Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.447
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 92: 273-298, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001135

RESUMEN

Ligands of the Hedgehog (HH) pathway are paracrine signaling molecules that coordinate tissue development in metazoans. A remarkable feature of HH signaling is the repeated use of cholesterol in steps spanning ligand biogenesis, secretion, dispersal, and reception on target cells. A cholesterol molecule covalently attached to HH ligands is used as a molecular baton by transfer proteins to guide their secretion, spread, and reception. On target cells, a signaling circuit composed of a cholesterol transporter and sensor regulates transmission of HH signals across the plasma membrane to the cytoplasm. The repeated use of cholesterol in signaling supports the view that the HH pathway likely evolved by coopting ancient systems to regulate the abundance or organization of sterol-like lipids in membranes.


Asunto(s)
Colesterol , Proteínas Hedgehog , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ligandos , Colesterol/metabolismo , Transducción de Señal , Esteroles/metabolismo
2.
Nat Rev Mol Cell Biol ; 24(9): 668-687, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36932157

RESUMEN

The Hedgehog signalling pathway has crucial roles in embryonic tissue patterning, postembryonic tissue regeneration, and cancer, yet aspects of Hedgehog signal transmission and reception have until recently remained unclear. Biochemical and structural studies surprisingly reveal a central role for lipids in Hedgehog signalling. The signal - Hedgehog protein - is modified by cholesterol and palmitate during its biogenesis, thereby necessitating specialized proteins such as the transporter Dispatched and several lipid-binding carriers for cellular export and receptor engagement. Additional lipid transactions mediate response to the Hedgehog signal, including sterol activation of the transducer Smoothened. Access of sterols to Smoothened is regulated by the apparent sterol transporter and Hedgehog receptor Patched, whose activity is blocked by Hedgehog binding. Alongside these lipid-centric mechanisms and their relevance to pharmacological pathway modulation, we discuss emerging roles of Hedgehog pathway activity in stem cells or their cellular niches, with translational implications for regeneration and restoration of injured or diseased tissues.


Asunto(s)
Proteínas Hedgehog , Transducción de Señal , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transducción de Señal/fisiología , Colesterol/metabolismo , Esteroles/química , Esteroles/metabolismo
3.
Cell ; 180(6): 1262-1271.e15, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32169219

RESUMEN

Establishing causal links between non-coding variants and human phenotypes is an increasing challenge. Here, we introduce a high-throughput mouse reporter assay for assessing the pathogenic potential of human enhancer variants in vivo and examine nearly a thousand variants in an enhancer repeatedly linked to polydactyly. We show that 71% of all rare non-coding variants previously proposed as causal lead to reporter gene expression in a pattern consistent with their pathogenic role. Variants observed to alter enhancer activity were further confirmed to cause polydactyly in knockin mice. We also used combinatorial and single-nucleotide mutagenesis to evaluate the in vivo impact of mutations affecting all positions of the enhancer and identified additional functional substitutions, including potentially pathogenic variants hitherto not observed in humans. Our results uncover the functional consequences of hundreds of mutations in a phenotype-associated enhancer and establish a widely applicable strategy for systematic in vivo evaluation of human enhancer variants.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Polidactilia/genética , Animales , Elementos de Facilitación Genéticos/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Sustitución del Gen/métodos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Mutación , Fenotipo , Polidactilia/metabolismo , ARN no Traducido/genética
4.
Cell ; 174(2): 312-324.e16, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29804838

RESUMEN

The seven-transmembrane-spanning protein Smoothened is the central transducer in Hedgehog signaling, a pathway fundamental in development and in cancer. Smoothened is activated by cholesterol binding to its extracellular cysteine-rich domain (CRD). How this interaction leads to changes in the transmembrane domain and Smoothened activation is unknown. Here, we report crystal structures of sterol-activated Smoothened. The CRD undergoes a dramatic reorientation, allosterically causing the transmembrane domain to adopt a conformation similar to active G-protein-coupled receptors. We show that Smoothened contains a unique inhibitory π-cation lock, which is broken on activation and is disrupted in constitutively active oncogenic mutants. Smoothened activation opens a hydrophobic tunnel, suggesting a pathway for cholesterol movement from the inner membrane leaflet to the CRD. All Smoothened antagonists bind the transmembrane domain and block tunnel opening, but cyclopamine also binds the CRD, inducing the active transmembrane conformation. Together, these results define the mechanisms of Smoothened activation and inhibition.


Asunto(s)
Proteínas Hedgehog/metabolismo , Receptor Smoothened/química , Proteínas de Xenopus/química , Regulación Alostérica , Animales , Sitios de Unión , Línea Celular , Colesterol/química , Colesterol/metabolismo , Cristalografía por Rayos X , Citometría de Flujo , Proteínas Hedgehog/genética , Humanos , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Receptor Smoothened/antagonistas & inhibidores , Receptor Smoothened/metabolismo , Alcaloides de Veratrum/química , Alcaloides de Veratrum/metabolismo , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
5.
Cell ; 175(5): 1352-1364.e14, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30415841

RESUMEN

Hedgehog protein signals mediate tissue patterning and maintenance by binding to and inactivating their common receptor Patched, a 12-transmembrane protein that otherwise would suppress the activity of the 7-transmembrane protein Smoothened. Loss of Patched function, the most common cause of basal cell carcinoma, permits unregulated activation of Smoothened and of the Hedgehog pathway. A cryo-EM structure of the Patched protein reveals striking transmembrane domain similarities to prokaryotic RND transporters. A central hydrophobic conduit with cholesterol-like contents courses through the extracellular domain and resembles that used by other RND proteins to transport substrates, suggesting Patched activity in cholesterol transport. Cholesterol activity in the inner leaflet of the plasma membrane is reduced by PTCH1 expression but rapidly restored by Hedgehog stimulation, suggesting that PTCH1 regulates Smoothened by controlling cholesterol availability.


Asunto(s)
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Microscopía por Crioelectrón , Dimerización , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Ratones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Receptor Patched-1/química , Receptor Patched-1/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Transducción de Señal
6.
Cell ; 167(3): 633-642.e11, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768887

RESUMEN

The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. We identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution. PAPERCLIP.


Asunto(s)
Evolución Biológica , Elementos de Facilitación Genéticos , Extremidades/crecimiento & desarrollo , Proteínas Hedgehog/genética , Serpientes/genética , Animales , Secuencia de Bases , Evolución Molecular , Técnicas de Sustitución del Gen , Ratones , Ratones Transgénicos , Mutación , Filogenia , Serpientes/clasificación
7.
Nature ; 634(8032): 96-103, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39143221

RESUMEN

The genomes of living lungfishes can inform on the molecular-developmental basis of the Devonian sarcopterygian fish-tetrapod transition. We de novo sequenced the genomes of the African (Protopterus annectens) and South American lungfishes (Lepidosiren paradoxa). The Lepidosiren genome (about 91 Gb, roughly 30 times the human genome) is the largest animal genome sequenced so far and more than twice the size of the Australian (Neoceratodus forsteri)1 and African2 lungfishes owing to enlarged intergenic regions and introns with high repeat content (about 90%). All lungfish genomes continue to expand as some transposable elements (TEs) are still active today. In particular, Lepidosiren's genome grew extremely fast during the past 100 million years (Myr), adding the equivalent of one human genome every 10 Myr. This massive genome expansion seems to be related to a reduction of PIWI-interacting RNAs and C2H2 zinc-finger and Krüppel-associated box (KRAB)-domain protein genes that suppress TE expansions. Although TE abundance facilitates chromosomal rearrangements, lungfish chromosomes still conservatively reflect the ur-tetrapod karyotype. Neoceratodus' limb-like fins still resemble those of their extinct relatives and remained phenotypically static for about 100 Myr. We show that the secondary loss of limb-like appendages in the Lepidosiren-Protopterus ancestor was probably due to loss of sonic hedgehog limb-specific enhancers.


Asunto(s)
Evolución Molecular , Peces , Genoma , Animales , Humanos , África , Aletas de Animales/anatomía & histología , Australia , Elementos Transponibles de ADN/genética , ADN Intergénico/genética , Elementos de Facilitación Genéticos/genética , Extinción Biológica , Peces/anatomía & histología , Peces/clasificación , Peces/genética , Reordenamiento Génico/genética , Genoma/genética , Tamaño del Genoma , Proteínas Hedgehog/genética , Intrones , Cariotipo , Filogenia , ARN de Interacción con Piwi/genética , América del Sur , Factores de Tiempo , Dedos de Zinc/genética
8.
Genes Dev ; 34(17-18): 1161-1176, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32820036

RESUMEN

Medulloblastoma is a malignant childhood brain tumor arising from the developing cerebellum. In Sonic Hedgehog (SHH) subgroup medulloblastoma, aberrant activation of SHH signaling causes increased proliferation of granule neuron progenitors (GNPs), and predisposes these cells to tumorigenesis. A second, cooperating genetic hit is often required to push these hyperplastic cells to malignancy and confer mutation-specific characteristics associated with oncogenic signaling. Somatic loss-of-function mutations of the transcriptional corepressor BCOR are recurrent and enriched in SHH medulloblastoma. To investigate BCOR as a putative tumor suppressor, we used a genetically engineered mouse model to delete exons 9/10 of Bcor (BcorΔE9-10 ) in GNPs during development. This mutation leads to reduced expression of C-terminally truncated BCOR (BCORΔE9-10). While BcorΔE9-10 alone did not promote tumorigenesis or affect GNP differentiation, BcorΔE9-10 combined with loss of the SHH receptor gene Ptch1 resulted in fully penetrant medulloblastomas. In Ptch1+/- ;BcorΔE9-10 tumors, the growth factor gene Igf2 was aberrantly up-regulated, and ectopic Igf2 overexpression was sufficient to drive tumorigenesis in Ptch1+/- GNPs. BCOR directly regulates Igf2, likely through the PRC1.1 complex; the repressive histone mark H2AK119Ub is decreased at the Igf2 promoter in Ptch1+/- ;BcorΔE9-10 tumors. Overall, our data suggests that BCOR-PRC1.1 disruption leads to Igf2 overexpression, which transforms preneoplastic cells to malignant tumors.


Asunto(s)
Neoplasias Cerebelosas/genética , Regulación Neoplásica de la Expresión Génica/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Proteínas del Grupo Polycomb/metabolismo , Proteínas Represoras/genética , Animales , Carcinogénesis/genética , Modelos Animales de Enfermedad , Proteínas Hedgehog/genética , Humanos , Ratones , Mutación , Receptor Patched-1/genética , Proteínas del Grupo Polycomb/genética , Proteínas Represoras/metabolismo , Eliminación de Secuencia
9.
EMBO J ; 42(3): e111513, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36524353

RESUMEN

Hedgehog (Hh) signaling pathway plays a pivotal role in embryonic development. Hh binding to Patched1 (PTCH1) derepresses Smoothened (SMO), thereby activating the downstream signal transduction. Covalent SMO modification by cholesterol in its cysteine-rich domain (CRD) is essential for SMO function. SMO cholesterylation is a calcium-accelerated autoprocessing reaction, and STIM1-ORAI1-mediated store-operated calcium entry promotes cholesterylation and activation of endosome-localized SMO. However, it is unknown whether the Hh-PTCH1 interplay regulates the activity of the endoplasmic reticulum (ER)-localized SMO. Here, we found that PTCH1 inhibited the COPII-dependent export of SMO from the ER, whereas Hh promoted this process. The RRxWxR amino acid motif in the cytosolic tail of SMO was essential for COPII recognition, ciliary localization, and signal transduction activity. Hh and PTCH1 regulated cholesterol modification of the ER-localized SMO, and SMO cholesterylation accelerated its exit from ER. The GRAMD1/ASTER sterol transport proteins facilitated cholesterol transfer to ER from PM, resulting in increased SMO cholesterylation and enhanced Hh signaling. Collectively, we reveal a regulatory role of GRAMD-mediated cholesterol transport in ER-resident SMO maturation and Hh signaling.


Asunto(s)
Calcio , Proteínas Hedgehog , Transporte Biológico , Calcio/metabolismo , Colesterol/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteínas de la Membrana/metabolismo
10.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39250532

RESUMEN

The absence or dysfunction of primary cilia, which are non-motile protrusions on cells, leads to a group of neurodevelopment disorders called ciliopathies. In a new study, Esther Stoeckli and colleagues identify the role of primary cilium-mediated sonic hedgehog (Shh) signaling in commissural axon guidance in mice and chick embryos. We caught up with first author, Alexandre Dumoulin, and corresponding author, Esther Stoeckli, Professor at the University of Zurich, to find out more about the work.


Asunto(s)
Cilios , Proteínas Hedgehog , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Cilios/metabolismo , Humanos , Ratones , Embrión de Pollo , Transducción de Señal , Historia del Siglo XXI , Orientación del Axón , Historia del Siglo XX
11.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38940473

RESUMEN

The direction of left-right visceral asymmetry is conserved in vertebrates. Deviations of the standard asymmetric pattern are rare, and the underlying mechanisms are not understood. Here, we use the teleost Astyanax mexicanus, consisting of surface fish with normal left-oriented heart asymmetry and cavefish with high levels of reversed right-oriented heart asymmetry, to explore natural changes in asymmetry determination. We show that Sonic Hedgehog (Shh) signaling is increased at the posterior midline, Kupffer's vesicle (the teleost left-right organizer) is enlarged and contains longer cilia, and the number of dorsal forerunner cells is increased in cavefish. Furthermore, Shh increase in surface fish embryos induces asymmetric changes resembling the cavefish phenotype. Asymmetric expression of the Nodal antagonist Dand5 is equalized or reversed in cavefish, and Shh increase in surface fish mimics changes in cavefish dand5 asymmetry. Shh decrease reduces the level of right-oriented heart asymmetry in cavefish. Thus, naturally occurring modifications in cavefish heart asymmetry are controlled by the effects of Shh signaling on left-right organizer function.


Asunto(s)
Tipificación del Cuerpo , Corazón , Proteínas Hedgehog , Transducción de Señal , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Tipificación del Cuerpo/genética , Corazón/embriología , Characidae/embriología , Characidae/genética , Regulación del Desarrollo de la Expresión Génica , Cilios/metabolismo , Embrión no Mamífero/metabolismo
12.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38828852

RESUMEN

The cellular and genetic networks that contribute to the development of the zeugopod (radius and ulna of the forearm, tibia and fibula of the leg) are not well understood, although these bones are susceptible to loss in congenital human syndromes and to the action of teratogens such as thalidomide. Using a new fate-mapping approach with the Chameleon transgenic chicken line, we show that there is a small contribution of SHH-expressing cells to the posterior ulna, posterior carpals and digit 3. We establish that although the majority of the ulna develops in response to paracrine SHH signalling in both the chicken and mouse, there are differences in the contribution of SHH-expressing cells between mouse and chicken as well as between the chicken ulna and fibula. This is evidence that, although zeugopod bones are clearly homologous according to the fossil record, the gene regulatory networks that contribute to their development and evolution are not fixed.


Asunto(s)
Animales Modificados Genéticamente , Pollos , Proteínas Hedgehog , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Pollos/genética , Ratones , Evolución Biológica , Embrión de Pollo , Cúbito , Regulación del Desarrollo de la Expresión Génica , Peroné/metabolismo , Radio (Anatomía)/metabolismo , Humanos , Extremidades/embriología
13.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39157903

RESUMEN

Ciliopathies are characterized by the absence or dysfunction of primary cilia. Despite the fact that cognitive impairments are a common feature of ciliopathies, how cilia dysfunction affects neuronal development has not been characterized in detail. Here, we show that primary cilium-mediated signaling is required cell-autonomously by neurons during neural circuit formation. In particular, a functional primary cilium is crucial during axonal pathfinding for the switch in responsiveness of axons at a choice point or intermediate target. Using different animal models and in vivo, ex vivo and in vitro experiments, we provide evidence for a crucial role of primary cilium-mediated signaling in long-range axon guidance. The primary cilium on the cell body of commissural neurons transduces long-range guidance signals sensed by growth cones navigating an intermediate target. In extension of our finding that Shh is required for the rostral turn of post-crossing commissural axons, we suggest a model implicating the primary cilium in Shh signaling upstream of a transcriptional change of axon guidance receptors, which in turn mediate the repulsive response to floorplate-derived Shh shown by post-crossing commissural axons.


Asunto(s)
Orientación del Axón , Axones , Cilios , Proteínas Hedgehog , Transducción de Señal , Cilios/metabolismo , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Ratones , Axones/metabolismo , Conos de Crecimiento/metabolismo , Neuronas/metabolismo
14.
Development ; 151(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39190554

RESUMEN

During development, unique combinations of transcription factors and signaling pathways carve the nascent eye-antennal disc of the fruit fly Drosophila melanogaster into several territories that will eventually develop into the compound eye, ocelli, head epidermis, bristles, antenna and maxillary palpus of the adult head. Juxtaposed patterns of Hedgehog (Hh) and Decapentaplegic (Dpp) initiate compound eye development, while reciprocal domains of Dpp and Wingless (Wg) induce formation of the antennal and maxillary palp fields. Hh and Wg signaling, but not Dpp, contribute to the patterning of the dorsal head vertex. Here, we show that combinatorial reductions of the Pax6 transcription factor Twin of Eyeless and either the Wg pathway or the Mirror (Mirr) transcription factor trigger a transformation of the ocelli into a compound eye and the neighboring head epidermis into an antenna. These changes in fate are accompanied by the ectopic expression of Dpp, which might be expected to trigger these changes in fate. However, the transformation of the field cannot be replicated by increasing Dpp levels alone despite the recreation of adjacent Hh-Dpp and Wg-Dpp domains. As such, the emergence of these ectopic organs occurs through a unique regulatory path.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Cabeza , Proteínas Hedgehog , Animales , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Cabeza/embriología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Tipificación del Cuerpo/genética , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
15.
Development ; 151(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39369306

RESUMEN

Sonic hedgehog (Shh) signaling regulates embryonic morphogenesis utilizing the primary cilium, the cell's antenna, which acts as a signaling hub. Fuz, an effector of planar cell polarity signaling, regulates Shh signaling by facilitating cilia formation, and the G protein-coupled receptor 161 (Gpr161) is a negative regulator of Shh signaling. The range of phenotypic malformations observed in mice bearing mutations in either of the genes encoding these proteins is similar; however, their functional relationship has not been previously explored. This study identified the genetic and biochemical linkage between Fuz and Gpr161 in mouse neural tube development. Fuz was found to be genetically epistatic to Gpr161 with respect to regulation of Shh signaling in mouse neural tube development. The Fuz protein biochemically interacts with Gpr161, and Fuz regulates Gpr161-mediated ciliary localization, a process that might utilize ß-arrestin 2. Our study characterizes a previously unappreciated Gpr161-Fuz axis that regulates Shh signaling during mouse neural tube development.


Asunto(s)
Cilios , Proteínas Hedgehog , Tubo Neural , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Tubo Neural/metabolismo , Tubo Neural/embriología , Transducción de Señal/genética , Ratones , Cilios/metabolismo , Cilios/genética , Regulación del Desarrollo de la Expresión Génica , Arrestina beta 2/metabolismo , Arrestina beta 2/genética , Epistasis Genética , Femenino , Proteínas del Citoesqueleto , Péptidos y Proteínas de Señalización Intracelular
16.
Development ; 151(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39012257

RESUMEN

The Forkhead box transcription factors FOXC1 and FOXC2 are expressed in condensing mesenchyme cells at the onset of endochondral ossification. We used the Prx1-cre mouse to ablate Foxc1 and Foxc2 in limb skeletal progenitor cells. Prx1-cre;Foxc1Δ/Δ;Foxc2Δ/Δ limbs were shorter than controls, with worsening phenotypes in distal structures. Cartilage formation and mineralization was severely disrupted in the paws. The radius and tibia were malformed, whereas the fibula and ulna remained unmineralized. Chondrocyte maturation was delayed, with fewer Indian hedgehog-expressing, prehypertrophic chondrocytes forming and a smaller hypertrophic chondrocyte zone. Later, progression out of chondrocyte hypertrophy was slowed, leading to an accumulation of COLX-expressing hypertrophic chondrocytes and formation of a smaller primary ossification center with fewer osteoblast progenitor cells populating this region. Targeting Foxc1 and Foxc2 in hypertrophic chondrocytes with Col10a1-cre also resulted in an expanded hypertrophic chondrocyte zone and smaller primary ossification center. Our findings suggest that FOXC1 and FOXC2 direct chondrocyte maturation towards hypertrophic chondrocyte formation. At later stages, FOXC1 and FOXC2 regulate function in hypertrophic chondrocyte remodeling to allow primary ossification center formation and osteoblast recruitment.


Asunto(s)
Condrocitos , Factores de Transcripción Forkhead , Placa de Crecimiento , Hipertrofia , Osteogénesis , Animales , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Condrocitos/metabolismo , Condrocitos/citología , Ratones , Placa de Crecimiento/metabolismo , Placa de Crecimiento/patología , Placa de Crecimiento/embriología , Osteogénesis/genética , Extremidades/embriología , Extremidades/patología , Condrogénesis/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Regulación del Desarrollo de la Expresión Génica , Diferenciación Celular , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Cartílago/metabolismo , Cartílago/patología , Cartílago/embriología
17.
Cell ; 148(1-2): 273-84, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265416

RESUMEN

Secreted signals, known as morphogens, provide the positional information that organizes gene expression and cellular differentiation in many developing tissues. In the vertebrate neural tube, Sonic Hedgehog (Shh) acts as a morphogen to control the pattern of neuronal subtype specification. Using an in vivo reporter of Shh signaling, mouse genetics, and systems modeling, we show that a spatially and temporally changing gradient of Shh signaling is interpreted by the regulatory logic of a downstream transcriptional network. The design of the network, which links three transcription factors to Shh signaling, is responsible for differential spatial and temporal gene expression. In addition, the network renders cells insensitive to fluctuations in signaling and confers hysteresis--memory of the signal. Our findings reveal that morphogen interpretation is an emergent property of the architecture of a transcriptional network that provides robustness and reliability to tissue patterning.


Asunto(s)
Redes Reguladoras de Genes , Proteínas Hedgehog/metabolismo , Tubo Neural/metabolismo , Transducción de Señal , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas del Ojo/genética , Proteínas Hedgehog/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra , Proteína Gli3 con Dedos de Zinc
18.
Mol Cell ; 76(3): 473-484.e7, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31494034

RESUMEN

Enhancers can regulate the promoters of their target genes over very large genomic distances. It is widely assumed that mechanisms of enhancer action involve the reorganization of three-dimensional chromatin architecture, but this is poorly understood. The predominant model involves physical enhancer-promoter interaction by looping out the intervening chromatin. However, studying the enhancer-driven activation of the Sonic hedgehog gene (Shh), we have identified a change in chromosome conformation that is incompatible with this simple looping model. Using super-resolution 3D-FISH and chromosome conformation capture, we observe a decreased spatial proximity between Shh and its enhancers during the differentiation of embryonic stem cells to neural progenitors. We show that this can be recapitulated by synthetic enhancer activation, is impeded by chromatin-bound proteins located between the enhancer and the promoter, and appears to involve the catalytic activity of poly (ADP-ribose) polymerase. Our data suggest that models of enhancer-promoter communication need to encompass chromatin conformations other than looping.


Asunto(s)
Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Proteínas Hedgehog/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Neurogénesis , Neuronas/metabolismo , Regiones Promotoras Genéticas , Activación Transcripcional , Animales , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Ratones , Modelos Genéticos , Neurogénesis/genética , Conformación de Ácido Nucleico , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
19.
Proc Natl Acad Sci U S A ; 121(13): e2314802121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498715

RESUMEN

The molecular basis for cortical expansion during evolution remains largely unknown. Here, we report that fibroblast growth factor (FGF)-extracellular signal-regulated kinase (ERK) signaling promotes the self-renewal and expansion of cortical radial glial (RG) cells. Furthermore, FGF-ERK signaling induces bone morphogenic protein 7 (Bmp7) expression in cortical RG cells, which increases the length of the neurogenic period. We demonstrate that ERK signaling and Sonic Hedgehog (SHH) signaling mutually inhibit each other in cortical RG cells. We provide evidence that ERK signaling is elevated in cortical RG cells during development and evolution. We propose that the expansion of the mammalian cortex, notably in human, is driven by the ERK-BMP7-GLI3R signaling pathway in cortical RG cells, which participates in a positive feedback loop through antagonizing SHH signaling. We also propose that the relatively short cortical neurogenic period in mice is partly due to mouse cortical RG cells receiving higher SHH signaling that antagonizes ERK signaling.


Asunto(s)
Células Ependimogliales , Quinasas MAP Reguladas por Señal Extracelular , Animales , Ratones , Humanos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Ependimogliales/metabolismo , Proliferación Celular , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transducción de Señal , Factores de Crecimiento de Fibroblastos , Mamíferos/metabolismo
20.
PLoS Genet ; 20(6): e1011326, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38857279

RESUMEN

The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.


Asunto(s)
Adhesión Celular , Movimiento Celular , Proteínas Hedgehog , Miosina Tipo II , Transducción de Señal , Animales , Ratones , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Adhesión Celular/genética , Miosina Tipo II/metabolismo , Miosina Tipo II/genética , Movimiento Celular/genética , Epitelio/metabolismo , Morfogénesis/genética , Diente/metabolismo , Diente/crecimiento & desarrollo , Células Epiteliales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Regulación del Desarrollo de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA