Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
Más filtros

Intervalo de año de publicación
1.
Anal Chem ; 96(3): 1093-1101, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38204177

RESUMEN

Lactobacillus is an important member of the probiotic bacterial family for regulating human intestinal microflora and preserving its normalcy, and it has been widely used in infant formula. An appropriate and feasible method to quantify viable Lactobacilli cells is urgently required to evaluate the quality of probiotic-fortified infant formula. This study presents a rapid and accurate method to count viable Lactobacilli cells in infant formula using flow cytometry (FCM). First, Lactobacillus cells were specifically and rapidly stained by oligonucleotide probes based on a signal-enhanced fluorescence in situ hybridization (SEFISH) technique. A DNA-binding fluorescent probe, propidium monoazide (PMA), was then used to accurately recognize viable Lactobacillus cells. The entire process of this newly developed PMA-SEFISH-FCM method was accomplished within 2.5 h, which included pretreatment, dual staining, and FCM analysis; thus, this method showed considerably shorter time-to-results than other rapid methods. This method also demonstrated a good linear correlation (R2 = 0.9994) with the traditional plate-based method with a bacterial recovery rate of 91.24%. To the best of our knowledge, the present study is the first report of FCM combined with PMA and FISH for the specific detection of viable bacterial cells.


Asunto(s)
Fórmulas Infantiles , Lactobacillus , Propidio/análogos & derivados , Humanos , Lactobacillus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Citometría de Flujo/métodos , Hibridación Fluorescente in Situ , Azidas , Bacterias , Viabilidad Microbiana
2.
Appl Environ Microbiol ; 90(2): e0165823, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38236032

RESUMEN

In this study, we compared conventional vacuum filtration of small volumes through disc membranes (effective sample volumes for potable water: 0.3-1.0 L) with filtration of high volumes using ultrafiltration (UF) modules (effective sample volumes for potable water: 10.6-84.5 L) for collecting bacterial biomass from raw, finished, and tap water at seven drinking water systems. Total bacteria, Legionella spp., Legionella pneumophila, Mycobacterium spp., and Mycobacterium avium complex in these samples were enumerated using both conventional quantitative PCR (qPCR) and viability qPCR (using propidium monoazide). In addition, PCR-amplified gene fragments were sequenced for microbial community analysis. The frequency of detection (FOD) of Legionella spp. in finished and tap water samples was much greater using UF modules (83% and 77%, respectively) than disc filters (24% and 33%, respectively). The FODs for Mycobacterium spp. in raw, finished, and tap water samples were also consistently greater using UF modules than disc filters. Furthermore, the number of observed operational taxonomic units and diversity index values for finished and tap water samples were often substantially greater when using UF modules as compared to disc filters. Conventional and viability qPCR yielded similar results, suggesting that membrane-compromised cells represented a minor fraction of total bacterial biomass. In conclusion, our research demonstrates that large-volume filtration using UF modules improved the detection of opportunistic pathogens at the low concentrations typically found in public drinking water systems and that the majority of bacteria in these systems appear to be viable in spite of disinfection with free chlorine and/or chloramine.IMPORTANCEOpportunistic pathogens, such as Legionella pneumophila, are a growing public health concern. In this study, we compared sample collection and enumeration methods on raw, finished, and tap water at seven water systems throughout the State of Minnesota, USA. The results showed that on-site filtration of large water volumes (i.e., 500-1,000 L) using ultrafiltration membrane modules improved the frequency of detection of relatively rare organisms, including opportunistic pathogens, compared to the common approach of filtering about 1 L using disc membranes. Furthermore, results from viability quantitative PCR (qPCR) with propidium monoazide were similar to conventional qPCR, suggesting that membrane-compromised cells represent an insignificant fraction of microorganisms. Results from these ultrafiltration membrane modules should lead to a better understanding of the microbial ecology of drinking water distribution systems and their potential to inoculate premise plumbing systems with opportunistic pathogens where conditions are more favorable for their growth.


Asunto(s)
Azidas , Agua Potable , Legionella pneumophila , Legionella , Mycobacterium , Propidio/análogos & derivados , Agua Potable/microbiología , Mycobacterium/genética , Microbiología del Agua , Abastecimiento de Agua , Legionella/genética
3.
Appl Microbiol Biotechnol ; 108(1): 472, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320527

RESUMEN

Xanthomonas arboricola pv. pruni (Xap) is the causal agent of bacterial spot of stone fruits and almond (Prunus spp). Detection of Xap is typically carried out using quantitative real-time PCR (qPCR) combined with culture-based isolation. However, qPCR does not differentiate between viable and dead cells, potentially leading to an overestimation of the infective population in a sample. Such overestimation could result in unnecessary phytosanitary measures. The present study aims to develop a specific protocol ideally targeting to detection of only live Xap bacterial cells. To address this challenge, the viable quantitative PCR (v-qPCR) method was evaluated using three nucleic acid-binding dyes: propidium monoazide (PMA), a combination of PMA and ethidium monoazide (EMA), and PMAxx™, an improved version of PMA. PMAxx™ proved to be the most suitable dye for the detection and quantification of living bacterial cells. This methodology was also evaluated in infected plant material over time and can be considered a rapid and reliable alternative to PCR methods for detecting only those putative infective Xap that may pose a risk for Prunus crops. KEY POINTS: • Protocol to detect biofilm and planktonic viable X. arboricola pv. pruni cells. • Host validated protocol. • Benefits, reduction of chemicals in disease control.


Asunto(s)
Azidas , Enfermedades de las Plantas , Propidio , Prunus , Reacción en Cadena en Tiempo Real de la Polimerasa , Xanthomonas , Xanthomonas/genética , Xanthomonas/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Enfermedades de las Plantas/microbiología , Propidio/análogos & derivados , Propidio/química , Azidas/química , Prunus/microbiología , Viabilidad Microbiana , Biopelículas/crecimiento & desarrollo
4.
Plant Dis ; 108(7): 2190-2196, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537137

RESUMEN

Bacterial spot is one of the most serious diseases of peach caused by the pathogen Xanthomonas arboricola pv. pruni (XAP), leading to early defoliation and unmarketable fruit. The pathogen can overwinter in peach twigs and form spring cankers, which are considered the primary inoculum source for early season leaf and fruitlet infection. The amount of overwintering bacterial inoculum plays a critical role for the bacterial spot development, but no reliable quantification method is available. Thus, we developed a long-amplicon propidium monoazide (PMA)-quantitative PCR (qPCR) assay for specific detection of viable XAP cells. The optimized PMA-qPCR assay used 20 µM of PMAxx for pure bacterial suspensions and 100 µM for peach twig tissues. The Qiagen Plant Pro Kit with an additional lysozyme digestion step was the DNA extraction protocol that yielded the best detection sensitivity with the bacteria-spiked peach twig extracts. The PMA-qPCR assay was tested with different mixtures of viable and heat-killed XAP cells in pure bacterial suspensions and bacteria-spiked peach twig tissues. The results showed that this assay enabled sensitive, specific, and accurate quantification of viable XAP cells as low as 103 CFU/ml with the presence of up to 107 CFU/ml of dead XAP cells, while suppressing the amplification of DNA from dead cells. For mixtures of viable and dead cells, the PMA-qPCR results were linearly correlated with the predicted concentrations of viable XAP (R2 > 0.98). Thus, the PMA-qPCR assay will be a suitable tool for quantifying overwintering XAP population on peach trees.


Asunto(s)
Azidas , Enfermedades de las Plantas , Propidio , Prunus persica , Xanthomonas , Azidas/química , Xanthomonas/genética , Xanthomonas/aislamiento & purificación , Propidio/análogos & derivados , Propidio/química , Enfermedades de las Plantas/microbiología , Prunus persica/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ADN Bacteriano/genética , Árboles/microbiología
5.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38892344

RESUMEN

SARS-CoV-2 is a highly infectious virus responsible for the COVID-19 pandemic. Therefore, it is important to assess the risk of SARS-CoV-2 infection, especially in persistently positive patients. Rapid discrimination between infectious and non-infectious viruses aids in determining whether prevention, control, and treatment measures are necessary. For this purpose, a method was developed and utilized involving a pre-treatment with 50 µM of propidium monoazide (PMAxx, a DNA intercalant) combined with a digital droplet PCR (ddPCR). The ddPCR method was performed on 40 nasopharyngeal swabs (NPSs) both before and after treatment with PMAxx, revealing a reduction in the viral load at a mean of 0.9 Log copies/mL (SD ± 0.6 Log copies/mL). Furthermore, six samples were stratified based on the Ct values of SARS-CoV-2 RNA (Ct < 20, 20 < Ct < 30, Ct > 30) and analyzed to compare the results obtained via a ddPCR with viral isolation and a negative-chain PCR. Of the five samples found positive via a ddPCR after the PMAxx treatment, two of the samples showed the highest post-treatment SARS-CoV-2 loads. The virus was isolated in vitro from both samples and the negative strand chains were detected. In three NPS samples, SARS CoV-2 was present post-treatment at a low level; it was not isolated in vitro, and, when detected, the strand was negative. Our results indicate that the established method is useful for determining whether the SARS-CoV-2 within positive NPS samples is intact and capable of causing infection.


Asunto(s)
Azidas , COVID-19 , Nasofaringe , Propidio , SARS-CoV-2 , Carga Viral , Humanos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Azidas/química , Propidio/análogos & derivados , Propidio/química , COVID-19/virología , Carga Viral/métodos , Nasofaringe/virología , ARN Viral/genética , ARN Viral/aislamiento & purificación , Prueba de Ácido Nucleico para COVID-19/métodos , Reacción en Cadena de la Polimerasa/métodos
6.
Appl Microbiol Biotechnol ; 106(7): 2739-2750, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35262785

RESUMEN

Diarrheal diseases caused by Salmonella pose a major threat to public health, and assessment of bacterial viability is critical in determining the safety of food and drinking water after disinfection. Viability PCR could overcome the limitations of traditional culture-dependent methods for a more accurate assessment of the viability of a microbial sample. In this study, the physiological changes in Salmonella Typhimurium induced by pasteurization and UV treatment were evaluated using a culture-based method, RT-qPCR, and viability PCR. The plate count results showed no culturable S. Typhimurium after the pasteurization and UV treatments, while viability PCR with propidium monoazide (PMA) and DyeTox13-qPCR indicated that the membrane integrity of S. Typhimurium remained intact with no metabolic activity. The RT-qPCR results demonstrated that invasion protein (invA) was detectable in UV-treated cells even though the log2-fold change ranged from - 2.13 to - 5.53 for PMA treatment. However, the catalytic activity gene purE was under the detection limit after UV treatment, indicating that most Salmonella entered metabolically inactive status after UV disinfection. Also, viability PCRs were tested with artificially contaminated eggs to determine physiological status on actual food matrices. DyeTox13-qPCR methods showed that most Salmonella lost their metabolic activity but retained membrane integrity after UV disinfection. RT-qPCR may not determine the physiological status of Salmonella after UV disinfection because mRNA could be detectable in UV-treated cells depending on the choice of target gene. Viability PCR demonstrated potential for rapid and specific detection of pathogens with physiological states such as membrane integrity and metabolic activity.Key Points• Membrane integrity of Salmonella remained intact with no metabolic activity after UV.• mRNA could be detectable in UV-treated cells depending on the choice of target gene.• Viability PCR could rapidly detect specific pathogens with their physiological states.


Asunto(s)
Azidas , Salmonella typhimurium , Azidas/farmacología , Viabilidad Microbiana , Pasteurización , Propidio/análogos & derivados , Propidio/metabolismo , ARN Mensajero , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
7.
J Dairy Sci ; 105(2): 1028-1038, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34998542

RESUMEN

Escherichia coli O157:H7, the causative agent of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome in humans, generates a effective harm to community health because of its high pathogenicity. A real-time recombinase-aided amplification (rRAA) is an emerging method for nucleic acid detection. However, genomic DNA of bacteria could exist in food and the environment for a long time after death and could be amplified by rRAA assay, resulting in false-positive signal; thus, developing a fast and sensitive method is necessary to detect viable foodborne pathogens in food products. In our research, rRAA assay coupled with an enhanced nucleic acid binding dye named improved propidium monoazide (PMAxx) was established and applied in viable E. coli O157:H7 identification in skim milk. The PMAxx could eliminate interference from dead bacteria by permeating impaired membranes and covalently linking to DNA to prevent DNA amplification. The PMAxx-rRAA assay was performed with high sensitivity and good specificity. The PMAxx-rRAA assay could detect as low as 5.4 × 100 cfu/mL of viable E. coli O157:H7 in pure culture, and 7.9 × 100 cfu/mL of viable E. coli O157:H7 in skim milk. In addition, the PMAxx-rRAA assay was performed in the presence of a high concentration of dead bacteria or nontarget bacteria in skim milk to verify the capacity to resist interference from dead bacteria and nontarget bacteria. Therefore, the established PMAxx-rRAA assay is a valuable tool for the identification of viable E. coli O157:H7 in complex food matrix.


Asunto(s)
Escherichia coli O157 , Proteínas de Escherichia coli , Animales , Azidas , Escherichia coli O157/genética , Microbiología de Alimentos , Leche , Propidio/análogos & derivados , Recombinasas
8.
Lett Appl Microbiol ; 72(3): 245-250, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33058219

RESUMEN

Vibrio sp., ubiquitous in the aquatic ecosystem, are bacteria of interest because of their involvement in human health, causing gastroenteritis after ingestion of seafood, as well as their role in vibriosis leading to severe losses in aquaculture production. Their ability to enter a viable but non-culturable (VBNC) state under stressful environmental conditions may lead to underestimation of the Vibrio population by traditional microbiological enumeration methods. As a result, using molecular methods in combination with EMA or PMA allows the detection of viable (VBNC and culturable viable) cells. In this study, the impact of the EMA and PMA was tested at different concentrations on the viability of several Vibrio species. We compared the toxicity of these two DNA-binding dyes to determine the best pretreatment to use with qPCR to discriminate between viable and dead Vibrio cells. Our results showed that EMA displayed lethal effects for each strain of V. cholerae and V. vulnificus tested. In contrast, the concentrations of PMA tested had no toxic effect on the viability of Vibrio cells studied. These results may help to achieve optimal PMA-qPCR methods to detect viable Vibrio sp. cells in food and environmental samples.


Asunto(s)
Antibacterianos/farmacología , Azidas/farmacología , Propidio/análogos & derivados , Vibrio cholerae/efectos de los fármacos , Vibrio vulnificus/efectos de los fármacos , Ecosistema , Gastroenteritis/microbiología , Gastroenteritis/prevención & control , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Propidio/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Microbiología del Agua
9.
Food Microbiol ; 99: 103831, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34119116

RESUMEN

One immunomagnetic separation (IMS) assay based on immunomagnetic beads (IMBs) has been evaluated as a potential pretreatment tool for the separation and enrichment of target bacteria. In this study, we successfully immobilized antibodies onto magnetic bead surfaces to form IMBs through biotin and a streptavidin (SA) system to capture viable but nonculturable (VBNC) Cronobacter sakazakii (C. sakazakii) from dairy products. Various parameters that affected the capture efficiency (CE) of IMS, including the number of antibodies, IMBs dose, incubation time, magnetic separation time, and immunoreaction temperature, were systematically investigated. We further determined the optimal enrichment conditions for different dairy substrates to ensure maximum enrichment of target pathogens in the system. An IMS technique combining improved propidium monoazide (PMAxx) and droplet digital PCR (ddPCR) was established to detect the pathogenic VBNC C. sakazakii. The IMS-PMAxx-ddPCR method after IMBs enrichment showed higher accuracy when the VBNC C. sakazakii was under 1 Log10 copies/g. The detection limit for this method in a background of powdered infant formula (PIF) was 5.6 copies/g. In summary, the developed IMS-PMAxx-ddPCR method has great potential for the analysis and detection of VBNC bacteria in food.


Asunto(s)
Cronobacter sakazakii/crecimiento & desarrollo , Cronobacter sakazakii/aislamiento & purificación , Productos Lácteos/microbiología , Separación Inmunomagnética/métodos , Azidas/química , Cronobacter sakazakii/química , Cronobacter sakazakii/genética , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Fórmulas Infantiles/microbiología , Viabilidad Microbiana , Reacción en Cadena de la Polimerasa , Propidio/análogos & derivados , Propidio/química
10.
Food Microbiol ; 99: 103816, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34119101

RESUMEN

Protozoan contamination in produce is of growing importance due to their capacity to cause illnesses in consumers of fresh leafy greens. Viability assays are essential to accurately estimate health risk caused by viable parasites that contaminate food. We evaluated the efficacy of reverse transcription quantitative PCR (RT-qPCR), propidium monoazide coupled with (q)PCR, and viability staining using propidium iodide through systematic laboratory spiking experiments for selective detection of viable Cryptosporidium parvum, Giardia enterica, and Toxoplasma gondii. In the presence of only viable protozoa, the RT-qPCR assays could accurately detect two to nine (oo)cysts/g spinach (in 10 g processed). When different proportions of viable and inactivated parasite were spiked, mRNA concentrations correlated with increasing proportions of viable (oo)cysts, although low levels of false-positive mRNA signals were detectable in the presence of high amounts of inactivated protozoa. Our study demonstrated that among the methods tested, RT-qPCR performed more effectively to discriminate viable from inactivated C. parvum, G. enterica and T. gondii on spinach. This application of viability methods on leafy greens can be adopted by the produce industry and regulatory agencies charged with protection of human public health to screen leafy greens for the presence of viable protozoan pathogen contamination.


Asunto(s)
Cryptosporidium parvum/aislamiento & purificación , Parasitología de Alimentos/métodos , Giardia/aislamiento & purificación , Spinacia oleracea/parasitología , Toxoplasma/aislamiento & purificación , Animales , Azidas/química , Cryptosporidium parvum/química , Cryptosporidium parvum/genética , Cryptosporidium parvum/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Giardia/química , Giardia/genética , Giardia/crecimiento & desarrollo , Oocistos/química , Oocistos/crecimiento & desarrollo , Oocistos/aislamiento & purificación , Hojas de la Planta/parasitología , Propidio/análogos & derivados , Propidio/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Coloración y Etiquetado , Toxoplasma/química , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo
11.
J Dairy Sci ; 104(6): 6588-6597, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33715855

RESUMEN

In this study, we established a rapid and sensitive method for the detection of viable Salmonella Typhimurium, Staphylococcus aureus, and Listeria monocytogenes in milk using biotin-exposure-based immunomagnetic separation (IMS) combined with sodium dodecyl sulfate (SDS), propidium monoazide (PMA), and multiplex real-time PCR (mRT-PCR). We used IMS to lessen the assay time for isolation of target bacteria. We then optimized the coupling conditions and immunomagnetic capture process. The immunoreaction and incubation times for 5 µg of mAb coupled with 500 µg of streptavidin-functionalized magnetic beads using a streptavidin-biotin system were 90 and 30 min, respectively. Treatment with SDS-PMA before mRT-PCR amplification eliminated false-positive outcomes from dead bacteria and identified viable target bacteria with good sensitivity and specificity. The limit of detection of IMS combined with the SDS-PMA-mRT-PCR assay for the detection of viable Salmonella Typhimurium, Staph. aureus, and L. monocytogenes in spiked milk matrix samples was 10 cfu/mL and remained significant even in the appearance of 106 cfu/mL of nontarget bacteria. The entire detection process was able to identify viable bacteria within 9 h. The combination of biotin-exposure-mediated IMS and SDS-PMA-mRT-PCR has potential value for the rapid and sensitive detection of foodborne pathogens.


Asunto(s)
Listeria monocytogenes , Animales , Azidas , Biotina , Separación Inmunomagnética/veterinaria , Leche , Propidio/análogos & derivados , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Salmonella typhimurium/genética , Dodecil Sulfato de Sodio , Staphylococcus aureus/genética
12.
World J Microbiol Biotechnol ; 37(7): 127, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34181131

RESUMEN

This study investigated the effect of inoculating Lactobacillus (L.) plantarum PS-8 in fermentation of alfalfa silages. We monitored the fermentation characteristics and bacterial population dynamics during the ensiling process. PacBio single molecule real time sequencing was combined with propidium monoazide (PMA) treatment to monitor the viable microbiota dynamics. We found that inoculating L. plantarum PS-8 may improve the silage quality by accelerating acidification, reducing the amounts of clostridia, coliform bacteria, molds and yeasts, elevating the protein and organic acid contents (except butyrate), and enhancing lactic acid bacteria (LAB) while suppressing harmful microorganisms. Some significant differential abundant taxa were found between the PMA-treated and non-treated microbiota. For example, the relative abundances of L. brevis, L. plantarum, and Pediococcus pentosaceus were significantly higher in the PMA-treated group than the non-PMA-treated group, suggesting obvious differences between the viable and non-viable microbiota. It would thus be necessary to distinguish between the viable and non-viable microbial communities to further understand their physiological contribution in silage fermentation. By tracking the dynamics of viable microbiota in relation with changes in the physico-chemical parameters, our study provided novel insights into the beneficial effects of inoculating L. plantarum PS-8 in silage fermentation and the physiological function of the viable bacterial communities.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Hongos/crecimiento & desarrollo , Lactobacillus plantarum/crecimiento & desarrollo , Medicago sativa/microbiología , Microbiota , Ensilaje/microbiología , Azidas/análisis , Bacterias/clasificación , Bacterias/genética , Biodiversidad , ADN Bacteriano , Fermentación , Lactobacillales/crecimiento & desarrollo , Medicago sativa/metabolismo , Propidio/análogos & derivados , Propidio/análisis
13.
BMC Oral Health ; 21(1): 460, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34551743

RESUMEN

BACKGROUND: Oral microbiome played an important role in maintaining healthy state and might exhibit certain changes under circumstances of diseases. However, current microbiological research using sequencing techniques did not regard dead bacteria as a separate part, causing findings based on subsequent analyses on dynamic equilibrium and functional pathways of microbes somewhat questionable. Since treatment by propidium monoazide (PMA) was able to remove dead bacteria effectively, it would be worth studying how the sequencing results after PMA treatment differed from those focusing on the whole microbiota. METHODS: Unstimulated whole saliva samples were obtained from 18 healthy people from 3 age groups (children, adults, and the elderly). After removal of dead bacteria by propidium monoazide (PMA), changes in the profile of salivary microbiome were detected using 16S rRNA sequencing technology, and differences among age groups were compared subsequently. RESULTS: Dead bacteria accounted for nearly a half of the whole bacteria flora in saliva, while freezing had little effect on the proportion of deaths. After treatment with PMA, the numbers of OTUs reduced by 4.4-14.2%, while the Shannon diversity indices decreased significantly (P < 0.01). Only 35.2% of positive and 6.1% of negative correlations were found to be shared by the whole microbiota and that with dead bacteria removed. Differences in significantly changed OTUs and functional pathways among different age groups were also observed between the group of PMA and the control. CONCLUSIONS: It was necessary to take the influence of living state of bacteria into account in analytic studies of salivary microbiome.


Asunto(s)
Microbiota , Anciano , Azidas , Bacterias/genética , Niño , ADN Bacteriano/genética , Humanos , Viabilidad Microbiana , Propidio/análogos & derivados , ARN Ribosómico 16S/genética
14.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31836577

RESUMEN

As a novel nonthermal technology, nonthermal plasma (NTP) has attracted a lot of attention. However, it could induce microorganisms into a viable but nonculturable (VBNC) state, posing a potential risk to food safety and public health. In this study, the molecular mechanisms of VBNC Staphylococcus aureus induced by NTP were investigated. With the use of a propidium monoazide quantitative PCR (PMA-qPCR) technique combined with a plate count method, we confirmed that 8.1 to 24.3 kJ NTP induced S. aureus into a VBNC state at a level of 7.4 to 7.6 log10 CFU/ml. The transcriptomic analysis was conducted and revealed that most energy-dependent physiological activities (e.g., metabolism) were arrested in VBNC S. aureus, while the oxidative stress response-related genes (katA, dps, msrB, msrA, and trxA) were significantly upregulated. In addition, this study showed that the ATP depletion by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) pretreatment could accelerate the formation of VBNC S. aureus The NTP-generated oxidative stress triggers the staphylococcal oxidative stress response, which consumes part of cellular energy (e.g., ATP). The energy allocation is therefore changed, and the energy assigned for other energy-dependent physiological activities (cell growth and division, etc.) is reduced, subsequently forcing S. aureus into a VBNC state. Therefore, the alterations of energy allocation should be some of the major contributors to the induction of VBNC S. aureus with NTP exposure. This study provides valuable knowledge for controlling the formation of VBNC S. aureus during NTP treatment.IMPORTANCE In recent years, nonthermal plasma (NTP) technology has received a lot of attention as a promising alternative to thermal pasteurization in the food industry. However, little is known about the microbial stress response toward NTP, which could be a potential risk to food safety and impede the development of NTP. A viable but nonculturable (VBNC) state is one of the most common survival strategies employed by microorganisms against external stress. This study investigated the mechanisms of the formation of VBNC Staphylococcus aureus by NTP in a more comprehensive and systematic aspect than had been done before. Our work confirmed that the NTP-generated oxidative stress induced changes in energy allocation as a driving force for the formation of VBNC S. aureus This study could provide better knowledge for controlling the occurrence of VBNC S. aureus induced by NTP, which could lead to more rational design and ensure the development of safe foods.


Asunto(s)
Azidas/química , Viabilidad Microbiana , Estrés Oxidativo , Gases em Plasma/química , Propidio/análogos & derivados , Staphylococcus aureus/fisiología , Viabilidad Microbiana/efectos de los fármacos , Propidio/química , Staphylococcus aureus/efectos de los fármacos
15.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32005729

RESUMEN

Escherichia coli O157:H7 and Salmonella enterica are leading causes of foodborne outbreaks linked to fresh produce. Both species can enter the "viable but nonculturable" (VBNC) state that precludes detection using conventional culture-based or molecular methods. In this study, we assessed propidium monoazide-quantitative PCR (PMA-qPCR) assays and novel methods combining PMA and loop-mediated isothermal amplification (LAMP) for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce. The performance of PMA-LAMP assays targeting the wzy gene of E. coli O157:H7 and the agfA gene of S. enterica and the performance of PMA-qPCR assays were compared in pure culture and spiked tomato, lettuce, and spinach. No cross-reaction was observed in the specificity tests. The values representing the limit of detection (LOD) seen with PMA-LAMP were 9.0 CFU/reaction for E. coli O157:H7 and 4.6 CFU/reaction for S. enterica in pure culture and were 5.13 × 103 or 5.13 × 104 CFU/g for VBNC E. coli O157:H7 and 1.05 × 104 or 1.05 × 105 CFU/g for VBNC S. enterica in fresh produce, representing results comparable to those obtained by PMA-qPCR. Standard curves showed correlation coefficients ranging from 0.925 to 0.996, indicating a good quantitative capacity of PMA-LAMP for determining populations of both bacterial species in the VBNC state. The PMA-LAMP assay was completed with considerable economy of time (30 min versus 1 h) and achieved sensitivity and quantitative capacity comparable to those seen with a PMA-qPCR assay. PMA-LAMP is a rapid, sensitive, and robust method for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce.IMPORTANCE VBNC pathogenic bacteria pose a potential risk to the food industry because they do not multiply on routine microbiological media and thus can evade detection in conventional plating assays. Both E. coli O157:H7 and S. enterica have been reported to enter the VBNC state under a range of environmental stress conditions and to resuscitate under favorable conditions and are a potential cause of human infections. PMA-LAMP methods developed in this study provide a rapid, sensitive, and specific way to determine levels of VBNC E. coli O157:H7 and S. enterica in fresh produce, which potentially decreases the risks related to the consumption of fresh produce contaminated by enteric pathogens in this state. PMA-LAMP can be further applied in the field study to enhance our understanding of the fate of VBNC pathogens in the preharvest and postharvest stages of fresh produce.


Asunto(s)
Escherichia coli O157/aislamiento & purificación , Microbiología de Alimentos/métodos , Viabilidad Microbiana , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Salmonella enterica/aislamiento & purificación , Azidas/química , Lactuca/microbiología , Solanum lycopersicum/microbiología , Propidio/análogos & derivados , Propidio/química , Spinacia oleracea/microbiología
16.
Arch Microbiol ; 202(7): 1653-1662, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32274559

RESUMEN

Azospirillum brasilense is a plant growth promoting bacteria used as an inoculant in diverse crops. Accurate analytical methods are required to enumerate viable cells in inoculant formulations or in planta. We developed a quantitative polymerase chain reaction (qPCR) assay associated to propidium monoazide (PMA) to evaluate the cell viability of A. brasilense in inoculant and in maize roots. A. brasilense was grown in culture medium and was exposed to 50 â„ƒ. Maize roots were grown in vitro and harvested 7 days after inoculation. Quantification was performed by qPCR, PMA-qPCR, and plate counting. Standard curves efficiency values ranged from 85 to 99%. The limit of detection was 104 CFU per gram of fresh root. Enumeration obtained in maize roots by qPCR where higher than enumeration by PMA-qPCR and by plate counting. PMA-qPCR assay was efficient in quantifying inoculant viable cells and provides reliable results in a quickly and accurately way compared to culture-dependent methods.


Asunto(s)
Azidas/metabolismo , Azospirillum brasilense/fisiología , Microbiología Industrial/métodos , Viabilidad Microbiana , Raíces de Plantas/microbiología , Propidio/análogos & derivados , Reacción en Cadena en Tiempo Real de la Polimerasa , Propidio/metabolismo , Zea mays/microbiología
17.
Microb Ecol ; 79(4): 925-932, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31701171

RESUMEN

Use of anaerobic sludge digester is a common practice around the world for solids digestion and methane generation from municipal sewage sludge. Understanding microbial community structure is vital to get better insight into the anaerobic digestion process and to gain better process control. However, selective analysis of viable microorganisms is limited by DNA-based assays. In this study, propidium monoazide (PMA)-PCR with 16S rRNA gene sequencing analysis was used to distinguish live and dead microorganisms based on cell membrane integrity. Microbial community structures of PMA-treated and PMA-untreated anaerobic digester sludge samples were compared. Quantitative PCR revealed that 5-30% of the rRNA genes were derived from inactive or dead cells in anaerobic sludge digesters. This caused a significant decrease in the numbers of operational taxonomic units and Chao1 and Shannon indices compared with that of the PMA-untreated sludge. Microbial community analysis showed that majority of the viable microbiome consisted of Euryarchaeota, Bacteroidetes, Deltaproteobacteria, Chloroflexi, Firmicutes, WWE1, Spirochaetes, Synergistetes, and Caldiserica. On the other hand, after the PMA treatment, numbers of Alphaproteobacteria and Betaproteobacteria declined. These were considered residual microbial members. The network analysis also revealed a relationship among the OTUs belonging to WWE1 and Bacteroidales. PMA-PCR-based 16S rRNA gene sequencing analysis is an effective tool for uncovering viable microbiome in complex environmental samples.


Asunto(s)
Azidas/química , Colorantes Fluorescentes/química , Viabilidad Microbiana , Microbiota , Reacción en Cadena de la Polimerasa/veterinaria , Propidio/análogos & derivados , Aguas del Alcantarillado/microbiología , Coloración y Etiquetado/métodos , Anaerobiosis , Japón , Propidio/química , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Análisis de Secuencia de ARN
18.
J Appl Microbiol ; 128(6): 1595-1605, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31965693

RESUMEN

AIMS: This study was conducted to early detect the negative culture bacterial pathogens causing subclinical mastitis for the fast diagnosis of the disease and the reduction of some milk-transmitted pathogenic bacteria to human consumers. METHODS AND RESULTS: A total of 171 positive California mastitis test (CMT) milk samples collected from asymptomatic dairy cows in Sharkia Governorate, Egypt were examined by conventional bacteriological methods. The obtained results revealed that Streptococcus species (77·2%), followed by Staphylococcus species (48·6%) and Escherichia coli (25·7%) were the most predominant bacterial pathogens isolated from positive culture milk samples, whereas Enterobacter and Pseudomonas species were the lowest ones (1·2%, for each). Herein, 13 (7.6%) negative culture milk samples were subjected to propidium monoazide (PMA) conventional PCR assay, followed by DNA sequencing of purified PCR amplicons. Sequence analysis identified seven different types of negative culture bacterial pathogens comprising as following; 4 Enterococcus hirae, 2 Bacillus cereus, 2 Staphylococcus aureus, 1 Bacillus mycoides, 1 Bacillus subtilis, 1 Enterococcus faecium and 1 Escherichia coli. CONCLUSIONS: All the detected negative culture bacterial pathogens by PMA-PCR assay, followed by DNA sequencing were incriminated in causing subclinical mastitis disease and had serious implications on human public health through consumption of milk contaminated with those recovered bacterial pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: The used methods could be useful in the routine detection of negative culture bacterial pathogens present in milk and consequently, it will help in the rapid diagnosis of subclinical mastitis disease and the reduction of many milk-transmitted diseases to human.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas Bacteriológicas/veterinaria , Microbiología de Alimentos/métodos , Mastitis Bovina/diagnóstico , Leche/microbiología , Animales , Azidas , Bacterias/clasificación , Bacterias/genética , Técnicas Bacteriológicas/métodos , Bovinos , Femenino , Mastitis Bovina/microbiología , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/veterinaria , Propidio/análogos & derivados , Análisis de Secuencia de ADN/veterinaria
19.
Food Microbiol ; 86: 103310, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31703859

RESUMEN

The objective of this study was to develop a qPCR method for specific enumeration of viable Listeria monocytogenes in food processing facilities and heat treated products. Primers specific for L. monocytogenes were designed to amplify a short (199 bp) or long (1561 bp) fragment of the listeriolysin (hly) gene. The short- and long-amplicon qPCR methods with and without propidium monoazide (PMA) treatment of the cells were tested for their ability to discriminate between viable (no heat) and heat-killed cells (90 °C, 10 min). The PMA-qPCR methods were subsequently used to assess the survival of L. monocytogenes during desiccation (33% RH, 15 °C) on stainless steel surfaces for ten days with and without prior biofilm formation. The long-amplicon qPCR method had a limit of quantification (LOQ) of 1.32 log CFU/reaction (efficiency 92%, R2 = 0.991), while the LOQ for the short-amplicon qPCR method was 1.44 log CFU/reaction (efficiency 102%, R2 = 0.991). PMA was essential for detection of viable cells, and the long-amplicon PMA-qPCR significantly (p < 0.05) reduced the signal from heat-killed cells compared to the short-amplicon method. L. monocytogenes survival during desiccation without biofilm formation was accurately enumerated with the long-amplicon PMA-qPCR method. However, when L. monocytogenes had formed biofilm prior to desiccation, the long-amplicon PMA-qPCR accurately measured the log fold inactivation but underestimated the number of viable cells even with use of an optimized DNA extraction method. This long-amplicon PMA-qPCR method can aid in the detection and enumeration of viable L. monocytogenes cells to further the understanding of its survival and persistence in food processing facilities. The developed method was demonstrated to work on both heat and desiccation treated cells and highlights the importance of amplicon size in viability-qPCR.


Asunto(s)
Antibacterianos/farmacología , Azidas/farmacología , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Propidio/análogos & derivados , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Cartilla de ADN/genética , ADN Bacteriano/genética , Desecación , Calor , Listeria monocytogenes/química , Listeria monocytogenes/genética , Viabilidad Microbiana/efectos de los fármacos , Propidio/farmacología
20.
Plant Dis ; 104(4): 1105-1112, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32040389

RESUMEN

Xanthomonas fragariae causes angular leaf spot in strawberry. The pathogen's association with its host tissue is thought to be a condition for its survival. Consequently, transmission of the pathogen to field production sites occurs almost exclusively through the movement of contaminated planting stock. The aim of this study was to develop a propidium monoazide (PMA)-quantitative PCR (qPCR) protocol for specific detection of viable X. fragariae cells. The qPCR procedure was developed for two different primer pairs: one producing a long amplicon (863 bp) and the other a short amplicon (61 bp). Both pairs were tested on mixtures of viable and heat-killed bacteria cells, bacteria-spiked strawberry petiole samples, and petioles collected from symptomatic, inoculated plants. The results showed that long-amplicon PMA-qPCR enabled specific and sensitive detection of X. fragariae with a detection limit of 103 CFU/ml, and it significantly improved PMA efficiency in differentiating viable from dead bacterial cells relative to short-amplicon PMA-qPCR. Based on the delta threshold cycle (Ct) values (i.e., the difference in Ct values between PMA-treated and nontreated samples), the long-amplicon PMA-qPCR was able to suppress the detection of dead X. fragariae cells 1.9- to 3.1-fold across all petiole samples tested. The quantification results from PMA-qPCR for mixtures of viable and dead cells were highly correlated with the predicted bacterial concentrations in a linear relationship (R2 = 0.981). This assay can be useful for identifying inoculum sources in the strawberry production cycle, which may lead to improved disease management strategies.


Asunto(s)
Fragaria , Xanthomonas , Azidas , Viabilidad Microbiana , Propidio/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA