Ácaros/química , Secuencia de Aminoácidos , Hipersensibilidad/inmunología , Plantas/inmunología , Plantas/química , Plantas/metabolismo , Modelos Moleculares , Alérgenos/inmunología , Alérgenos/química
9.
Plant Cell Environ ; 47(4): 1238-1254, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38173082

RESUMEN

The evolution of land flora was an epochal event in the history of planet Earth. The success of plants, and especially flowering plants, in colonizing all but the most hostile environments required multiple mechanisms of adaptation. The mainly polysaccharide-based cell walls of flowering plants, which are indispensable for water transport and structural support, are one of the most important adaptations to life on land. Thus, development of vasculature is regarded as a seminal event in cell wall evolution, but the impact of further refinements and diversification of cell wall compositions and architectures on radiation of flowering plant families is less well understood. We approached this from a glyco-profiling perspective and, using carbohydrate microarrays and monoclonal antibodies, studied the cell walls of 287 plant species selected to represent important evolutionary dichotomies and adaptation to a variety of habitats. The results support the conclusion that radiation of flowering plant families was indeed accompanied by changes in cell wall fine structure and that these changes can obscure earlier evolutionary events. Convergent cell wall adaptations identified by our analyses do not appear to be associated with plants with similar lifestyles but that are taxonomically distantly related. We conclude that cell wall structure is linked to phylogeny more strongly than to habitat or lifestyle and propose that there are many approaches of adaptation to any given ecological niche.


Asunto(s)
Plantas , Polisacáridos , Polisacáridos/análisis , Filogenia , Plantas/química , Pared Celular/química , Pectinas/análisis , Evolución Biológica
10.
Glob Chang Biol ; 30(5): e17333, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798169

RESUMEN

Plant metabolites significantly affect soil nitrogen (N) cycling, but their influence on nitrous oxide (N2O) emissions has not been quantitatively analyzed on a global scale. We conduct a comprehensive meta-analysis of 173 observations from 42 articles to evaluate global patterns of and principal factors controlling N2O emissions in the presence of root exudates and extracts. Overall, plant metabolites promoted soil N2O emissions by about 10%. However, the effects of plant metabolites on N2O emissions from soils varied with experimental conditions and properties of both metabolites and soils. Primary metabolites, such as sugars, amino acids, and organic acids, strongly stimulated soil N2O emissions, by an average of 79%, while secondary metabolites, such as phenolics, terpenoids, and flavonoids, often characterized as both biological nitrification inhibitors (BNIs) and biological denitrification inhibitors (BDIs), reduced soil N2O emissions by an average of 41%. The emission mitigation effects of BNIs/BDIs were closely associated with soil texture and pH, increasing with increasing soil clay content and soil pH on acidic and neutral soils, and with decreasing soil pH on alkaline soils. We furthermore present soil incubation experiments that show that three secondary metabolite types act as BNIs to reduce N2O emissions by 32%-45%, while three primary metabolite classes possess a stimulatory effect of 56%-63%, confirming the results of the meta-analysis. Our results highlight the potential role and application range of specific secondary metabolites in biomitigation of global N2O emissions and provide new biological parameters for N2O emission models that should help improve the accuracy of model predictions.


Asunto(s)
Óxido Nitroso , Plantas , Suelo , Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Suelo/química , Plantas/metabolismo , Plantas/química , Nitrificación , Desnitrificación
11.
Arch Microbiol ; 206(5): 229, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647675

RESUMEN

In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.


Asunto(s)
Resveratrol , Estilbenos , Estilbenos/química , Estilbenos/farmacología , Humanos , Resveratrol/farmacología , Resveratrol/química , Hongos/efectos de los fármacos , Endófitos/química , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/farmacología , Medicina Tradicional , Plantas/química
12.
Biometals ; 37(1): 23-70, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37914858

RESUMEN

Researchers are swarming to nanotechnology because of its potentially game-changing applications in medicine, pharmaceuticals, and agriculture. This fast-growing, cutting-edge technology is trying different approaches for synthesizing nanoparticles of specific sizes and shapes. Nanoparticles (NPs) have been successfully synthesized using physical and chemical processes; there is an urgent demand to establish environmentally acceptable and sustainable ways for their synthesis. The green approach of nanoparticle synthesis has emerged as a simple, economical, sustainable, and eco-friendly method. In particular, phytoassisted plant extract synthesis is easy, reliable, and expeditious. Diverse phytochemicals present in the extract of various plant organs such as root, leaf, and flower are used as a source of reducing as well as stabilizing agents during production. Green synthesis is based on principles like prevention/minimization of waste, reduction of derivatives/pollution, and the use of safer (or non-toxic) solvent/auxiliaries as well as renewable feedstock. Being free of harsh operating conditions (high temperature and pressure), hazardous chemicals and the addition of external stabilizing or capping agents makes the nanoparticles produced using green synthesis methods particularly desirable. Different metallic nanomaterials are produced using phytoassisted synthesis methods, such as silver, zinc, gold, copper, titanium, magnesium, and silicon. Due to significant differences in physical and chemical properties between nanoparticles and their micro/macro counterparts, their characterization becomes essential. Various microscopic and spectroscopic techniques have been employed for conformational details of nanoparticles, like shape, size, dispersity, homogeneity, surface structure, and inter-particle interactions. UV-visible spectroscopy is used to examine the optical properties of NPs in solution. XRD analysis confirms the purity and phase of NPs and provides information about crystal size and symmetry. AFM, SEM, and TEM are employed for analyzing the morphological structure and particle size of NPs. The nature and kind of functional groups or bioactive compounds that might account for the reduction and stabilization of NPs are detected by FTIR analysis. The elemental composition of synthesized NPs is determined using EDS analysis. Nanoparticles synthesized by green methods have broad applications and serve as antibacterial and antifungal agents. Various metal and metal oxide NPs such as Silver (Ag), copper (Cu), gold (Au), silicon dioxide (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (CuO), etc. have been proven to have a positive effect on plant growth and development. They play a potentially important role in the germination of seeds, plant growth, flowering, photosynthesis, and plant yield. The present review highlights the pathways of phytosynthesis of nanoparticles, various techniques used for their characterization, and their possible roles in the physiology of plants.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Plata/química , Cobre/química , Dióxido de Silicio , Nanopartículas/química , Nanopartículas del Metal/química , Antibacterianos/química , Extractos Vegetales/química , Plantas/química , Oro/química , Espectroscopía Infrarroja por Transformada de Fourier
13.
J Nat Prod ; 87(4): 1285-1305, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38375796

RESUMEN

The discovery of naturally occurring organohalogen compounds has increased astronomically in the 55 years since they were first discovered─from fewer than 50 in 1968 to a combined 7,958 described examples in three comprehensive reviews. The present survey, which covers the period 2021-2023, brings the number of known natural organohalogens to approximately 8,400. The organization is according to species origin, and coverage includes marine and terrestrial plants, fungi, bacteria, marine sponges, corals, cyanobacteria, tunicates, and other marine organisms.


Asunto(s)
Cianobacterias , Estructura Molecular , Animales , Cianobacterias/química , Poríferos/química , Productos Biológicos/química , Bacterias , Hongos/química , Antozoos/química , Urocordados/química , Plantas/química , Hidrocarburos Halogenados/química , Organismos Acuáticos
14.
Bioorg Chem ; 142: 106957, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939507

RESUMEN

Natural products represent a paramount source of novel drugs. Numerous plant-derived natural products have demonstrated potent anti-tumor properties, thereby garnering considerable interest in their potential as anti-tumor drugs. This review compiles an overview of 242 recently discovered natural products, spanning the period from 2018 to the present. These natural products, which include 69 terpenoids, 42 alkaloids, 39 flavonoids, 21 steroids, 14 phenylpropanoids, 5 quinolines and 52 other compounds, are characterized by their respective chemical structures, anti-tumor activities, and mechanisms of action. By providing an essential reference and fresh insights, this review aims to support and inspire researchers engaged in the fields of natural products and anti-tumor drug discovery.


Asunto(s)
Alcaloides , Antineoplásicos , Productos Biológicos , Productos Biológicos/farmacología , Productos Biológicos/química , Alcaloides/farmacología , Alcaloides/química , Plantas/química , Flavonoides/química , Antineoplásicos/farmacología
15.
Nature ; 560(7716): 76-79, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988081

RESUMEN

The past two million years of eastern African climate variability is currently poorly constrained, despite interest in understanding its assumed role in early human evolution1-4. Rare palaeoclimate records from northeastern Africa suggest progressively drier conditions2,5 or a stable hydroclimate6. By contrast, records from Lake Malawi in tropical southeastern Africa reveal a trend of a progressively wetter climate over the past 1.3 million years7,8. The climatic forcings that controlled these past hydrological changes are also a matter of debate. Some studies suggest a dominant local insolation forcing on hydrological changes9-11, whereas others infer a potential influence of sea surface temperature changes in the Indian Ocean8,12,13. Here we show that the hydroclimate in southeastern Africa (20-25° S) is controlled by interplay between low-latitude insolation forcing (precession and eccentricity) and changes in ice volume at high latitudes. Our results are based on a multiple-proxy reconstruction of hydrological changes in the Limpopo River catchment, combined with a reconstruction of sea surface temperature in the southwestern Indian Ocean for the past 2.14 million years. We find a long-term aridification in the Limpopo catchment between around 1 and 0.6 million years ago, opposite to the hydroclimatic evolution suggested by records from Lake Malawi. Our results, together with evidence of wetting at Lake Malawi, imply that the rainbelt contracted toward the Equator in response to increased ice volume at high latitudes. By reducing the extent of woodland or wetlands in terrestrial ecosystems, the observed changes in the hydroclimate of southeastern Africa-both in terms of its long-term state and marked precessional variability-could have had a role in the evolution of early hominins, particularly in the extinction of Paranthropus robustus.


Asunto(s)
Evolución Biológica , Clima , Hominidae , Lluvia , Alcanos/análisis , Alcanos/química , Animales , Extinción Biológica , Foraminíferos/química , Bosques , Historia Antigua , Hidrología , Océano Índico , Lagos , Malaui , Plantas/química , Ríos , Ciclo Hidrológico , Ceras/química , Humedales
16.
Nature ; 553(7686): 73-76, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29258288

RESUMEN

Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.


Asunto(s)
Crianza de Animales Domésticos , Biomasa , Agricultura Forestal , Bosques , Actividades Humanas , Internacionalidad , Plantas/metabolismo , Animales , Carbono/análisis , Secuestro de Carbono , Conservación de los Recursos Naturales/legislación & jurisprudencia , Calentamiento Global/legislación & jurisprudencia , Calentamiento Global/prevención & control , Plantas/química , Árboles/química , Árboles/metabolismo , Clima Tropical , Incertidumbre
17.
Environ Res ; 252(Pt 1): 118694, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521357

RESUMEN

The contribution of smelting of nonferrous metals to heavy metals in surface soil have become increasingly important over the past decade. In this study, the distribution of heavy metals around an abandoned mercury-bearing waste recovery enterprise were investigated. Soil (14) and plant (18) samples were collected in the surrounding area. The total concentration of heavy metals and methyl mercury content were measured by ICP-MS and HPLC-ICP-MS. The results show that the average contents of Cd, Cr, Pb, Hg and As in all soil samples are higher than the second-level values of Soil environmental quality-Risk control standard for soil contamination of development land (GB 36600-2018). Hg in the leaves ranged from 0.003 to 0.174 mg kg-1. Besides, the Pearson correlation analysis results indicate that Hg has a different environmental behavior compared to the other heavy metal under certain environmental or geographical conditions. But the mantel test statistical analysis results show that the Cr (P < 0.01), Cu, Pb, and Fe (P < 0.05) in the soil may have similar pollution sources with carbonate-bound mercury and iron-manganese oxide-bound mercury. The Hg concentrations show no correlation among plant leaves and soil, but significantly influenced by the distance and wind direction. These findings suggest that Hg in plant leaves may be derived from the deposition of atmospheric mercury from secondary mercury plant. The results will supplement those for relevant policy making for mercury-bearing waste recovery enterprises to improve urban environmental quality and human health.


Asunto(s)
Monitoreo del Ambiente , Mercurio , Metales Pesados , Contaminantes del Suelo , Contaminantes del Suelo/análisis , China , Metales Pesados/análisis , Mercurio/análisis , Suelo/química , Plantas/química , Contaminación Ambiental/análisis
18.
Environ Res ; 249: 118382, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331160

RESUMEN

Constructed wetlands (CWs) are a pollutant treatment design inspired by natural wetlands and are widely utilized for the removal of common pollutants. The research focus lies in the circulation of manganese (Mn) in the environment to enhance pollutant removal within CWs. This paper provides a comprehensive review of recent advancements in understanding the role and effects of Mn in chemical weapons, based on literature retrieval from 2002 to 2021. Ecological risk assessment and heavy metals within CWs emerge as current areas of research interest. Mn sources within CWs primarily include natural deposition, heavy metal wastewater, and intentional addition. The cycling between Mn(II) and Mn(IV) facilitates enhanced wastewater treatment within CWs. Moreover, employing a Mn matrix proves effective in reducing ammonia nitrogen wastewater, organic pollutants, as well as heavy metals such as Cd and Pb, thereby addressing complex pollution challenges practically. To comprehensively analyze influencing factors on the system's performance, both internal factors (biological species, design parameters, pH levels, etc.) and external factors (seasonal climate variations, precipitation patterns, ultraviolet radiation exposure, etc.) were discussed. Among these factors, microorganisms, pollutants, and temperature are the most important influencing factors, which emphasizes the importance of these factors for wetland operation. Lastly, this paper delves into plant absorption of Mn along with coping strategies employed by plants when faced with Mn poisoning or deficiency scenarios. When utilizing Mn for the regulation of constructed wetlands, it is crucial to consider the tolerance levels of associated plant species. Furthermore, the study predicts future research hotspots encompass high-efficiency catalysis techniques, matrix-filling approaches, and preparation of resource utilization methods involving Mn nanomaterials.


Asunto(s)
Manganeso , Plantas , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Humedales , Manganeso/análisis , Contaminantes Químicos del Agua/análisis , Plantas/metabolismo , Plantas/química , Eliminación de Residuos Líquidos/métodos , Bibliometría , Aguas Residuales/química
19.
J Sep Sci ; 47(8): e2300669, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651549

RESUMEN

Exosomes-like nanoparticles (ELNs) (exosomes or extracellular vesicles) are vesicle-like bodies secreted by cells. Plant ELNs (PENs) are membrane vesicles secreted by plant cells, with a lipid bilayer as the basic skeleton, enclosing various active substances such as proteins and nucleic acids, which have many physiological and pathological functions. Recent studies have found that the PENs are widespread within different plant species and their biological functions are increasingly recognized. The effective separation method is also necessary for its function and application. Ultracentrifugation, sucrose density gradient ultracentrifugation, ultrafiltration, polymer-based precipitation methods, etc., are commonly used methods for plant exosome-like nanoparticle extraction. In recent years, emerging methods such as size exclusion chromatography, immunoaffinity capture-based technique, and microfluidic technology have shown advancements compared to traditional methods. The standardized separation process for PENs continues to evolve. In this review, we summarized the recent progress in the biogenesis, components, separation methods, and some functions of PENs. When the research on the separation method of PENs and their unique biological structure is further studied. A brand-new idea for the efficient separation and utilization of PENs can be provided in the future, which has a very broad prospect.


Asunto(s)
Exosomas , Nanopartículas , Plantas , Nanopartículas/química , Exosomas/química , Exosomas/metabolismo , Plantas/química , Plantas/metabolismo , Tamaño de la Partícula , Ultracentrifugación , Cromatografía en Gel
20.
Biosci Biotechnol Biochem ; 88(7): 705-718, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38632052

RESUMEN

Flavonoids are polyphenolic plant constituents. Anthocyanins are flavonoid pigments found in higher plants that show a wide variety of colors ranging from red through purple to blue. The blue color of the flowers is mostly attributed to anthocyanins. However, only a few types of anthocyanidin, chromophore of anthocyanin, exist in nature, and the extracted pigments are unstable with the color fading away. Therefore, the wide range and stable nature of colors in flowers have remained a mystery for more than a century. The mechanism underlying anthocyanin-induced flower coloration was studied using an interdisciplinary method involving chemistry and biology. Furthermore, the chemical studies on flavonoid pigments in various edible plants, synthetic and biosynthetic studies on anthocyanins were conducted. The results of these studies have been outlined in this review.


Asunto(s)
Antocianinas , Flavonoides , Flores , Flavonoides/química , Flavonoides/metabolismo , Antocianinas/química , Flores/química , Pigmentos Biológicos/química , Pigmentación , Plantas/química , Plantas/metabolismo , Color
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA