Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.563
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 57(5): 1124-1140.e9, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38636522

RESUMEN

Signaling through Notch receptors intrinsically regulates tumor cell development and growth. Here, we studied the role of the Notch ligand Jagged2 on immune evasion in non-small cell lung cancer (NSCLC). Higher expression of JAG2 in NSCLC negatively correlated with survival. In NSCLC pre-clinical models, deletion of Jag2, but not Jag1, in cancer cells attenuated tumor growth and activated protective anti-tumor T cell responses. Jag2-/- lung tumors exhibited higher frequencies of macrophages that expressed immunostimulatory mediators and triggered T cell-dependent anti-tumor immunity. Mechanistically, Jag2 ablation promoted Nr4a-mediated induction of Notch ligands DLL1/4 on cancer cells. DLL1/4-initiated Notch1/2 signaling in macrophages induced the expression of transcription factor IRF4 and macrophage immunostimulatory functionality. IRF4 expression was required for the anti-tumor effects of Jag2 deletion in lung tumors. Antibody targeting of Jagged2 inhibited tumor growth and activated IRF4-driven macrophage-mediated anti-tumor immunity. Thus, Jagged2 orchestrates immunosuppressive systems in NSCLC that can be overcome to incite macrophage-mediated anti-tumor immunity.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Factores Reguladores del Interferón , Proteína Jagged-2 , Neoplasias Pulmonares , Ratones Noqueados , Macrófagos Asociados a Tumores , Animales , Humanos , Ratones , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-2/metabolismo , Proteína Jagged-2/genética , Proteína Jagged-2/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Receptor Notch1/metabolismo , Receptor Notch1/genética , Receptores Notch/metabolismo , Transducción de Señal , Escape del Tumor/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
2.
Immunity ; 57(9): 2157-2172.e7, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39079536

RESUMEN

Stroke leads to persistently high risk for recurrent vascular events caused by systemic atheroprogression that is driven by endothelial cell (EC) activation. However, whether and how stroke induces sustained pro-inflammatory and proatherogenic endothelial alterations in systemic vessels remain poorly understood. We showed that brain ischemia induces persistent activation, the upregulation of adhesion molecule VCAM1, and increased senescence in peripheral ECs until 4 weeks after stroke onset. This aberrant EC activity resulted from sustained Notch1 signaling, which was triggered by increased circulating Notch1 ligands DLL1 and Jagged1 after stroke in mice and humans. Consequently, this led to increased myeloid cell adhesion and atheroprogression by generating a senescent, pro-inflammatory endothelium. Notch1- or VCAM1-blocking antibodies and the genetic ablation of endothelial Notch1 reduced atheroprogression after stroke. Our findings revealed a systemic machinery that induces the persistent activation of peripheral ECs after stroke, which paves the way for therapeutic interventions or the prevention of recurrent vascular events following stroke.


Asunto(s)
Aterosclerosis , Isquemia Encefálica , Proteínas de Unión al Calcio , Células Endoteliales , Receptor Notch1 , Animales , Humanos , Masculino , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/inmunología , Isquemia Encefálica/metabolismo , Proteínas de Unión al Calcio/metabolismo , Adhesión Celular , Senescencia Celular , Células Endoteliales/metabolismo , Proteína Jagged-1/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Notch1/metabolismo , Transducción de Señal , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/inmunología , Molécula 1 de Adhesión Celular Vascular/metabolismo
3.
Cell ; 174(3): 590-606.e21, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29961574

RESUMEN

Cerebral cortex size differs dramatically between reptiles, birds, and mammals, owing to developmental differences in neuron production. In mammals, signaling pathways regulating neurogenesis have been identified, but genetic differences behind their evolution across amniotes remain unknown. We show that direct neurogenesis from radial glia cells, with limited neuron production, dominates the avian, reptilian, and mammalian paleocortex, whereas in the evolutionarily recent mammalian neocortex, most neurogenesis is indirect via basal progenitors. Gain- and loss-of-function experiments in mouse, chick, and snake embryos and in human cerebral organoids demonstrate that high Slit/Robo and low Dll1 signaling, via Jag1 and Jag2, are necessary and sufficient to drive direct neurogenesis. Attenuating Robo signaling and enhancing Dll1 in snakes and birds recapitulates the formation of basal progenitors and promotes indirect neurogenesis. Our study identifies modulation in activity levels of conserved signaling pathways as a primary mechanism driving the expansion and increased complexity of the mammalian neocortex during amniote evolution.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Animales , Proteínas de Unión al Calcio , Corteza Cerebral/metabolismo , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Proteína Jagged-2 , Mamíferos/embriología , Ratones , Ratones Endogámicos C57BL , Neocórtex/fisiología , Células-Madre Neurales , Neurogénesis/fisiología , Neuroglía/fisiología , Neuronas , Factor de Transcripción PAX6/metabolismo , Proteínas Represoras , Transducción de Señal , Serpientes/embriología , Proteínas Roundabout
4.
Cell ; 169(6): 1119-1129.e11, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28552347

RESUMEN

The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatory T cells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of Tregs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs.


Asunto(s)
Folículo Piloso/citología , Células Madre/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Células Epiteliales/metabolismo , Folículo Piloso/metabolismo , Humanos , Inflamación/metabolismo , Proteína Jagged-1/metabolismo , Ratones
5.
Cell ; 163(5): 1204-1213, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26582133

RESUMEN

Duchenne muscular dystrophy (DMD), caused by mutations at the dystrophin gene, is the most common form of muscular dystrophy. There is no cure for DMD and current therapeutic approaches to restore dystrophin expression are only partially effective. The absence of dystrophin in muscle results in dysregulation of signaling pathways, which could be targets for disease therapy and drug discovery. Previously, we identified two exceptional Golden Retriever muscular dystrophy (GRMD) dogs that are mildly affected, have functional muscle, and normal lifespan despite the complete absence of dystrophin. Now, our data on linkage, whole-genome sequencing, and transcriptome analyses of these dogs compared to severely affected GRMD and control animals reveals that increased expression of Jagged1 gene, a known regulator of the Notch signaling pathway, is a hallmark of the mild phenotype. Functional analyses demonstrate that Jagged1 overexpression ameliorates the dystrophic phenotype, suggesting that Jagged1 may represent a target for DMD therapy in a dystrophin-independent manner. PAPERCLIP.


Asunto(s)
Proteínas de Unión al Calcio/genética , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Distrofia Muscular de Duchenne/genética , Animales , Proliferación Celular , Enfermedades de los Perros/genética , Perros , Distrofina/deficiencia , Distrofina/genética , Femenino , Estudio de Asociación del Genoma Completo , Proteína Jagged-1 , Masculino , Ratones , Distrofia Muscular Animal/genética , Linaje , Penetrancia , Proteínas Serrate-Jagged , Transcriptoma , Pez Cebra , Proteínas de Pez Cebra
6.
Am J Hum Genet ; 111(8): 1656-1672, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39043182

RESUMEN

Pathogenic variants in the JAG1 gene are a primary cause of the multi-system disorder Alagille syndrome. Although variant detection rates are high for this disease, there is uncertainty associated with the classification of missense variants that leads to reduced diagnostic yield. Consequently, up to 85% of reported JAG1 missense variants have uncertain or conflicting classifications. We generated a library of 2,832 JAG1 nucleotide variants within exons 1-7, a region with a high number of reported missense variants, and designed a high-throughput assay to measure JAG1 membrane expression, a requirement for normal function. After calibration using a set of 175 known or predicted pathogenic and benign variants included within the variant library, 486 variants were characterized as functionally abnormal (n = 277 abnormal and n = 209 likely abnormal), of which 439 (90.3%) were missense. We identified divergent membrane expression occurring at specific residues, indicating that loss of the wild-type residue itself does not drive pathogenicity, a finding supported by structural modeling data and with broad implications for clinical variant classification both for Alagille syndrome and globally across other disease genes. Of 144 uncertain variants reported in patients undergoing clinical or research testing, 27 had functionally abnormal membrane expression, and inclusion of our data resulted in the reclassification of 26 to likely pathogenic. Functional evidence augments the classification of genomic variants, reducing uncertainty and improving diagnostics. Inclusion of this repository of functional evidence during JAG1 variant reclassification will significantly affect resolution of variant pathogenicity, making a critical impact on the molecular diagnosis of Alagille syndrome.


Asunto(s)
Síndrome de Alagille , Proteína Jagged-1 , Mutación Missense , Síndrome de Alagille/genética , Proteína Jagged-1/genética , Humanos , Exones/genética
7.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254648

RESUMEN

During embryonic development, Wnt signaling influences both proliferation and sensory formation in the cochlea. How this dual nature of Wnt signaling is coordinated is unknown. In this study, we define a novel role for a Wnt-regulated gene, Mybl2, which was already known to be important for proliferation, in determining the size and patterning of the sensory epithelium in the murine cochlea. Using a quantitative spatial analysis approach and analyzing Mybl2 loss-of-function, we show that Mybl2 promoted proliferation in the inner sulcus domain but limited the size of the sensory domain by influencing their adjoining boundary position via Jag1 regulation during development. Mybl2 loss-of-function simultaneously decreased proliferation in the inner sulcus and increased the size of the sensory domain, resulting in a wider sensory epithelium with ectopic inner hair cell formation during late embryonic stages. These data suggest that progenitor cells in the inner sulcus determine boundary formation and pattern the sensory epithelium via MYBL2.


Asunto(s)
Proliferación Celular , Cóclea , Proteína Jagged-1 , Células Madre , Animales , Cóclea/embriología , Cóclea/citología , Cóclea/metabolismo , Ratones , Epitelio/embriología , Epitelio/metabolismo , Células Madre/citología , Células Madre/metabolismo , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Regulación del Desarrollo de la Expresión Génica , Vía de Señalización Wnt , Tipificación del Cuerpo/genética , Transactivadores/metabolismo , Transactivadores/genética , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/citología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
8.
Immunity ; 46(6): 979-981, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636968

RESUMEN

Regulatory T (Treg) cells are well known to modulate inflammatory responses. In a recent issue of Cell, Ali et al. (2017) reveal a function for Treg cells in stem cell maintenance by showing that skin-resident Foxp3+ Treg cells preferentially localize to the hair follicle stem cell (HFSC) niche to control HFSC-mediated hair regeneration.


Asunto(s)
Células Madre Adultas/inmunología , Folículo Piloso/inmunología , Tolerancia Inmunológica , Nicho de Células Madre/inmunología , Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular , Factores de Transcripción Forkhead/metabolismo , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ratones , Ratones Noqueados , Receptores Notch/metabolismo , Regeneración , Transducción de Señal
9.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35103284

RESUMEN

The contractile phenotype of smooth muscle cells (SMCs) is transcriptionally controlled by a complex of the DNA-binding protein SRF and the transcriptional co-activator MYOCD. The pathways that activate expression of Myocd and of SMC structural genes in mesenchymal progenitors are diverse, reflecting different intrinsic and extrinsic signaling inputs. Taking the ureter as a model, we analyzed whether Notch signaling, a pathway previously implicated in vascular SMC development, also affects visceral SMC differentiation. We show that mice with a conditional deletion of the unique Notch mediator RBPJ in the undifferentiated ureteric mesenchyme exhibit altered ureter peristalsis with a delayed onset, and decreased contraction frequency and intensity at fetal stages. They also develop hydroureter 2 weeks after birth. Notch signaling is required for precise temporal activation of Myocd expression and, independently, for expression of a group of late SMC structural genes. Based on additional expression analyses, we suggest that a mesenchymal JAG1-NOTCH2/NOTCH3 module regulates visceral SMC differentiation in the ureter in a biphasic and bimodal manner, and that its molecular function differs from that in the vascular system.


Asunto(s)
Diferenciación Celular , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Uréter/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diaminas/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/deficiencia , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Masculino , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Tiazoles/farmacología , Transactivadores/genética , Transactivadores/metabolismo , Uréter/citología , Uréter/crecimiento & desarrollo , Vísceras/citología , Vísceras/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(50): e2201097119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36469766

RESUMEN

Despite the robust healing capacity of the liver, regenerative failure underlies numerous hepatic diseases, including the JAG1 haploinsufficient disorder, Alagille syndrome (ALGS). Cholestasis due to intrahepatic duct (IHD) paucity resolves in certain ALGS cases but fails in most with no clear mechanisms or therapeutic interventions. We find that modulating jag1b and jag2b allele dosage is sufficient to stratify these distinct outcomes, which can be either exacerbated or rescued with genetic manipulation of Notch signaling, demonstrating that perturbations of Jag/Notch signaling may be causal for the spectrum of ALGS liver severities. Although regenerating IHD cells proliferate, they remain clustered in mutants that fail to recover due to a blunted elevation of Notch signaling in the distal-most IHD cells. Increased Notch signaling is required for regenerating IHD cells to branch and segregate into the peripheral region of the growing liver, where biliary paucity is commonly observed in ALGS. Mosaic loss- and-gain-of-function analysis reveals Sox9b to be a key Notch transcriptional effector required cell autonomously to regulate these cellular dynamics during IHD regeneration. Treatment with a small-molecule putative Notch agonist stimulates Sox9 expression in ALGS patient fibroblasts and enhances hepatic sox9b expression, rescues IHD paucity and cholestasis, and increases survival in zebrafish mutants, thereby providing a proof-of-concept therapeutic avenue for this disorder.


Asunto(s)
Síndrome de Alagille , Conductos Biliares Intrahepáticos , Transducción de Señal , Animales , Humanos , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Mosaicismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Regeneración , Conductos Biliares Intrahepáticos/citología , Conductos Biliares Intrahepáticos/patología , Fibroblastos
11.
Proc Natl Acad Sci U S A ; 119(33): e2203318119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939687

RESUMEN

γδ T cells are an abundant T cell population at the mucosa and are important in providing immune surveillance as well as maintaining tissue homeostasis. However, despite γδ T cells' origin in the thymus, detailed mechanisms regulating γδ T cell development remain poorly understood. N6-methyladenosine (m6A) represents one of the most common posttranscriptional modifications of messenger RNA (mRNA) in mammalian cells, but whether it plays a role in γδ T cell biology is still unclear. Here, we show that depletion of the m6A demethylase ALKBH5 in lymphocytes specifically induces an expansion of γδ T cells, which confers enhanced protection against gastrointestinal Salmonella typhimurium infection. Mechanistically, loss of ALKBH5 favors the development of γδ T cell precursors by increasing the abundance of m6A RNA modification in thymocytes, which further reduces the expression of several target genes including Notch signaling components Jagged1 and Notch2. As a result, impairment of Jagged1/Notch2 signaling contributes to enhanced proliferation and differentiation of γδ T cell precursors, leading to an expanded mature γδ T cell repertoire. Taken together, our results indicate a checkpoint role of ALKBH5 and m6A modification in the regulation of γδ T cell early development.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Linfocitos Intraepiteliales , ARN Mensajero , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Animales , Linfocitos Intraepiteliales/enzimología , Linfocitos Intraepiteliales/inmunología , Proteína Jagged-1/metabolismo , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo , Receptor Notch2/metabolismo , Transducción de Señal/genética
12.
Crit Rev Biochem Mol Biol ; 57(4): 377-398, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36048510

RESUMEN

The Notch signaling pathway is a direct cell-cell communication system involved in a wide variety of biological processes, and its disruption is observed in several pathologies. The pathway is comprised of a ligand-expressing (sender) cell and a receptor-expressing (receiver) cell. The canonical ligands are members of the Delta/Serrate/Lag-1 (DSL) family of proteins. Their binding to a Notch receptor in a neighboring cell induces a conformational change in the receptor, which will undergo regulated intramembrane proteolysis (RIP), liberating the Notch intracellular domain (NICD). The NICD is translocated to the nucleus and promotes gene transcription. It has been demonstrated that the ligands can also undergo RIP and nuclear translocation, suggesting a function for the ligands in the sender cell and possible bidirectionality of the Notch pathway. Although the complete mechanism of ligand processing is not entirely understood, and its dependence on Notch receptors has not been ruled out. Also, ligands have autonomous functions beyond Notch activation. Here we review the concepts of reverse and bidirectional signalization of DSL proteins and discuss the characteristics that make them more than just ligands of the Notch pathway.


Asunto(s)
Fenómenos Biológicos , Receptores Notch , Proteínas Portadoras/metabolismo , Proteína Jagged-1/metabolismo , Ligandos , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/fisiología
13.
Kidney Int ; 106(1): 98-114, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38521405

RESUMEN

Epigenetic regulations, including DNA methylation, are critical to the development and progression of kidney fibrosis, but the underlying mechanisms remain elusive. Here, we show that fibrosis of the mouse kidney was associated with the induction of DNA methyltransferases and increases in global DNA methylation and was alleviated by the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza). Genome-wide analysis demonstrated the hypermethylation of 94 genes in mouse unilateral ureteral obstruction kidneys, which was markedly reduced by 5-Aza. Among these genes, Hoxa5 was hypermethylated at its gene promoter, and this hypermethylation was associated with reduced HOXA5 expression in fibrotic mouse kidneys after ureteral obstruction or unilateral ischemia-reperfusion injury. 5-Aza prevented Hoxa5 hypermethylation, restored HOXA5 expression, and suppressed kidney fibrosis. Downregulation of HOXA5 was verified in human kidney biopsies from patients with chronic kidney disease and correlated with the increased kidney fibrosis and DNA methylation. Kidney fibrosis was aggravated by conditional knockout of Hoxa5 and alleviated by conditional knockin of Hoxa5 in kidney proximal tubules of mice. Mechanistically, we found that HOXA5 repressed Jag1 transcription by directly binding to its gene promoter, resulting in the suppression of JAG1-NOTCH signaling during kidney fibrosis. Thus, our results indicate that loss of HOXA5 via DNA methylation contributes to fibrogenesis in kidney diseases by inducing JAG1 and consequent activation of the NOTCH signaling pathway.


Asunto(s)
Metilación de ADN , Fibrosis , Proteínas de Homeodominio , Proteína Jagged-1 , Regiones Promotoras Genéticas , Receptores Notch , Transducción de Señal , Obstrucción Ureteral , Animales , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Masculino , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/patología , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Riñón/patología , Riñón/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Epigénesis Genética , Enfermedades Renales/patología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/etiología , Factores de Transcripción
14.
Angiogenesis ; 27(2): 273-283, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37796367

RESUMEN

Notch and its ligands play a critical role in rheumatoid arthritis (RA) pathogenesis. Hence, studies were conducted to delineate the functional significance of the Notch pathway in RA synovial tissue (ST) cells and the influence of RA therapies on their expression. Morphological studies reveal that JAG1, DLL4, and Notch1 are highly enriched in RA ST lining and sublining CD68+CD14+ MΦs. JAG1 and DLL4 transcription is jointly upregulated in RA MΦs reprogrammed by TLR4/5 ligation and TNF, whereas Syntenin-1 exposure expands JAG1, DLL4, and Notch1 expression levels in these cells. Single-cell RNA-seq data exhibit that JAG1 and Notch3 are overexpressed on all fibroblast-like synoviocyte (FLS) subpopulations, in parallel, JAG2, DLL1, and Notch1 expression levels are modest on RA FLS and are predominately potentiated by TLR4 ligation. Intriguingly, JAG1, DLL1/4, and Notch1/3 are presented on RA endothelial cells, and their expression is mutually reconfigured by TLR4/5 ligation in the endothelium. Synovial JAG1/JAG2/DLL1 or Notch1/3 transcriptomes were unchanged in patients who received disease-modifying anti-rheumatic drugs (DMARDs) or IL-6R Ab therapy regardless of disease activity score. Uniquely, RA MΦs and endothelial cells rewired by IL-6 displayed DLL4 transcriptional upregulation, and IL-6R antibody treatment disrupted RA ST DLL4 transcription in good responders compared to non-responders or moderate responders. Nevertheless, the JAG1/JAG2/DLL1/DLL4 transcriptome was diminished in anti-TNF good responders with myeloid pathotype and was unaltered in the fibroid pathotype except for DLL4. Taken together, our findings suggest that RA myeloid Notch ligands can serve as markers for anti-TNF responsiveness and trans-activate Notch receptors expressed on RA FLS and/or endothelial cells.


Asunto(s)
Artritis Reumatoide , Inhibidores del Factor de Necrosis Tumoral , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Células Endoteliales/metabolismo , Receptor Toll-Like 4/metabolismo , Receptores Notch/metabolismo , Biomarcadores , Artritis Reumatoide/tratamiento farmacológico , Ligandos , Receptor Notch1/metabolismo
15.
Am J Hum Genet ; 108(5): 840-856, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33861953

RESUMEN

JAG2 encodes the Notch ligand Jagged2. The conserved Notch signaling pathway contributes to the development and homeostasis of multiple tissues, including skeletal muscle. We studied an international cohort of 23 individuals with genetically unsolved muscular dystrophy from 13 unrelated families. Whole-exome sequencing identified rare homozygous or compound heterozygous JAG2 variants in all 13 families. The identified bi-allelic variants include 10 missense variants that disrupt highly conserved amino acids, a nonsense variant, two frameshift variants, an in-frame deletion, and a microdeletion encompassing JAG2. Onset of muscle weakness occurred from infancy to young adulthood. Serum creatine kinase (CK) levels were normal or mildly elevated. Muscle histology was primarily dystrophic. MRI of the lower extremities revealed a distinct, slightly asymmetric pattern of muscle involvement with cores of preserved and affected muscles in quadriceps and tibialis anterior, in some cases resembling patterns seen in POGLUT1-associated muscular dystrophy. Transcriptome analysis of muscle tissue from two participants suggested misregulation of genes involved in myogenesis, including PAX7. In complementary studies, Jag2 downregulation in murine myoblasts led to downregulation of multiple components of the Notch pathway, including Megf10. Investigations in Drosophila suggested an interaction between Serrate and Drpr, the fly orthologs of JAG1/JAG2 and MEGF10, respectively. In silico analysis predicted that many Jagged2 missense variants are associated with structural changes and protein misfolding. In summary, we describe a muscular dystrophy associated with pathogenic variants in JAG2 and evidence suggests a disease mechanism related to Notch pathway dysfunction.


Asunto(s)
Proteína Jagged-2/genética , Distrofias Musculares/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Línea Celular , Niño , Preescolar , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Glucosiltransferasas/genética , Haplotipos/genética , Humanos , Proteína Jagged-1/genética , Proteína Jagged-2/química , Proteína Jagged-2/deficiencia , Proteína Jagged-2/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Persona de Mediana Edad , Modelos Moleculares , Músculos/metabolismo , Músculos/patología , Distrofias Musculares/patología , Mioblastos/metabolismo , Mioblastos/patología , Linaje , Fenotipo , Receptores Notch/metabolismo , Transducción de Señal , Secuenciación del Exoma , Adulto Joven
16.
Development ; 148(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758082

RESUMEN

In the mammary gland, how alveolar progenitor cells are recruited to fuel tissue growth with each estrus cycle and pregnancy remains poorly understood. Here, we identify a regulatory pathway that controls alveolar progenitor differentiation and lactation by governing Notch activation in mouse. Loss of Robo1 in the mammary gland epithelium activates Notch signaling, which expands the alveolar progenitor cell population at the expense of alveolar differentiation, resulting in compromised lactation. ROBO1 is expressed in both luminal and basal cells, but loss of Robo1 in basal cells results in the luminal differentiation defect. In the basal compartment, ROBO1 inhibits the expression of Notch ligand Jag1 by regulating ß-catenin (CTNNB1), which binds the Jag1 promoter. Together, our studies reveal how ROBO1/CTTNB1/JAG1 signaling in the basal compartment exerts paracrine control of Notch signaling in the luminal compartment to regulate alveolar differentiation during pregnancy.


Asunto(s)
Diferenciación Celular/fisiología , Proteína Jagged-1/metabolismo , Lactancia/psicología , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Notch/metabolismo , Células Madre/citología , beta Catenina/metabolismo , Animales , Línea Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteína Jagged-1/genética , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/fisiología , Ratones , Proteínas del Tejido Nervioso/genética , Comunicación Paracrina , Receptores Inmunológicos/genética , Transducción de Señal , Células Madre/metabolismo , beta Catenina/genética , Proteínas Roundabout
17.
Development ; 148(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34918741

RESUMEN

Genetic and genomic analysis in Drosophila suggests that hematopoietic progenitors likely transition into terminal fates via intermediate progenitors (IPs) with some characteristics of either, but perhaps maintaining IP-specific markers. In the past, IPs have not been directly visualized and investigated owing to lack of appropriate genetic tools. Here, we report a Split GAL4 construct, CHIZ-GAL4, that identifies IPs as cells physically juxtaposed between true progenitors and differentiating hemocytes. IPs are a distinct cell type with a unique cell-cycle profile and they remain multipotent for all blood cell fates. In addition, through their dynamic control of the Notch ligand Serrate, IPs specify the fate of direct neighbors. The Ras pathway controls the number of IP cells and promotes their transition into differentiating cells. This study suggests that it would be useful to characterize such intermediate populations of cells in mammalian hematopoietic systems.


Asunto(s)
Proteínas de Drosophila/genética , Hematopoyesis/genética , Proteína Jagged-1/genética , Receptores Notch/genética , Factores de Transcripción/genética , Animales , Células Sanguíneas/citología , Células Sanguíneas/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hemocitos , Lectinas/genética , Receptores de Interleucina/genética , Transducción de Señal/genética , Células Madre/citología , Células Madre/metabolismo
18.
Nat Immunol ; 13(12): 1213-21, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23086448

RESUMEN

CD46 is a complement regulator with important roles related to the immune response. CD46 functions as a pathogen receptor and is a potent costimulator for the induction of interferon-γ (IFN-γ)-secreting effector T helper type 1 (T(H)1) cells and their subsequent switch into interleukin 10 (IL-10)-producing regulatory T cells. Here we identified the Notch family member Jagged1 as a physiological ligand for CD46. Furthermore, we found that CD46 regulated the expression of Notch receptors and ligands during T cell activation and that disturbance of the CD46-Notch crosstalk impeded induction of IFN-γ and switching to IL-10. Notably, CD4(+) T cells from CD46-deficient patients and patients with hypomorphic mutations in the gene encoding Jagged1 (Alagille syndrome) failed to mount appropriate T(H)1 responses in vitro and in vivo, which suggested that CD46-Jagged1 crosstalk is responsible for the recurrent infections in subpopulations of these patients.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Activación de Linfocitos , Proteína Cofactora de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Células TH1/inmunología , Adulto , Síndrome de Alagille/genética , Síndrome de Alagille/inmunología , Animales , Células Cultivadas , Niño , Preescolar , Humanos , Interferón gamma/metabolismo , Interleucina-10/inmunología , Interleucina-10/metabolismo , Proteína Jagged-1 , Ratones , Ratones SCID , Ratones Transgénicos , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Serrate-Jagged , Células TH1/metabolismo , alfa Catenina/genética
19.
Hepatology ; 78(1): 120-135, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651177

RESUMEN

BACKGROUND AND AIMS: Myofibroblasts are considered the major effector cell type of liver fibrosis and primarily derived from hepatic stellate cells (HSCs). In the present study, we investigated the contribution of C-C motif chemokine (CCL11) to HSC-myofibroblast trans -differentiation and its implication in liver fibrosis. APPROACH AND RESULTS: We report that CCL11 levels were elevated in HSCs, but not in hepatocytes or Kupffer cells, isolated from mice with liver fibrosis compared with the control mice. CCL11 levels were also up-regulated by 2 pro-fibrogenic growth factors TGF-ß and platelet derived growth factor in cultured HSCs. Mechanistically, zinc finger factor 281 bound to the CCL11 promoter and mediated CCL11 trans -activation in HSCs. Depletion of CCL11 attenuated whereas treatment with recombinant CCL11 promoted HSC activation. Further, global CCL11 deletion ( CCL11-/- ) or HSC/myofibroblast-specific CCL11 knockdown mitigated fibrogenesis in mice. RNA-sequencing revealed that CCL11 might regulate HSC activation by stimulating the transcription of Jagged 1. Reconstitution of Jagged 1 restored the fibrogenic response in CCL11-/- mice. Finally, several targeting strategies that aimed at blockading CCL11 signaling, either by administration of an antagonist to its receptor C-C motif chemokine receptor 3 or neutralizing antibodies against CCL11/C-C motif chemokine receptor 3, ameliorated liver fibrosis in mice. CONCLUSIONS: Our data unveil a previously unrecognized role for CCL11 in liver fibrosis and provide proof-of-concept evidence that targeting CCL11 can be considered as an effective therapeutic approach.


Asunto(s)
Hepatocitos , Cirrosis Hepática , Animales , Ratones , Células Cultivadas , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Proteína Jagged-1/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Receptores de Quimiocina/metabolismo
20.
Hepatology ; 78(5): 1337-1351, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37021797

RESUMEN

BACKGROUND AND AIMS: Paucity of intrahepatic bile ducts (BDs) is caused by various etiologies and often leads to cholestatic liver disease. For example, in patients with Alagille syndrome (ALGS), which is a genetic disease primarily caused by mutations in jagged 1 ( JAG1) , BD paucity often results in severe cholestasis and liver damage. However, no mechanism-based therapy exists to restore the biliary system in ALGS or other diseases associated with BD paucity. Based on previous genetic observations, we investigated whether postnatal knockdown of the glycosyltransferase gene protein O -glucosyltransferase 1 ( Poglut1) can improve the ALGS liver phenotypes in several mouse models generated by removing one copy of Jag1 in the germline with or without reducing the gene dosage of sex-determining region Y-box 9 in the liver. APPROACH AND RESULTS: Using an ASO established in this study, we show that reducing Poglut1 levels in postnatal livers of ALGS mouse models with moderate to profound biliary abnormalities can significantly improve BD development and biliary tree formation. Importantly, ASO injections prevent liver damage in these models without adverse effects. Furthermore, ASO-mediated Poglut1 knockdown improves biliary tree formation in a different mouse model with no Jag1 mutations. Cell-based signaling assays indicate that reducing POGLUT1 levels or mutating POGLUT1 modification sites on JAG1 increases JAG1 protein level and JAG1-mediated signaling, suggesting a likely mechanism for the observed in vivo rescue. CONCLUSIONS: Our preclinical studies establish ASO-mediated POGLUT1 knockdown as a potential therapeutic strategy for ALGS liver disease and possibly other diseases associated with BD paucity.


Asunto(s)
Síndrome de Alagille , Glicosiltransferasas , Hígado , Oligonucleótidos Antisentido , Animales , Ratones , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Síndrome de Alagille/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Proteínas de Unión al Calcio/genética , Colestasis/genética , Colestasis/metabolismo , Silenciador del Gen , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Hígado/metabolismo , Hígado/patología , Proteínas de la Membrana/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Fenotipo , Proteínas Serrate-Jagged/genética , Proteínas Serrate-Jagged/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA