Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 130(7): 1263-1273, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28223315

RESUMEN

Members of the Cas family of focal adhesion proteins contain a highly conserved C-terminal focal adhesion targeting (FAT) domain. To determine the role of the FAT domain in these proteins, we compared wild-type exogenous NEDD9 with a hybrid construct in which the NEDD9 FAT domain had been exchanged for the p130Cas (also known as BCAR1) FAT domain. Fluorescence recovery after photobleaching (FRAP) revealed significantly slowed exchange of the fusion protein at focal adhesions and significantly slower two-dimensional migration. No differences were detected in cell stiffness as measured using atomic force microscopy (AFM) and in cell adhesion forces measured with a magnetic tweezer device. Thus, the slowed migration was not due to changes in cell stiffness or adhesion strength. Analysis of cell migration on surfaces of increasing rigidity revealed a striking reduction of cell motility in cells expressing the p130Cas FAT domain. The p130Cas FAT domain induced rigidity-dependent phosphorylation of tyrosine residues within NEDD9. This in turn reduced post-translational cleavage of NEDD9, which we show inhibits NEDD9-induced migration. Collectively, our data therefore suggest that the p130Cas FAT domain uniquely confers a mechanosensing function.


Asunto(s)
Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/metabolismo , Adhesiones Focales/metabolismo , Mecanotransducción Celular , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Movimiento Celular , Matriz Extracelular/metabolismo , Adhesiones Focales/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Mecanotransducción Celular/efectos de los fármacos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Dominios Proteicos , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Tetraciclina/farmacología
2.
J Biol Chem ; 292(44): 18281-18289, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28860193

RESUMEN

The Cas family scaffolding protein p130Cas is a Src substrate localized in focal adhesions (FAs) and functions in integrin signaling to promote cell motility, invasion, proliferation, and survival. p130Cas targeting to FAs is essential for its tyrosine phosphorylation and downstream signaling. Although the N-terminal SH3 domain is important for p130Cas localization, it has also been reported that the C-terminal region is involved in p130Cas FA targeting. The C-terminal region of p130Cas or Cas family homology domain (CCHD) has been reported to adopt a structure similar to that of the focal adhesion kinase C-terminal focal adhesion-targeting domain. The mechanism by which the CCHD promotes FA targeting of p130Cas, however, remains unclear. In this study, using a calorimetry approach, we identified the first LD motif (LD1) of the FA-associated protein paxillin as the binding partner of the p130Cas CCHD (in a 1:1 stoichiometry with a Kd ∼4.2 µm) and elucidated the structure of the p130Cas CCHD in complex with the paxillin LD1 motif by X-ray crystallography. Of note, a comparison of the CCHD/LD1 complex with a previously solved structure of CCHD in complex with the SH2-containing protein NSP3 revealed that LD1 had almost identical positioning of key hydrophobic and acidic residues relative to NSP3. Because paxillin is one of the key scaffold molecules in FAs, we propose that the interaction between the p130Cas CCHD and the LD1 motif of paxillin plays an important role in p130Cas FA targeting.


Asunto(s)
Proteínas Aviares/metabolismo , Proteína Sustrato Asociada a CrK/metabolismo , Modelos Moleculares , Paxillin/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Proteínas Aviares/química , Sitios de Unión , Pollos , Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/genética , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Leucina , Ratones , Mutación , Paxillin/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína
3.
Proc Natl Acad Sci U S A ; 111(11): 3949-54, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24594603

RESUMEN

Cell migration through 3D extracellular matrices is critical to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. Here, we quantified the migration patterns of individual fibrosarcoma cells on 2D substrates and in 3D collagen matrices and found that 3D migration does not follow a random walk. Both 2D and 3D migration features a non-Gaussian, exponential mean cell velocity distribution, which we show is primarily a result of cell-to-cell variations. Unlike in the 2D case, 3D cell migration is anisotropic: velocity profiles display different speed and self-correlation processes in different directions, rendering the classical persistent random walk (PRW) model of cell migration inadequate. By incorporating cell heterogeneity and local anisotropy to the PRW model, we predict 3D cell motility over a wide range of matrix densities, which identifies density-independent emerging migratory properties. This analysis also reveals the unexpected robust relation between cell speed and persistence of migration over a wide range of matrix densities.


Asunto(s)
Movimiento Celular/fisiología , Matriz Extracelular , Modelos Biológicos , Actinina/química , Anisotropía , Línea Celular Tumoral , Simulación por Computador , Proteína Sustrato Asociada a CrK/química , Humanos , Procesos Estocásticos , Zixina/química
4.
Tumour Biol ; 37(8): 10665-73, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26867768

RESUMEN

Elevated p130Cas (Crk-associated substrate) levels are found in aggressive breast tumors and are associated with poor prognosis and resistance to standard therapeutics in patients. p130Cas signals majorly through its phosphorylated substrate domain (SD) that contains 15 tyrosine motifs (YxxP) which recruit effector molecules. Tyrosine phosphorylation of p130Cas is important for mediating migration, invasion, tumor promotion, and metastasis. We previously developed a Src*/SD fusion molecule approach, where the SD is constitutively phosphorylated. In a polyoma middle T-antigen (PyMT)/Src*/SD double-transgenic mouse model, Src*/SD accelerates PyMT-induced tumor growth and promotes a more aggressive phenotype. To test whether Src*/SD also drives metastasis and which of the YxxP motifs are involved in this process, full-length and truncated SD molecules fused to Src* were expressed in breast cancer cells. The functionality of the Src*/SD fragments was analyzed in vitro, and the active proteins were tested in vivo in an orthotopic mouse model. Breast cancer cells expressing the full-length SD and the functional smaller SD fragment (spanning SD motifs 6-10) were injected into the mammary fat pads of mice. The tumor progression was monitored by bioluminescence imaging and caliper measurements. Compared with control animals, the complete SD promoted primary tumor growth and an earlier onset of metastases. Importantly, both the complete and truncated SD significantly increased the occurrence of metastases to multiple organs. These studies provide strong evidence that the phosphorylated p130Cas SD motifs 6-10 (Y236, Y249, Y267, Y287, and Y306) are important for driving mammary carcinoma progression.


Asunto(s)
Neoplasias de la Mama/patología , Proteína Sustrato Asociada a CrK/fisiología , Proteínas de Neoplasias/fisiología , Secuencias de Aminoácidos , Animales , Neoplasias de la Mama/genética , Proteína Tirosina Quinasa CSK , Línea Celular Tumoral , Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/genética , Progresión de la Enfermedad , Femenino , Genes Reporteros , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Metástasis de la Neoplasia , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fragmentos de Péptidos/genética , Fosforilación , Fosfotirosina/metabolismo , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
5.
PLoS Comput Biol ; 10(4): e1003532, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24722239

RESUMEN

Mechanical stretch-induced tyrosine phosphorylation in the proline-rich 306-residue substrate domain (CasSD) of p130Cas (or BCAR1) has eluded an experimentally validated structural understanding. Cellular p130Cas tyrosine phosphorylation is shown to function in areas without internal actomyosin contractility, sensing force at the leading edge of cell migration. Circular dichroism shows CasSD is intrinsically disordered with dominant polyproline type II conformations. Strongly conserved in placental mammals, the proline-rich sequence exhibits a pseudo-repeat unit with variation hotspots 2-9 residues before substrate tyrosine residues. Atomic-force microscopy pulling experiments show CasSD requires minimal extension force and exhibits infrequent, random regions of weak stability. Proteolysis, light scattering and ultracentrifugation results show that a monomeric intrinsically disordered form persists for CasSD in solution with an expanded hydrodynamic radius. All-atom 3D conformer sampling with the TraDES package yields ensembles in agreement with experiment when coil-biased sampling is used, matching the experimental radius of gyration. Increasing ß-sampling propensities increases the number of prolate conformers. Combining the results, we conclude that CasSD has no stable compact structure and is unlikely to efficiently autoinhibit phosphorylation. Taking into consideration the structural propensity of CasSD and the fact that it is known to bind to LIM domains, we propose a model of how CasSD and LIM domain family of transcription factor proteins may function together to regulate phosphorylation of CasSD and effect machanosensing.


Asunto(s)
Proteína Sustrato Asociada a CrK/química , Proteínas Intrínsecamente Desordenadas/química , Mecanotransducción Celular , Biofisica , Microscopía de Fuerza Atómica , Desplegamiento Proteico
6.
Phys Chem Chem Phys ; 16(14): 6342-57, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24469063

RESUMEN

The dynamic regulation of cell-matrix adhesion is essential for tissue homeostasis and architecture, and thus numerous pathologies are linked to altered cell-extracellular matrix (ECM) interaction and ECM scaffold. The molecular machinery involved in cell-matrix adhesion is complex and involves both sensory and matrix-remodelling functions. In this review, we focus on how protein conformation controls the organization and dynamics of cell-matrix adhesion. The conformational changes in various adhesion machinery components are described, including examples from ECM as well as cytoplasmic proteins. The discussed mechanisms involved in the regulation of protein conformation include mechanical stress, post-translational modifications and allosteric ligand-binding. We emphasize the potential role of intrinsically disordered protein regions in these processes and discuss the role of protein networks and co-operative protein interactions in the formation and consolidation of cell-matrix adhesion and extracellular scaffolds.


Asunto(s)
Proteínas de la Matriz Extracelular/química , Matriz Extracelular/metabolismo , Actinina/química , Actinina/metabolismo , Regulación Alostérica , Proteína Tirosina Quinasa CSK , Adhesión Celular , Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Filaminas/química , Filaminas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Talina/química , Talina/metabolismo , Vinculina/química , Vinculina/metabolismo , Familia-src Quinasas/química , Familia-src Quinasas/metabolismo
7.
Methods Enzymol ; 698: 301-342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38886037

RESUMEN

Protein-protein interactions between SH2 domains and segments of proteins that include a post-translationally phosphorylated tyrosine residue (pY) underpin numerous signal transduction cascades that allow cells to respond to their environment. Dysregulation of the writing, erasing, and reading of these posttranslational modifications is a hallmark of human disease, notably cancer. Elucidating the precise role of the SH2 domain-containing adaptor proteins Crk and CrkL in tumor cell migration and invasion is challenging because there are no specific and potent antagonists available. Crk and CrkL SH2s interact with a region of the docking protein p130Cas containing 15 potential pY-containing tetrapeptide motifs. This chapter summarizes recent efforts toward peptide antagonists for this Crk/CrkL-p130Cas interaction. We describe our protocol for recombinant expression and purification of Crk and CrkL SH2s for functional assays and our procedure to determine the consensus binding motif from the p130Cas sequence. To develop a more potent antagonist, we employ methods often associated with structure-based drug design. Computational docking using Rosetta FlexPepDock, which accounts for peptides having a greater number of conformational degrees of freedom than small organic molecules that typically constitute libraries, provides quantitative docking metrics to prioritize candidate peptides for experimental testing. A battery of biophysical assays, including fluorescence polarization, differential scanning fluorimetry and saturation transfer difference nuclear magnetic resonance spectroscopy, were employed to assess the candidates. In parallel, GST pulldown competition assays characterized protein-protein binding in vitro. Taken together, our methodology yields peptide antagonists of the Crk/CrkL-p130Cas axis that will be used to validate targets, assess druggability, foster in vitro assay development, and potentially serve as lead compounds for therapeutic intervention.


Asunto(s)
Proteína Sustrato Asociada a CrK , Péptidos , Fosfotirosina , Proteínas Proto-Oncogénicas c-crk , Dominios Homologos src , Proteína Sustrato Asociada a CrK/metabolismo , Proteína Sustrato Asociada a CrK/química , Proteínas Proto-Oncogénicas c-crk/metabolismo , Proteínas Proto-Oncogénicas c-crk/química , Humanos , Fosfotirosina/metabolismo , Fosfotirosina/química , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Unión Proteica , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Simulación del Acoplamiento Molecular/métodos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química
8.
Immunol Rev ; 232(1): 160-74, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19909363

RESUMEN

The Cas family of proteins consists of at least four members implicated in the regulation of diverse cellular processes such as cell proliferation, adhesion, motility, and cancer cell metastasis. Cas family members have conserved C-termini that mediate constitutive heterotypic interactions with members of a different group of proteins, the NSP family. Both the Cas and NSP proteins have conserved domains that mediate protein-protein interactions with other cytoplasmic intermediates. Signaling modules assembled by these proteins in turn regulate signal transduction downstream of a variety of receptors including integrin, chemokine, and antigen receptors. T lymphocytes express the NSP protein NSP3/Chat-H and the Cas protein Hef1/CasL, which are found in a constitutive complex in naive T cells. We recently showed that Chat-H and Hef1/CasL regulate integrin-mediated adhesion and promote T-cell migration and trafficking downstream of activated chemokine receptors. It is currently unclear if the Chat-H/CasL module also plays a role in antigen receptor signaling. Here we review our current knowledge of how Chat-H and Hef1/CasL regulate T-cell physiology and whether this protein complex plays a functional role downstream of T-cell receptor activation.


Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Rodamiento de Leucocito , Proteínas del Tejido Nervioso/metabolismo , Multimerización de Proteína , Linfocitos T/fisiología , Animales , Adhesión Celular , Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/inmunología , Humanos , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/inmunología , Dominios y Motivos de Interacción de Proteínas/fisiología , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/inmunología
9.
J Cell Biol ; 178(7): 1295-307, 2007 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-17875741

RESUMEN

Remodeling of dendritic spines is believed to modulate the function of excitatory synapses. We previously reported that the EphA4 receptor tyrosine kinase regulates spine morphology in hippocampal pyramidal neurons, but the signaling pathways involved were not characterized (Murai, K.K., L.N. Nguyen, F. Irie, Y. Yamaguchi, and E.B. Pasquale. 2003. Nat. Neurosci. 6:153-160). In this study, we show that EphA4 activation by ephrin-A3 in hippocampal slices inhibits integrin downstream signaling pathways. EphA4 activation decreases tyrosine phosphorylation of the scaffolding protein Crk-associated substrate (Cas) and the tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) and also reduces the association of Cas with the Src family kinase Fyn and the adaptor Crk. Consistent with this, EphA4 inhibits beta1-integrin activity in neuronal cells. Supporting a functional role for beta1 integrin and Cas inactivation downstream of EphA4, the inhibition of integrin or Cas function induces spine morphological changes similar to those associated with EphA4 activation. Furthermore, preventing beta1-integrin inactivation blocks the effects of EphA4 on spines. Our results support a model in which EphA4 interferes with integrin signaling pathways that stabilize dendritic spines, thus modulating synaptic interactions with the extracellular environment.


Asunto(s)
Espinas Dendríticas/enzimología , Integrina beta1/metabolismo , Receptor EphA4/metabolismo , Transducción de Señal , Animales , Adhesión Celular/efectos de los fármacos , Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/deficiencia , Espinas Dendríticas/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Efrina-A3/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-crk/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Dominios Homologos src
10.
Cell Mol Life Sci ; 67(7): 1025-48, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19937461

RESUMEN

Proteins of the CAS (Crk-associated substrate) family (BCAR1/p130Cas, NEDD9/HEF1/Cas-L, EFS/SIN and CASS4/HEPL) are integral players in normal and pathological cell biology. CAS proteins act as scaffolds to regulate protein complexes controlling migration and chemotaxis, apoptosis, cell cycle, and differentiation, and have more recently been linked to a role in progenitor cell function. Reflecting these complex functions, over-expression of CAS proteins has now been strongly linked to poor prognosis and increased metastasis in cancer, as well as resistance to first-line chemotherapeutics in multiple tumor types including breast and lung cancers, glioblastoma, and melanoma. Further, CAS proteins have also been linked to additional pathological conditions including inflammatory disorders, Alzheimer's and Parkinson's disease, as well as developmental defects. This review will explore the roles of the CAS proteins in normal and pathological states in the context of the many mechanistic insights into CAS protein function that have emerged in the past decade.


Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Apoptosis , Movimiento Celular , Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/fisiología , Humanos , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiología
11.
Breast Cancer Res Treat ; 120(2): 401-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19412734

RESUMEN

To unravel the mechanisms underlying failure of endocrine therapy of breast cancer, we have previously executed a functional genetic screen and identified the adaptor protein BCAR1 to be causative for tamoxifen resistance. As a consequence of the manifold of interactions with other proteins, we characterized the contribution of individual protein domains of BCAR1 to anti-estrogen-resistant proliferation of human breast cancer cells. We took advantage of the observation that the closely related family member HEF1 was unable to support long-term anti-estrogen-resistant cell proliferation. Chimerical proteins containing defined domains of BCAR1 and HEF1 were evaluated for anti-estrogen-resistant growth. Exchange of the SH3 and C-terminal domains did not modify the capacity to support cell proliferation. Full support of anti-estrogen resistant proliferation was observed for chimerical molecules containing the central part of BCAR1. The bi-partite SRC-binding site or the Serine-rich domain did not explain the differential capacity of BCAR1. These findings indicate that the differences between BCAR1 and HEF1 with respect to support of anti-estrogen resistance reside in the substrate domain which contains multiple sites for tyrosine phosphorylation. The crucial interactions required for anti-estrogen resistance occur within the substrate domain of BCAR1. Further deciphering of these interactions may resolve the growth regulatory mechanism and provide an explanation for the observation that primary tumors with high levels of BCAR1 are likely to fail on tamoxifen therapy. This information may also help to devise alternative personalized treatment strategies with improved outcome for breast cancer patients.


Asunto(s)
Neoplasias de la Mama/genética , Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/genética , Resistencia a Antineoplásicos/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Antineoplásicos Hormonales/farmacología , Línea Celular Tumoral , Moduladores de los Receptores de Estrógeno/farmacología , Femenino , Humanos , Fosfoproteínas/genética , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tamoxifeno/farmacología
12.
Genes Cells ; 13(2): 145-57, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18233957

RESUMEN

p130Cas (Cas, Crk-associated substrate) is an adaptor molecule composed of a Src homology 3 (SH3) domain, a substrate domain (SD) and a Src binding domain (SBD). The SH3 domain of Cas associates with focal adhesion kinase (FAK), but its role in cellular function has not fully been understood. To address this issue, we established and analyzed primary fibroblasts derived from mice expressing a truncated Cas lacking exon 2, which encodes the SH3 domain (Cas Deltaexon 2). In comparison to wild-type cells, Cas exon 2(Delta/Delta) cells showed reduced motility, which could be due to impaired tyrosine-phosphorylation of FAK and Cas, reduced FAK/Cas/Src/CrkII binding, and also impaired localization of Cas Deltaexon 2 to focal adhesions on fibronectin. In addition, to analyze downstream signaling pathways regulated by Cas exon 2, we performed microarray analyses. Interestingly, we found that a deficiency of Cas exon 2 up-regulated expression of CXC Chemokine Receptor-4 and CC Chemokine Receptor-5, which may be regulated by IkappaBalpha phosphorylation. These results indicate that the SH3-encoding exon of Cas participates in cell motility, tyrosine-phosphorylation of FAK and Cas, FAK/Cas/Src/CrkII complex formation, recruitment of Cas to focal adhesions and regulation of cell motility-associated gene expression in primary fibroblasts.


Asunto(s)
Proteína Sustrato Asociada a CrK/genética , Animales , Movimiento Celular , Células Cultivadas , Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/metabolismo , Exones , Fibroblastos/metabolismo , Quinasa 1 de Adhesión Focal/química , Quinasa 1 de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Expresión Génica , Proteínas I-kappa B/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Complejos Multiproteicos , Inhibidor NF-kappaB alfa , Proteínas Proto-Oncogénicas c-crk/química , Proteínas Proto-Oncogénicas c-crk/metabolismo , Receptores CCR5/genética , Receptores CXCR4/genética , Eliminación de Secuencia , Transducción de Señal , Trombospondinas/genética , Cicatrización de Heridas , Dominios Homologos src
13.
Mol Biol Cell ; 17(11): 4698-708, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16914515

RESUMEN

Salmonella typhimurium colonizes the intestinal epithelium by injecting an array of effector proteins into host cells that induces phagocytic uptake of attached bacteria. However, the host molecules targeted by these effectors remain poorly defined. Here, we demonstrate that S. typhimurium induces formation of focal adhesion-like complexes at sites of bacterial attachment and that both focal adhesion kinase (FAK) and the scaffolding protein p130Cas are required for Salmonella uptake. Entry of Salmonella into FAK(-/-) cells is dramatically impaired and can be restored to control levels by expression of wild-type FAK. Surprisingly, reconstitution of bacterial internalization requires neither the kinase domain of FAK nor activation of c-Src, but does require a C-terminal PXXP motif through which FAK interacts with Cas. Infection of Cas(-/-) cells is also impaired, and reconstitution of invasiveness requires the central Cas YXXP repeat domain. The invasion defect in Cas(-/-) cells can be suppressed by overexpression of FAK, suggesting a functional link between FAK and Cas in the regulation of Salmonella invasion. Together, these findings reveal a novel role for focal adhesion proteins in the invasion of host cells by Salmonella.


Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Salmonella typhimurium/fisiología , Animales , Sitios de Unión , Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/deficiencia , Perros , Activación Enzimática , Fibroblastos/citología , Fibroblastos/patología , Proteína-Tirosina Quinasas de Adhesión Focal/deficiencia , Adhesiones Focales/metabolismo , Expresión Génica , Células HeLa , Humanos , Ratones , Ratones Noqueados , Paxillin/metabolismo , Fagosomas/metabolismo , Fosfotirosina/metabolismo , Unión Proteica , Salmonella typhimurium/patogenicidad , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo
15.
Cell Signal ; 19(11): 2218-26, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17644338

RESUMEN

Recent proteomic data indicate that a majority of the phosphorylated proteins in a eucaryotic cell contain multiple sites of phosphorylation. In many signaling events, a single kinase phosphorylates multiple sites on a target protein. Processive phosphorylation occurs when a protein kinase binds once to a substrate and phosphorylates all of the available sites before dissociating. In this review, we discuss examples of processive phosphorylation by serine/threonine kinases and tyrosine kinases. We describe current experimental approaches for distinguishing processive from non-processive phosphorylation. Finally, we contrast the biological situations that are suited to regulation by processive and non-processive phosphorylation.


Asunto(s)
Procesamiento Proteico-Postraduccional , Animales , Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/metabolismo , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina
16.
Sci Rep ; 7: 46233, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28406229

RESUMEN

CAS is a docking protein, which was shown to act as a mechanosensor in focal adhesions. The unique assembly of structural domains in CAS is important for its function as a mechanosensor. The tension within focal adhesions is transmitted to a stretchable substrate domain of CAS by focal adhesion-targeting of SH3 and CCH domain of CAS, which anchor the CAS protein in focal adhesions. Mechanistic models of the stretching biosensor propose equal roles for both anchoring domains. Using deletion mutants and domain replacements, we have analyzed the relative importance of the focal adhesion anchoring domains on CAS localization and dynamics in focal adhesions as well as on CAS-mediated mechanotransduction. We confirmed the predicted prerequisite of the focal adhesion targeting for CAS-dependent mechanosensing and unraveled the critical importance of CAS SH3 domain in mechanosensing. We further show that CAS localizes to the force transduction layer of focal adhesions and that mechanical stress stabilizes CAS in focal adhesions.


Asunto(s)
Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/metabolismo , Adhesiones Focales/metabolismo , Mecanotransducción Celular , Animales , Adhesión Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Proteínas Mutantes/química , Dominios Proteicos , Estabilidad Proteica , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Estrés Mecánico , Relación Estructura-Actividad
17.
PLoS One ; 12(8): e0183343, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28817661

RESUMEN

Na,K-ATPase is a membrane protein that catalyzes ATP to maintain transmembrane sodium and potassium gradients. In addition, Na,K-ATPase also acts as a signal-transducing receptor for cardiotonic steroids such as ouabain and activates a number of signalling pathways. Several studies report that ouabain affects cell migration. Here we used ouabain at concentrations far below those required to block Na,K-ATPase pump activity and show that it significantly reduced RPE cell migration through two mechanisms. It causes dephosphorylation of a 130 kD protein, which we identify as p130cas. Src is involved, because Src inhibitors, but not inhibitors of other kinases tested, caused a similar reduction in p130cas phosphorylation and ouabain increased the association of Na,K-ATPase and Src. Knockdown of p130cas by siRNA reduced cell migration. Unexpectedly, ouabain induced separation of nucleus and centrosome, also leading to a block in cell migration. Inhibitor and siRNA experiments show that this effect is mediated by ERK1,2. This is the first report showing that ouabain can regulate cell migration by affecting nucleus-centrosome association.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Centrosoma/efectos de los fármacos , Proteína Sustrato Asociada a CrK/efectos de los fármacos , Ouabaína/farmacología , ATPasa Intercambiadora de Sodio-Potasio/efectos de los fármacos , Secuencia de Aminoácidos , Línea Celular , Proteína Sustrato Asociada a CrK/química , Proteína Sustrato Asociada a CrK/metabolismo , Humanos , Fosforilación , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
18.
FEBS Lett ; 580(1): 175-8, 2006 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-16364304

RESUMEN

Protein-protein interactions between SHEP and Cas proteins influence cellular signaling through tyrosine kinases, as well as integrin-mediated signaling, and may be linked to antiestrogen resistance. Data from past studies suggests that association between SHEP and Cas proteins is critical for these cellular effects. In this study, the interacting domains of each protein were co-expressed in bacteria and a soluble stable complex was purified. Deuterium exchange mass spectrometry was used to define regions that are buried when SHEP1 is in complex with Cas. The results reveal four segments in SHEP1 that are highly protected, including a region (residues 619-640) that contains a key residue, tyrosine 635, required for association with Cas. This region is predominately hydrophilic, yet remains protected from solvent in the complex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteína Sustrato Asociada a CrK/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína Sustrato Asociada a CrK/metabolismo , Deuterio , Humanos , Ratones , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/fisiología , Solventes/química
20.
Artículo en Inglés | MEDLINE | ID: mdl-16510985

RESUMEN

Cas-family proteins serve as docking proteins in integrin-mediated signal transduction. The founding member of this family, p130Cas, becomes tyrosine-phosphorylated in response to extracellular stimuli such as integrin-mediated cell adhesion and ligand engagement of receptor tyrosine kinases. Cas proteins are large multidomain molecules that transmit signals as intermediaries through interactions with signaling molecules such as FAK and other tyrosine kinases, as well as tyrosine phosphatases. After Cas is tyrosine-phosphorylated, it acts as a docking protein for binding SH2 domains of Src-family kinases. In order to examine the structural basis for a key step in propagation of signals by Cas, one of the major SH2-binding sites of Cas has been crystallized in complex with the SH3-SH2 regulatory domains of the Src-family kinase Lck. Crystallization conditions were identified by high-throughput screening and optimized with multiple rounds of seeding. The crystals formed at 295 K in space group P2(1)2(1)2(1), with unit-cell parameters a = 77.4, b = 107.3, c = 166.4 A, and diffract to 2.7 A resolution.


Asunto(s)
Proteína Sustrato Asociada a CrK/química , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/química , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Secuencia Conservada , Proteína Sustrato Asociada a CrK/aislamiento & purificación , Proteína Sustrato Asociada a CrK/metabolismo , Cristalografía por Rayos X , Cartilla de ADN , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/aislamiento & purificación , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA