Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 20(9): 1208-1219, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31384057

RESUMEN

Regulatory T cells (Treg cells) deficient in the transcription factor Foxp3 lack suppressor function and manifest an effector T (Teff) cell-like phenotype. We demonstrate that Foxp3 deficiency dysregulates metabolic checkpoint kinase mammalian target of rapamycin (mTOR) complex 2 (mTORC2) signaling and gives rise to augmented aerobic glycolysis and oxidative phosphorylation. Specific deletion of the mTORC2 adaptor gene Rictor in Foxp3-deficient Treg cells ameliorated disease in a Foxo1 transcription factor-dependent manner. Rictor deficiency re-established a subset of Treg cell genetic circuits and suppressed the Teff cell-like glycolytic and respiratory programs, which contributed to immune dysregulation. Treatment of Treg cells from patients with FOXP3 deficiency with mTOR inhibitors similarly antagonized their Teff cell-like program and restored suppressive function. Thus, regulatory function can be re-established in Foxp3-deficient Treg cells by targeting their metabolic pathways, providing opportunities to restore tolerance in Treg cell disorders.


Asunto(s)
Reprogramación Celular/inmunología , Factores de Transcripción Forkhead/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Linfocitos T Reguladores/inmunología , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Glucólisis/fisiología , Humanos , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación Oxidativa , Transducción de Señal , Linfocitos T Reguladores/citología
2.
Mol Cell ; 75(4): 807-822.e8, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442424

RESUMEN

mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.


Asunto(s)
Adipocitos Marrones/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólisis , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Sirtuinas/metabolismo , Adipocitos Marrones/citología , Animales , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Ratones Transgénicos , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Sirtuinas/genética
3.
EMBO Rep ; 25(10): 4226-4251, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39026009

RESUMEN

ER-mitochondria contact sites (ERMCSs) regulate processes, including calcium homoeostasis, energy metabolism and autophagy. Previously, it was shown that during growth factor signalling, mTORC2/Akt gets recruited to and stabilizes ERMCSs. Independent studies showed that GSK3ß, a well-known Akt substrate, reduces ER-mitochondria connectivity by disrupting the VAPB-PTPIP51 tethering complex. However, the mechanisms that regulate ERMCSs are incompletely understood. Here we find that annulate lamellae (AL), relatively unexplored subdomains of ER enriched with a subset of nucleoporins, are present at ERMCSs. Depletion of Nup358, an AL-resident nucleoporin, results in enhanced mTORC2/Akt activation, GSK3ß inhibition and increased ERMCSs. Depletion of Rictor, a mTORC2-specific subunit, or exogenous expression of GSK3ß, was sufficient to reverse the ERMCS-phenotype in Nup358-deficient cells. We show that growth factor-mediated activation of mTORC2 requires the VAPB-PTPIP51 complex, whereas, Nup358's association with this tether restricts mTORC2/Akt signalling and ER-mitochondria connectivity. Expression of a Nup358 fragment that is sufficient for interaction with the VAPB-PTPIP51 complex suppresses mTORC2/Akt activation and disrupts ERMCSs. Collectively, our study uncovers a novel role for Nup358 in controlling ERMCSs by modulating the mTORC2/Akt/GSK3ß axis.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Chaperonas Moleculares , Proteínas de Complejo Poro Nuclear , Transducción de Señal , Humanos , Retículo Endoplásmico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Complejos Multiproteicos/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Serina-Treonina Quinasas TOR/metabolismo
4.
PLoS Genet ; 19(2): e1010629, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36787291

RESUMEN

Pharmacological vitamin C (VC) is a potential natural compound for cancer treatment. However, the mechanism underlying its antitumor effects remains unclear. In this study, we found that pharmacological VC significantly inhibits the mTOR (including mTORC1 and mTORC2) pathway activation and promotes GSK3-FBXW7-mediated Rictor ubiquitination and degradation by increasing the cellular ROS. Moreover, we identified that HMOX1 is a checkpoint for pharmacological-VC-mediated mTOR inactivation, and the deletion of FBXW7 or HMOX1 suppresses the regulation of pharmacological VC on mTOR activation, cell size, cell viability, and autophagy. More importantly, it was observed that the inhibition of mTOR by pharmacological VC supplementation in vivo produces positive therapeutic responses in tumor growth, while HMOX1 deficiency rescues the inhibitory effect of pharmacological VC on tumor growth. These results demonstrate that VC influences cellular activities and tumor growth by inhibiting the mTOR pathway through Rictor and HMOX1, which may have therapeutic potential for cancer treatment.


Asunto(s)
Ácido Ascórbico , Neoplasias , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Ácido Ascórbico/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Factores de Transcripción/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 44(9): 2004-2023, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39087350

RESUMEN

BACKGROUND: Lymphatic valves are specialized structures in collecting lymphatic vessels and are crucial for preventing retrograde lymph flow. Mutations in valve-forming genes have been clinically implicated in the pathology of congenital lymphedema. Lymphatic valves form when oscillatory shear stress from lymph flow signals through the PI3K/AKT pathway to promote the transcription of valve-forming genes that trigger the growth and maintenance of lymphatic valves. Conventionally, in many cell types, AKT is phosphorylated at Ser473 by the mTORC2 (mammalian target of rapamycin complex 2). However, mTORC2 has not yet been implicated in lymphatic valve formation. METHODS: In vivo and in vitro techniques were used to investigate the role of Rictor, a critical component of mTORC2, in lymphatic endothelium. RESULTS: Here, we showed that embryonic and postnatal lymphatic deletion of Rictor, a critical component of mTORC2, led to a significant decrease in lymphatic valves and prevented the maturation of collecting lymphatic vessels. RICTOR knockdown in human dermal lymphatic endothelial cells not only reduced the level of activated AKT and the expression of valve-forming genes under no-flow conditions but also abolished the upregulation of AKT activity and valve-forming genes in response to oscillatory shear stress. We further showed that the AKT target, FOXO1 (forkhead box protein O1), a repressor of lymphatic valve formation, had increased nuclear activity in Rictor knockout mesenteric lymphatic endothelial cells in vivo. Deletion of Foxo1 in Rictor knockout mice restored the number of valves to control levels in lymphatic vessels of the ear and mesentery. CONCLUSIONS: Our work identifies a novel role for RICTOR in the mechanotransduction signaling pathway, wherein it activates AKT and prevents the nuclear accumulation of the valve repressor, FOXO1, which ultimately enables the formation and maintenance of lymphatic valves.


Asunto(s)
Proteínas Portadoras , Proteína Forkhead Box O1 , Linfangiogénesis , Vasos Linfáticos , Diana Mecanicista del Complejo 2 de la Rapamicina , Mecanotransducción Celular , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt , Proteína Asociada al mTOR Insensible a la Rapamicina , Transducción de Señal , Animales , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Vasos Linfáticos/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Humanos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Células Endoteliales/metabolismo , Células Cultivadas , Serina-Treonina Quinasas TOR/metabolismo , Fosforilación , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Ratones , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/genética , Ratones Endogámicos C57BL , Interferencia de ARN , Transfección
6.
Proc Natl Acad Sci U S A ; 119(10): e2107357119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238644

RESUMEN

The Food and Drug Administration­approved drug sirolimus, which inhibits mechanistic target of rapamycin (mTOR), is the leading candidate for targeting aging in rodents and humans. We previously demonstrated that sirolimus could treat ARHL in mice. In this study, we further demonstrate that sirolimus protects mice against cocaine-induced hearing loss. However, using efficacy and safety tests, we discovered that mice developed substantial hearing loss when administered high doses of sirolimus. Using pharmacological and genetic interventions in murine models, we demonstrate that the inactivation of mTORC2 is the major driver underlying hearing loss. Mechanistically, mTORC2 exerts its effects primarily through phosphorylating in the AKT/PKB signaling pathway, and ablation of P53 activity greatly attenuated the severity of the hearing phenotype in mTORC2-deficient mice. We also found that the selective activation of mTORC2 could protect mice from acoustic trauma and cisplatin-induced ototoxicity. Thus, in this study, we discover a function of mTORC2 and suggest that its therapeutic activation could represent a potentially effective and promising strategy to prevent sensorineural hearing loss. More importantly, we elucidate the side effects of sirolimus and provide an evaluation criterion for the rational use of this drug in a clinical setting.


Asunto(s)
Pérdida Auditiva Sensorineural/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Pérdida Auditiva Sensorineural/inducido químicamente , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/prevención & control , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Sirolimus/efectos adversos , Sirolimus/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Mol Cancer ; 23(1): 105, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755661

RESUMEN

BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.


Asunto(s)
Resistencia a Antineoplásicos , Diana Mecanicista del Complejo 2 de la Rapamicina , Melanoma , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Proteína Asociada al mTOR Insensible a la Rapamicina , Animales , Humanos , Ratones , Línea Celular Tumoral , Regulación hacia Abajo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Melanoma/genética , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteómica/métodos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores
8.
Am J Physiol Gastrointest Liver Physiol ; 327(3): G317-G332, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954822

RESUMEN

Intestinal inflammation and compromised barrier function are critical factors in the pathogenesis of gastrointestinal disorders. This study aimed to investigate the role of miR-192-5p in modulating intestinal epithelial barrier (IEB) integrity and its association with autophagy. A DSS-induced colitis model was used to assess the effects of miR-192-5p on intestinal inflammation. In vitro experiments involved cell culture and transient transfection techniques. Various assays, including dual-luciferase reporter gene assays, quantitative real-time PCR, Western blotting, and measurements of transepithelial electrical resistance, were performed to evaluate changes in miR-192-5p expression, Rictor levels, and autophagy flux. Immunofluorescence staining, H&E staining, TEER measurements, and FITC-dextran analysis were also used. Our findings revealed a reduced expression of miR-192-5p in inflamed intestinal tissues, correlating with impaired IEB function. Overexpression of miR-192-5p alleviated TNF-induced IEB dysfunction by targeting Rictor, resulting in enhanced autophagy flux in enterocytes (ECs). Moreover, the therapeutic potential of miR-192-5p was substantiated in colitis mice, wherein increased miR-192-5p expression ameliorated intestinal inflammatory injury by enhancing autophagy flux in ECs through the modulation of Rictor. Our study highlights the therapeutic potential of miR-192-5p in enteritis by demonstrating its role in regulating autophagy and preserving IEB function. Targeting the miR-192-5p/Rictor axis is a promising approach for mitigating gut inflammatory injury and improving barrier integrity in patients with enteritis.NEW & NOTEWORTHY We uncover the pivotal role of miR-192-5p in fortifying intestinal barriers amidst inflammation. Reduced miR-192-5p levels correlated with compromised gut integrity during inflammation. Notably, boosting miR-192-5p reversed gut damage by enhancing autophagy via suppressing Rictor, offering a potential therapeutic strategy for fortifying the intestinal barrier and alleviating inflammation in patients with enteritis.


Asunto(s)
Autofagia , Enteritis , Mucosa Intestinal , MicroARNs , Proteína Asociada al mTOR Insensible a la Rapamicina , MicroARNs/metabolismo , MicroARNs/genética , Animales , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Ratones , Mucosa Intestinal/metabolismo , Humanos , Enteritis/metabolismo , Enteritis/genética , Enteritis/patología , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/patología , Colitis/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino
9.
Cell Mol Biol (Noisy-le-grand) ; 70(9): 37-43, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380280

RESUMEN

Osteoarthritis (OA) is a very common chronic joint condition marked by inflammation and cartilage loss. mTOR is a well-known mediator of inflammation, cell survival, and aging; however, its role in OA has not been determined. To explore the role of mTORC2 in OA-and associated pathological changes, we examined the contribution of mTORC2-mediated Akt, rictor and IκB-α/NF-κB p65 pathway in interleukin (IL)-1ß-treated human chondrocytes. We focused on the protein expression of proinflammatory cytokines and catabolic and apoptotic factors, including TNF-α, IL-6, iNOS, MMP13, Bax, and caspase3, which may occur through this signalling pathway in IL-1ß-treated chondrocytes. Chondrocytes were cultured and treated with either 2 ng/mL IL­1ß alone or in combination with increasing concentrations of JR-AB2-011 (50, 100, or 250 µM), a selective mTORC2 inhibitor. The protein levels of phosphorylated (p)­Akt, Akt, rictor, p-NF-κB p65, NF-κB p65, IκB-α, p-IκB-α, iNOS, MMP13, Bax, and caspase3 were evaluated by Western blotting. In IL-1ß-stimulated chondrocytes, mTORC2 activity was increased with increased phosphorylation of Akt and expression of rictor. IL-1ß increased the expression of p-IκBα, p-NF-κB p65, NF-κB p65, IL-6, TNF-α, iNOS, Bax, and caspase3 proteins and decreased the expression of IκB-α. All of these IL-1ß-induced alterations were prevented by JR-AB2-011. The main novel finding in the present study is that selective mTORC2 inhibition by JR-AB2-011 prevents the inflammatory, catabolic, and apoptotic responses induced by IL-1ß via modulation of IκB-α/NF-κB activity. Therefore, we demonstrated a previously unknown function of mTORC2 inhibition that seems to be a potential therapeutic target for OA.


Asunto(s)
Apoptosis , Condrocitos , Inflamación , Interleucina-1beta , Diana Mecanicista del Complejo 2 de la Rapamicina , Inhibidor NF-kappaB alfa , Transducción de Señal , Factor de Transcripción ReIA , Humanos , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Interleucina-1beta/metabolismo , Apoptosis/efectos de los fármacos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Inflamación/metabolismo , Inflamación/patología , Transducción de Señal/efectos de los fármacos , Inhibidor NF-kappaB alfa/metabolismo , Factor de Transcripción ReIA/metabolismo , Células Cultivadas , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Imidazoles , Quinoxalinas
10.
J Biol Chem ; 298(9): 102288, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926713

RESUMEN

Mechanistic target of rapamycin complex 2 (mTORC2) is a multi-subunit kinase complex, central to multiple essential signaling pathways. Two core subunits, Rictor and mSin1, distinguish it from the related mTORC1 and support context-dependent phosphorylation of its substrates. mTORC2 structures have been determined previously; however, important questions remain, particularly regarding the structural determinants mediating substrate specificity and context-dependent activity. Here, we used cryo-EM to obtain high-resolution structures of the human mTORC2 apo-complex in the presence of substrates Akt and SGK1. Using functional assays, we then tested predictions suggested by substrate-induced structural changes in mTORC2. For the first time, we visualized in the apo-state the side chain interactions between Rictor and mTOR that sterically occlude recruitment of mTORC1 substrates and confer resistance to the mTORC1 inhibitor rapamycin. Also in the apo-state, we observed that mSin1 formed extensive contacts with Rictor via a pair of short α-helices nestled between two Rictor helical repeat clusters, as well as by an extended strand that makes multiple weak contacts with Rictor helical cluster 1. In co-complex structures, we found that SGK1, but not Akt, markedly altered the conformation of the mSin1 N-terminal extended strand, disrupting multiple weak interactions while inducing a large rotation of mSin1 residue Arg-83, which then interacts with a patch of negatively charged residues within Rictor. Finally, we demonstrate mutation of Arg-83 to Ala selectively disrupts mTORC2-dependent phosphorylation of SGK1, but not of Akt, supporting context-dependent substrate selection. These findings provide new structural and functional insights into mTORC2 specificity and context-dependent activity.


Asunto(s)
Proteínas Inmediatas-Precoces , Proteínas de Unión al GTP Monoméricas , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteína Asociada al mTOR Insensible a la Rapamicina , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Sirolimus/farmacología , Factores de Transcripción/metabolismo
11.
Gastroenterology ; 160(5): 1755-1770.e17, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33388318

RESUMEN

BACKGROUND & AIMS: Oncogenic KrasG12D induces neoplastic transformation of pancreatic acinar cells through acinar-to-ductal metaplasia (ADM), an actin-based morphogenetic process, and drives pancreatic ductal adenocarcinoma (PDAC). mTOR (mechanistic target of rapamycin kinase) complex 1 (mTORC1) and 2 (mTORC2) contain Rptor and Rictor, respectively, and are activated downstream of KrasG12D, thereby contributing to PDAC. Yet, whether and how mTORC1 and mTORC2 impact on ADM and the identity of the actin nucleator(s) mediating such actin rearrangements remain unknown. METHODS: A mouse model of inflammation-accelerated KrasG12D-driven early pancreatic carcinogenesis was used. Rptor, Rictor, and Arpc4 (actin-related protein 2/3 complex subunit 4) were conditionally ablated in acinar cells to deactivate the function of mTORC1, mTORC2 and the actin-related protein (Arp) 2/3 complex, respectively. RESULTS: We found that mTORC1 and mTORC2 are markedly activated in human and mouse ADM lesions, and cooperate to promote KrasG12D-driven ADM in mice and in vitro. They use the Arp2/3 complex as a common downstream effector to induce the remodeling the actin cytoskeleton leading to ADM. In particular, mTORC1 regulates the translation of Rac1 (Rac family small GTPase 1) and the Arp2/3-complex subunit Arp3, whereas mTORC2 activates the Arp2/3 complex by promoting Akt/Rac1 signaling. Consistently, genetic ablation of the Arp2/3 complex prevents KrasG12D-driven ADM in vivo. In acinar cells, the Arp2/3 complex and its actin-nucleation activity mediated the formation of a basolateral actin cortex, which is indispensable for ADM and pre-neoplastic transformation. CONCLUSIONS: Here, we show that mTORC1 and mTORC2 attain a dual, yet nonredundant regulatory role in ADM and early pancreatic carcinogenesis by promoting Arp2/3 complex function. The role of Arp2/3 complex as a common effector of mTORC1 and mTORC2 fills the gap between oncogenic signals and actin dynamics underlying PDAC initiation.


Asunto(s)
Células Acinares/enzimología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Carcinoma Ductal Pancreático/enzimología , Transformación Celular Neoplásica/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Mutación , Conductos Pancreáticos/enzimología , Neoplasias Pancreáticas/enzimología , Proteínas Proto-Oncogénicas p21(ras)/genética , Células Acinares/patología , Complejo 2-3 Proteico Relacionado con la Actina/genética , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Metaplasia , Ratones Endogámicos C57BL , Ratones Noqueados , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal
12.
Toxicol Appl Pharmacol ; 449: 116135, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35732230

RESUMEN

Polychlorinated biphenyls (PCBs) are a typical type of persistent organic pollutant. PCB exposure is associated to the occurrence and development of osteoarthritis (OA); however, the involved mechanisms have yet to be elucidated. Here, we investigated the pro-osteoarthritic effect of 2, 2', 4, 4', 5, 5'-hexachlorobiphenyl (PCB153), and the involvement of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) and the RICTOR/Akt/mTOR signaling pathways. PCB153 of 20 and 30 µM increased the expression of MMP13 and decreased the expression of type II collagen, in a concentration-dependent manner. PCB153 treatment reduced the expression of Beclin 1 and LC3B, but increased the expression of p62 by upregulating miR-155 levels. PCB153 treatment activated the PI3K/Akt/mTOR signaling pathway by upregulating miR-155 levels. RICTOR was involved in activating the Akt/mTOR signaling pathway, and was also regulated by miR-155. In conclusion, PCB153 could promote the degradation of the extracellular matrix of chondrocytes by upregulating miR-155 via a mechanism related to the activation of the PI3K/Akt/mTOR and RICTOR/Akt/mTOR signaling pathway, which suppressed autophagy and facilitated the development of OA. MiR-155 may represent potential therapeutic targets to alleviate the development of OA.


Asunto(s)
MicroARNs , Osteoartritis , Bifenilos Policlorados , Animales , Ratas , Autofagia , Condrocitos , Mamíferos/metabolismo , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Bifenilos Policlorados/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba
13.
Exp Cell Res ; 405(1): 112666, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34052237

RESUMEN

Vimentin protein is one of the main cytoskeleton and plays an important role in cell motility and metastasis. Nowadays, vimentin is widely studied as an epithelial-mesenchymal transition (EMT) marker of cancer cells while its involvement in cancer proliferation is poorly understood. In this study, we investigated the participation of vimentin in regulating cancer proliferation by silencing VIM gene in four cancer cell lines. Our results demonstrated that vimentin loss significantly induced cancer cell proliferation both in vitro and in vivo, which has not been reported so far. Mechanistically, knockdown of vimentin expression activated AKT phosphorylation and its downstream ß-catenin signaling. Nuclear translocation and transcriptional activity of ß-catenin was enhanced after silencing vimentin expression. Furthermore, vimentin loss could prevent Rictor from autophagy-dependent degradation via reducing AMPK-mediated autophagy signaling. AICAR, an AMPK activator, down-regulated Rictor and p-AKT levels while vimentin knockdown could rescue the effects. In vivo, it was also found that Ki67 expression and p-AKT/ß-catenin signaling pathway were obviously up-regulated in the tumor tissues in which vimentin was silenced compared to control groups. Taken together, these data showed the novel function of vimentin in regulating cancer proliferation via Rictor/AKT/ß-catenin signaling pathway, which suggested that it need more careful consideration before inhibiting metastatic cancers through targeting vimentin.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Vimentina/deficiencia , beta Catenina/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Células Tumorales Cultivadas , Vimentina/genética , Vimentina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/genética
14.
Exp Cell Res ; 406(1): 112737, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34324864

RESUMEN

The retina is the innermost part of the eye of most vertebrates and it is essential for vision. The development, maintenance, and function of this laminated structure is tightly regulated by numerous genes. Deficiencies in the expression of these genes as well as deregulation of various molecular mechanisms can cause retinopathies and blindness. MicroRNAs (miRNAs) are one of the most important and effective molecular regulatory mechanisms that underlie the biology of the retina. miRNAs have specific functional roles in the development and maintenance of different retinal layers and retinal cell types. While previous studies have reported a large number of miRNAs linked to development, maintenance and diseases of the retina, no comprehensive study has properly discussed and integrated data from these studies. Given the particular importance of miR-204 in retinal biology, we intend to critically discuss the expression and functional significance of this miRNA in the development, maintenance, and pathologies of the retina. Moreover, we explore biological processes through which miR-204 influences retinal pathophysiology. This review highlights the crucial functions of miR-204 in the retina and suggests the putative mechanism of miR-204 action in retinal biology.


Asunto(s)
Retinopatía Diabética/genética , Glaucoma/genética , Degeneración Macular/genética , MicroARNs/genética , Traumatismos del Nervio Óptico/genética , Retinoblastoma/genética , Animales , Secuencia de Bases , Secuencia Conservada , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Homólogo 1 de la Proteína Discs Large/genética , Homólogo 1 de la Proteína Discs Large/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glaucoma/metabolismo , Glaucoma/patología , Humanos , Degeneración Macular/metabolismo , Degeneración Macular/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Retina/metabolismo , Retina/patología , Retinoblastoma/metabolismo , Retinoblastoma/patología , Transducción de Señal
15.
Mol Cell Proteomics ; 19(7): 1104-1119, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32234964

RESUMEN

Stimulating brown adipose tissue (BAT) activity represents a promising therapy for overcoming metabolic diseases. mTORC2 is important for regulating BAT metabolism, but its downstream targets have not been fully characterized. In this study, we apply proteomics and phosphoproteomics to investigate the downstream effectors of mTORC2 in brown adipocytes. We compare wild-type controls to isogenic cells with an induced knockout of the mTORC2 subunit RICTOR (Rictor-iKO) by stimulating each with insulin for a 30-min time course. In Rictor-iKO cells, we identify decreases to the abundance of glycolytic and de novo lipogenesis enzymes, and increases to mitochondrial proteins as well as a set of proteins known to increase upon interferon stimulation. We also observe significant differences to basal phosphorylation because of chronic RICTOR loss including decreased phosphorylation of the lipid droplet protein perilipin-1 in Rictor-iKO cells, suggesting that RICTOR could be involved with regulating basal lipolysis or droplet dynamics. Finally, we observe mild dampening of acute insulin signaling response in Rictor-iKO cells, and a subset of AKT substrates exhibiting statistically significant dependence on RICTOR.


Asunto(s)
Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Insulina/farmacocinética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Animales , Cromatografía Liquida , Técnicas de Inactivación de Genes , Ontología de Genes , Glucólisis/efectos de los fármacos , Insulina/metabolismo , Lipogénesis/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Fosforilación , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Espectrometría de Masas en Tándem
16.
J Cell Physiol ; 236(6): 4725-4737, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33269476

RESUMEN

The differentiation of mature medullary thymic epithelial cells (mTECs) is critical for the induction of central immune tolerance. Although the critical effect of mechanistic target of rapamycin complex 1 (mTORC1) in shaping mTEC differentiation has been studied, the regulatory role of mTORC2 in the differentiation and maturation of mTECs is poorly understood. We herein reported that TEC-specific ablation of a rapamycin-insensitive companion of mTOR (RICTOR), a key component of mTORC2, significantly decreased the thymus size and weight, the total cell number of TECs, and the cell number of mTECs with a smaller degree of reduced cortical thymic epithelial cells. Interestingly, RICTOR deficiency significantly accelerated the mTEC maturation process, as indicated by the increased ratios of mature mTECs (MHCIIhi , CD80+ , and Aire+ ) to immature mTECs (MHCIIlo , CD80- , and Aire- ) in Rictor-deficient mice. The RNA-sequencing assays showed that the upregulated nuclear factor-κB (NF-κB) signaling pathway in Rictor-deficient mTECs was one of the obviously altered pathways compared with wild-type mTECs. Our studies further showed that Rictor-deficient mTECs exhibited upregulated expression of receptor activator of NF-κB (RANK) and lymphotoxin ß receptor (LTßR), as well as increased activity of canonical and noncanonical NF-κB signaling pathways as determined by ImageStream and Simple Western. Finally, our results showed that inhibition of NF-κB signaling pathways could partially reverse the accelerated maturation of mTECs in Rictor conditional KO mice. Thus, mTORC2 negatively controls the kinetics of the mTEC maturation process by inhibiting the LTßR/RANK-NF-κB signal axis.


Asunto(s)
Diferenciación Celular , Células Epiteliales/enzimología , Receptor beta de Linfotoxina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , FN-kappa B/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Timo/enzimología , Animales , Células Epiteliales/patología , Regulación de la Expresión Génica , Cinética , Receptor beta de Linfotoxina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones Noqueados , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Receptor Activador del Factor Nuclear kappa-B/genética , Transducción de Señal , Timocitos/enzimología , Timocitos/patología , Timo/patología
17.
Apoptosis ; 26(5-6): 338-347, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33905036

RESUMEN

Caspase-mediated cleavage of proteins ensures the irreversible commitment of cells to undergo apoptosis, and is thus a hallmark of apoptosis. Rapamycin-insensitive companion of mTOR (rictor) functions primarily as a core and essential component of mTOR complex 2 (mTORC2) to critically regulate cellular homeostasis. However, its role in the regulation of apoptosis is largely unknown. In the current study, we found that rictor was cleaved to generate two small fragments at ~ 50 kD and ~ 130 kD in cells undergoing apoptosis upon treatment with different stimuli such as the death ligand, TRAIL, and the small molecule, AZD9291. This cleavage was abolished when caspases were inhibited and could be reproduced when directly incubating rictor protein and caspase-3 in vitro. Furthermore, the cleavage site of caspase-3 on rictor was mapped at D1244 (VGVD). These findings together robustly demonstrate that rictor is a substrate of caspase-3 and undergoes cleavage during apoptosis. These results add new information for understanding the biology of rictor in the regulation of cell survival and growth.


Asunto(s)
Apoptosis/fisiología , Caspasas/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Acrilamidas/farmacología , Compuestos de Anilina/farmacología , Apoptosis/efectos de los fármacos , Inhibidores de Caspasas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Receptores de Muerte Celular/metabolismo , Transducción de Señal/efectos de los fármacos
18.
J Cell Sci ; 132(22)2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31653780

RESUMEN

Mammalian, or mechanistic, target of rapamycin complex 2 (mTORC2) regulates a variety of vital cellular processes, and its aberrant functioning is often associated with various diseases. Rictor is a peculiar and distinguishing mTORC2 component playing a pivotal role in controlling its assembly and activity. Among extant organisms, Rictor is conserved from unicellular eukaryotes to metazoans. We replaced two distinct, but conserved, glycine residues in both the Dictyostelium piaA gene and its human ortholog, RICTOR The two conserved residues are spaced ∼50 amino acids apart, and both are embedded within a conserved region falling in between the Ras-GEFN2 and Rictor-_V domains. The effects of point mutations on the mTORC2 activity and integrity were assessed by biochemical and functional assays. In both cases, these equivalent point mutations in the mammalian RICTOR and DictyosteliumpiaA gene impaired mTORC2 activity and integrity. Our data indicate that the two glycine residues are essential for the maintenance of mTORC2 activity and integrity in organisms that appear to be distantly related, suggesting that they have a evolutionarily conserved role in the assembly and proper mTORC2 functioning.


Asunto(s)
Dictyostelium/metabolismo , Glicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Secuencia de Aminoácidos , Animales , Dictyostelium/genética , Glicina/genética , Humanos , Mamíferos , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Relación Estructura-Actividad
19.
FASEB J ; 34(5): 6984-6998, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32232913

RESUMEN

Rictor is an essential component that directly activates the mammalian target of rapamycin (mTOR) activity, which contributes to the intrinsic axon growth capacity of adult sensory neurons after injury. However, whether its action also applies to regeneration after spinal cord injury (SCI) remains unknown. In this study, rats were given spinal cord contusion at the T9-10 level to establish the SCI model and were subsequently treated with intraspinal cord injection of a Rictor overexpression lentiviral vector to locally upregulate the Rictor expression in the injured spinal cord. Thereafter, we investigated the therapeutic effects of Rictor overexpression in the injured spinal cords of SCI rats. Rictor overexpression not only significantly attenuated the acute inflammatory response and cell death after SCI but also markedly increased the shift in macrophages around the lesion from the M1 to M2 phenotype compared to those of the control lentiviral vector injection-treated group. Furthermore, Rictor overexpression dramatically increased neurogenesis in the lesion epicenter, subsequently promoting the tissue repair and functional recovery in SCI rats. Interestingly, the mechanism underlying the beneficial effects of Rictor overexpression on SCI may be associated with the Rictor overexpression playing a role in the anti-inflammatory response and driving macrophage polarization toward the M2 phenotype, which benefits resident neuronal and oligodendrocyte survival. Our findings demonstrate that Rictor is an effective target that affects the generation of molecules that inhibit spinal cord regeneration. In conclusion, localized Rictor overexpression represents a promising potential strategy for the repair of SCI.


Asunto(s)
Proteína Asociada al mTOR Insensible a la Rapamicina/fisiología , Traumatismos de la Médula Espinal/terapia , Animales , Apoptosis , Supervivencia Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Macrófagos/clasificación , Macrófagos/metabolismo , Macrófagos/patología , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Plasticidad Neuronal , Oligodendroglía/patología , Oligodendroglía/fisiología , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recuperación de la Función/genética , Recuperación de la Función/fisiología , Remielinización , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Regulación hacia Arriba
20.
FASEB J ; 34(11): 14490-14506, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32931033

RESUMEN

Podocytes are pivotal in establishing the selective permeability of the glomerular filtration barrier. Recently, we showed that an increase of the intracellular calcium ion concentration [Ca2+ ] causes a rapid and transient actin reset (CaAR) measurable through live imaging microscopy using lifeact-mCherry as an actin dye in different cell types including the podocyte. This and other studies show the critical role [Ca2+ ] and the actin cytoskeleton play in podocyte homeostasis. To further investigate the role of [Ca2+ ] and the actin cytoskeleton in podocytes, we used a double fluorescent reporter mouse model to establish a primary podocyte culture system. We treated these podocytes temporarily with a Calcium Ionophore and facultatively with Latrunculin A, an inhibitor of actin polymerization. Unbiased genome wide transcriptional analysis identified a transcriptional response in podocytes to elevated [Ca2+ ] levels, affecting mRNA levels of PDGF-BB, RICTOR, and MIR17HG as mediators of Ca2+ -signaling. Comparison of the ex vivo transcriptional response from the primary podocyte culture with glomerular transcripts across a wide spectrum of CKD disease confirmed co-regulation of transcript sets, establishing the disease relevance of the model system. Our findings demonstrate novel [Ca2+ ] regulated gene networks in podocytes deepening our understanding of podocyte biology and disease.


Asunto(s)
Señalización del Calcio , Redes Reguladoras de Genes , Podocitos/metabolismo , Transcriptoma , Citoesqueleto de Actina/metabolismo , Animales , Becaplermina/genética , Becaplermina/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Ionóforos de Calcio/farmacología , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Podocitos/efectos de los fármacos , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Tiazolidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA