Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Pathog ; 15(9): e1007651, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513674

RESUMEN

Bacterial type IV secretion systems (T4SS) are a highly diversified but evolutionarily related family of macromolecule transporters that can secrete proteins and DNA into the extracellular medium or into target cells. It was recently shown that a subtype of T4SS harboured by the plant pathogen Xanthomonas citri transfers toxins into target cells. Here, we show that a similar T4SS from the multi-drug-resistant opportunistic pathogen Stenotrophomonas maltophilia is proficient in killing competitor bacterial species. T4SS-dependent duelling between S. maltophilia and X. citri was observed by time-lapse fluorescence microscopy. A bioinformatic search of the S. maltophilia K279a genome for proteins containing a C-terminal domain conserved in X. citri T4SS effectors (XVIPCD) identified twelve putative effectors and their cognate immunity proteins. We selected a putative S. maltophilia effector with unknown function (Smlt3024) for further characterization and confirmed that it is indeed secreted in a T4SS-dependent manner. Expression of Smlt3024 in the periplasm of E. coli or its contact-dependent delivery via T4SS into E. coli by X. citri resulted in reduced growth rates, which could be counteracted by expression of its cognate inhibitor Smlt3025 in the target cell. Furthermore, expression of the VirD4 coupling protein of X. citri can restore the function of S. maltophilia ΔvirD4, demonstrating that effectors from one species can be recognized for transfer by T4SSs from another species. Interestingly, Smlt3024 is homologous to the N-terminal domain of large Ca2+-binding RTX proteins and the crystal structure of Smlt3025 revealed a topology similar to the iron-regulated protein FrpD from Neisseria meningitidis which has been shown to interact with the RTX protein FrpC. This work expands our current knowledge about the function of bacteria-killing T4SSs and increases the panel of effectors known to be involved in T4SS-mediated interbacterial competition, which possibly contribute to the establishment of S. maltophilia in clinical and environmental settings.


Asunto(s)
Proteínas Bacterianas/fisiología , Stenotrophomonas maltophilia/fisiología , Stenotrophomonas maltophilia/patogenicidad , Sistemas de Secreción Tipo IV/fisiología , Secuencia de Aminoácidos , Antibiosis/genética , Antibiosis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia Conservada , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Genes Bacterianos , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Proteínas Reguladoras del Hierro/química , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/fisiología , Modelos Moleculares , Infecciones Oportunistas/microbiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Stenotrophomonas maltophilia/genética , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/genética , Xanthomonas/genética , Xanthomonas/crecimiento & desarrollo
2.
J Biol Chem ; 292(31): 12725-12726, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28615455

RESUMEN

In this tenth Thematic Series in Metals in Biology, six Minireviews deal with aspects of iron metabolism. A number of important proteins control iron homeostasis, including hepcidin and ferroportin, in various cells. Other aspects of iron dealt with here include biogenesis of iron-sulfur proteins and chaperones that deliver iron cofactors in cells. Additionally, an iron-regulated metastasis suppressor interacts with the epidermal growth factor receptor and mediates its downstream signaling activity.


Asunto(s)
Homeostasis , Hierro/fisiología , Animales , Transporte Biológico , Humanos , Proteínas Reguladoras del Hierro/fisiología , Proteínas Hierro-Azufre/fisiología
3.
J Biol Chem ; 292(31): 12744-12753, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28615439

RESUMEN

Fe-S cofactors are composed of iron and inorganic sulfur in various stoichiometries. A complex assembly pathway conducts their initial synthesis and subsequent binding to recipient proteins. In this minireview, we discuss how discovery of the role of the mammalian cytosolic aconitase, known as iron regulatory protein 1 (IRP1), led to the characterization of the function of its Fe-S cluster in sensing and regulating cellular iron homeostasis. Moreover, we present an overview of recent studies that have provided insights into the mechanism of Fe-S cluster transfer to recipient Fe-S proteins.


Asunto(s)
Homeostasis , Proteína 1 Reguladora de Hierro/fisiología , Hierro/fisiología , Modelos Moleculares , Animales , Apoenzimas/química , Apoenzimas/metabolismo , Liasas de Carbono-Azufre/biosíntesis , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/fisiología , Transporte de Electrón , Regulación Enzimológica de la Expresión Génica , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/fisiología , Humanos , Proteína 1 Reguladora de Hierro/biosíntesis , Proteína 1 Reguladora de Hierro/química , Proteínas de Unión a Hierro/biosíntesis , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/fisiología , Proteínas Reguladoras del Hierro/biosíntesis , Proteínas Reguladoras del Hierro/química , Proteínas Reguladoras del Hierro/fisiología , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/fisiología , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/química , Proteínas Mitocondriales/fisiología , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiología , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Elementos de Respuesta , Succinato Deshidrogenasa/biosíntesis , Succinato Deshidrogenasa/química , Succinato Deshidrogenasa/fisiología , Frataxina
4.
Eur Heart J ; 38(5): 362-372, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27545647

RESUMEN

Aims: Iron deficiency (ID) is associated with adverse outcomes in heart failure (HF) but the underlying mechanisms are incompletely understood. Intracellular iron availability is secured by two mRNA-binding iron-regulatory proteins (IRPs), IRP1 and IRP2. We generated mice with a cardiomyocyte-targeted deletion of Irp1 and Irp2 to explore the functional implications of ID in the heart independent of systemic ID and anaemia. Methods and results: Iron content in cardiomyocytes was reduced in Irp-targeted mice. The animals were not anaemic and did not show a phenotype under baseline conditions. Irp-targeted mice, however, were unable to increase left ventricular (LV) systolic function in response to an acute dobutamine challenge. After myocardial infarction, Irp-targeted mice developed more severe LV dysfunction with increased HF mortality. Mechanistically, the activity of the iron-sulphur cluster-containing complex I of the mitochondrial electron transport chain was reduced in left ventricles from Irp-targeted mice. As demonstrated by extracellular flux analysis in vitro, mitochondrial respiration was preserved at baseline but failed to increase in response to dobutamine in Irp-targeted cardiomyocytes. As shown by 31P-magnetic resonance spectroscopy in vivo, LV phosphocreatine/ATP ratio declined during dobutamine stress in Irp-targeted mice but remained stable in control mice. Intravenous injection of ferric carboxymaltose replenished cardiac iron stores, restored mitochondrial respiratory capacity and inotropic reserve, and attenuated adverse remodelling after myocardial infarction in Irp-targeted mice but not in control mice. As shown by electrophoretic mobility shift assays, IRP activity was significantly reduced in LV tissue samples from patients with advanced HF and reduced LV tissue iron content. Conclusions: ID in cardiomyocytes impairs mitochondrial respiration and adaptation to acute and chronic increases in workload. Iron supplementation restores cardiac energy reserve and function in iron-deficient hearts.


Asunto(s)
Insuficiencia Cardíaca/prevención & control , Deficiencias de Hierro , Proteínas Reguladoras del Hierro/fisiología , Miocitos Cardíacos/metabolismo , Animales , Cardiotónicos/farmacología , Dopamina/farmacología , Compuestos Férricos/farmacología , Ferritinas/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Hierro/metabolismo , Proteínas Reguladoras del Hierro/deficiencia , Angiografía por Resonancia Magnética , Maltosa/análogos & derivados , Maltosa/farmacología , Mitocondrias Cardíacas/fisiología , Fenotipo , ARN Mensajero/fisiología , Función Ventricular Izquierda/fisiología
5.
J Biol Chem ; 290(43): 25876-90, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26342079

RESUMEN

Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.


Asunto(s)
Liasas de Carbono-Azufre/fisiología , Proteínas Reguladoras del Hierro/fisiología , Enfermedades Mitocondriales/fisiopatología , Secuencia de Aminoácidos , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/metabolismo , Progresión de la Enfermedad , Células HeLa , Humanos , Proteínas Reguladoras del Hierro/química , Proteínas Reguladoras del Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Enfermedades Mitocondriales/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Estabilidad Proteica , Homología de Secuencia de Aminoácido
6.
J Biol Chem ; 290(12): 7634-46, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25572399

RESUMEN

Adequate availability of iron is important for cellular energy metabolism. Catecholamines such as epinephrine and norepinephrine promote energy expenditure to adapt to conditions that arose due to stress. To restore the energy balance, epinephrine/norepinephrine-exposed cells may face higher iron demand. So far, no direct role of epinephrine/norepinephrine in cellular iron homeostasis has been reported. Here we show that epinephrine/norepinephrine regulates iron homeostasis components such as transferrin receptor-1 and ferritin-H in hepatic and skeletal muscle cells by promoting the binding of iron regulatory proteins to iron-responsive elements present in the UTRs of transferrin receptor-1 and ferritin-H transcripts. Increased transferrin receptor-1, decreased ferritin-H, and increased iron-responsive element-iron regulatory protein interaction are also observed in liver and muscle tissues of epinephrine/norepinephrine-injected mice. We demonstrate the role of epinephrine/norepinephrine-induced generation of reactive oxygen species in converting cytosolic aconitase (ACO1) into iron regulatory protein-1 to bind iron-responsive elements present in UTRs of transferrin receptor-1 and ferritin-H. Our study further reveals that mitochondrial iron content and mitochondrial aconitase (ACO2) activity are elevated by epinephrine/norepinephrine that are blocked by the antioxidant N-acetyl cysteine and iron regulatory protein-1 siRNA, suggesting involvement of reactive oxygen species and iron regulatory protein-1 in this mechanism. This study reveals epinephrine and norepinephrine as novel regulators of cellular iron homeostasis.


Asunto(s)
Catecolaminas/fisiología , Metabolismo Energético , Homeostasis , Proteínas Reguladoras del Hierro/fisiología , Hierro/metabolismo , Procesamiento Postranscripcional del ARN , Animales , Línea Celular Tumoral , Cartilla de ADN , Humanos , Hígado/citología , Hígado/metabolismo , Ratones , Músculo Esquelético/citología , Músculo Esquelético/metabolismo
7.
Cell Metab ; 7(1): 79-85, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18177727

RESUMEN

Iron regulatory proteins (IRPs) orchestrate the posttranscriptional regulation of critical iron metabolism proteins at the cellular level. Redundancy between IRP1 and IRP2 associated with embryonic lethality of doubly IRP-deficient mice has precluded the study of IRP function in vivo. Here we use Cre/Lox technology to generate viable organisms lacking IRP expression in a single tissue, the intestine. Mice lacking intestinal IRP expression develop intestinal malabsorption and dehydration postnatally and die within 4 weeks of birth. We demonstrate that IRPs control the expression of divalent metal transporter 1 (DMT1) mRNA and protein, a limiting intestinal iron importer. IRPs are also shown to be critically important to secure physiological levels of the basolateral iron exporter ferroportin. IRPs are thus essential for intestinal function and organismal survival and coordinate the synthesis of key iron metabolism proteins in the duodenum.


Asunto(s)
Duodeno/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Reguladoras del Hierro/metabolismo , Hierro/metabolismo , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Duodeno/patología , Duodeno/ultraestructura , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/ultraestructura , Immunoblotting , Intestinos/patología , Intestinos/ultraestructura , Proteína 1 Reguladora de Hierro/genética , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 1 Reguladora de Hierro/fisiología , Proteína 2 Reguladora de Hierro/genética , Proteína 2 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/fisiología , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/fisiología , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa
8.
Blood ; 118(22): e168-79, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21940823

RESUMEN

Iron regulatory proteins (IRPs) 1 and 2 are RNA-binding proteins that control cellular iron metabolism by binding to conserved RNA motifs called iron-responsive elements (IREs). The currently known IRP-binding mRNAs encode proteins involved in iron uptake, storage, and release as well as heme synthesis. To systematically define the IRE/IRP regulatory network on a transcriptome-wide scale, IRP1/IRE and IRP2/IRE messenger ribonucleoprotein complexes were immunoselected, and the mRNA composition was determined using microarrays. We identify 35 novel mRNAs that bind both IRP1 and IRP2, and we also report for the first time cellular mRNAs with exclusive specificity for IRP1 or IRP2. To further explore cellular iron metabolism at a system-wide level, we undertook proteomic analysis by pulsed stable isotope labeling by amino acids in cell culture in an iron-modulated mouse hepatic cell line and in bone marrow-derived macrophages from IRP1- and IRP2-deficient mice. This work investigates cellular iron metabolism in unprecedented depth and defines a wide network of mRNAs and proteins with iron-dependent regulation, IRP-dependent regulation, or both.


Asunto(s)
Proteína 1 Reguladora de Hierro/genética , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/genética , Proteína 2 Reguladora de Hierro/metabolismo , Proteínas Reguladoras del Hierro/fisiología , Proteoma/metabolismo , Animales , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Proteoma/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcriptoma/fisiología
9.
Nat Struct Mol Biol ; 14(5): 420-6, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17417656

RESUMEN

Hypoxia stimulates erythropoiesis, the major iron-utilization pathway. We report the discovery of a conserved, functional iron-responsive element (IRE) in the 5' untranslated region of the messenger RNA encoding endothelial PAS domain protein-1, EPAS1 (also called hypoxia-inducible factor-2alpha, HIF2alpha). Via this IRE, iron regulatory protein binding controls EPAS1 mRNA translation in response to cellular iron availability. Our results uncover a regulatory link that permits feedback control between iron availability and the expression of a key transcription factor promoting iron utilization. They also show that an IRE that is structurally distinct from, for example, the ferritin mRNA IRE and that has been missed by in silico approaches, can mediate mechanistically similar responses.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica , Deficiencias de Hierro , Proteínas Reguladoras del Hierro/fisiología , Retroalimentación Fisiológica , Células HeLa , Humanos , Trastornos del Metabolismo del Hierro , ARN Mensajero/genética , Elementos de Respuesta , Factores de Transcripción/genética
10.
Biochem J ; 434(3): 365-81, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21348856

RESUMEN

Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron-sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance.


Asunto(s)
Proteínas Reguladoras del Hierro/fisiología , Hierro/metabolismo , Animales , Transporte Biológico , Ferritinas/metabolismo , Humanos , Proteínas Reguladoras del Hierro/genética , Mitocondrias/metabolismo , Neoplasias/metabolismo , Oxidación-Reducción , ARN Mensajero/genética , ARN Mensajero/fisiología , Elementos de Respuesta , Transferrina/metabolismo
11.
Biochim Biophys Acta ; 1790(7): 702-17, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18485918

RESUMEN

Cancer contributes to 50% of deaths worldwide and new anti-tumour therapeutics with novel mechanisms of actions are essential to develop. Metabolic inhibitors represent an important class of anti-tumour agents and for many years, agents targeting the nutrient folate were developed for the treatment of cancer. This is because of the critical need of this factor for DNA synthesis. Similarly to folate, Fe is an essential cellular nutrient that is critical for DNA synthesis. However, in contrast to folate, there has been limited effort applied to specifically design and develop Fe chelators for the treatment of cancer. Recently, investigations have led to the generation of novel di-2-pyridylketone thiosemicarbazone (DpT) and 2-benzoylpyridine thiosemicarbazone (BpT) group of ligands that demonstrate marked and selective anti-tumour activity in vitro and also in vivo against a wide spectrum of tumours. Indeed, administration of these compounds to mice did not induce whole body Fe-depletion or disturbances in haematological or biochemical indices due to the very low doses required. The mechanism of action of these ligands includes alterations in expression of molecules involved in cell cycle control and metastasis suppression, as well as the generation of redox-active Fe complexes. This review examines the alterations in Fe metabolism in tumour cells and the systematic development of novel aroylhydrazone and thiosemicarbazone Fe chelators for cancer treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Quelantes del Hierro/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Neoplasias/fisiología , Péptidos Catiónicos Antimicrobianos/fisiología , Proteínas de Transporte de Catión , Ciclo Celular/efectos de los fármacos , FMN Reductasa/metabolismo , Hepcidinas , Humanos , Absorción Intestinal , Proteínas Reguladoras del Hierro/fisiología , Antígenos Específicos del Melanoma , Metástasis de la Neoplasia/fisiopatología , Proteínas de Neoplasias/fisiología , Neovascularización Patológica/fisiopatología , Receptores de Transferrina/metabolismo
12.
Rinsho Byori ; 58(12): 1211-8, 2010 Dec.
Artículo en Japonés | MEDLINE | ID: mdl-21348241

RESUMEN

Iron is an essential metal not only in oxygen delivery, but also in cell proliferation and drug metabolism, while it is a very toxic metal producing reactive oxygen species(ROS). In order to avoid the toxicity and shortage of iron, the level of iron is strictly regulated in the body and cells. The central player regulating the amount of iron in the body is hepcidin. Hepcidin inhibits the release of iron from enterocytes and macrophages by accelerating the degradation of ferroportin, which is an exporter of iron. The amount of cellular iron is regulated by the IRE (iron responsive element) and IRP (iron regulatory protein) system. IRP1 and 2, whose activities depend on the concentration of cellular iron, bind to IRE, and regulate the translation of iron-related genes, which have IRE in 5' or 3'-UTR to balance iron uptake and utilization. Iron is utilized for the generation of heme and the iron-sulfur (Fe-S) cluster in mitochondoria. Mutations of genes involved in heme biosynthesis, iron-sulfur (Fe-S) cluster biogenesis, or Fe-S cluster transport cause an accumulation of iron in mitochondoria, leading to the onset of inherited sideroblastic anemia. The most common inherited sideroblastic anemia is X-linked sideroblastic anemia (XLSA) caused by mutations of the erythroid-specific delta-aminolevulinate synthase gene (ALAS2), which is the first enzyme involved in heme biosynthesis in erythroid cells. However, there are still significant numbers of cases with genetically undefined, inherited sideroblastic anemia. Molecular analysis of these cases will contribute to the understanding of mitochondrial iron metabolism.


Asunto(s)
Anemia Sideroblástica/etiología , Hemo/biosíntesis , Hierro/metabolismo , 5-Aminolevulinato Sintetasa/genética , Anemia Ferropénica/etiología , Anemia Sideroblástica/genética , Péptidos Catiónicos Antimicrobianos/fisiología , Proteínas de Transporte de Catión/fisiología , Glutarredoxinas/genética , Hepcidinas , Humanos , Proteínas Reguladoras del Hierro/fisiología , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Mutación
13.
FEBS J ; 275(15): 3793-803, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18557934

RESUMEN

Hepcidin is a liver produced cysteine-rich peptide hormone that acts as the central regulator of body iron metabolism. Hepcidin is synthesized under the form of a precursor, prohepcidin, which is processed to produce the biologically active mature 25 amino acid peptide. This peptide is secreted and acts by controlling the concentration of the membrane iron exporter ferroportin on intestinal enterocytes and macrophages. Hepcidin binds to ferroportin, inducing its internalization and degradation, thus regulating the export of iron from cells to plasma. The aim of the present study was to develop a novel method to produce human and mouse recombinant hepcidins, and to compare their biological activity towards their natural receptor ferroportin. Hepcidins were expressed in Escherichia coli as thioredoxin fusion proteins. The corresponding peptides, purified after cleavage from thioredoxin, were properly folded and contained the expected four-disulfide bridges without the need of any renaturation or oxidation steps. Human and mouse hepcidins were found to be biologically active, promoting ferroportin degradation in macrophages. Importantly, biologically inactive aggregated forms of hepcidin were observed depending on purification and storage conditions, but such forms were unrelated to disulfide bridge formation.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/biosíntesis , Proteínas Reguladoras del Hierro/biosíntesis , Animales , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/fisiología , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Hepcidinas , Humanos , Proteínas Reguladoras del Hierro/aislamiento & purificación , Proteínas Reguladoras del Hierro/fisiología , Espectrometría de Masas/métodos , Ratones , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
15.
Nefrologia ; 37(6): 587-591, 2017.
Artículo en Inglés, Español | MEDLINE | ID: mdl-28610806

RESUMEN

Chronic kidney disease and anaemia are common in heart failure (HF) and are associated with a worse prognosis in these patients. Iron deficiency is also common in patients with HF and increases the risk of morbidity and mortality, regardless of the presence or absence of anaemia. While the treatment of anaemia with erythropoiesis-stimulating agents in patients with HF have failed to show a benefit in terms of morbidity and mortality, treatment with IV iron in patients with HF and reduced ejection fraction and iron deficiency is associated with clinical improvement. In a posthoc analysis of a clinical trial, iron therapy improved kidney function in patients with HF and iron deficiency. In fact, the European Society of Cardiology's recent clinical guidelines on HF suggest that in symptomatic patients with reduced ejection fraction and iron deficiency, treatment with IV ferric carboxymaltose should be considered to improve symptoms, the ability to exercise and quality of life. Iron plays a key role in oxygen storage (myoglobin) and in energy metabolism, and there are pathophysiological bases that explain the beneficial effect of IV iron therapy in patients with HF. All these aspects are reviewed in this article.


Asunto(s)
Compuestos Férricos/uso terapéutico , Insuficiencia Cardíaca/etiología , Deficiencias de Hierro , Maltosa/análogos & derivados , Anemia Ferropénica/tratamiento farmacológico , Anemia Ferropénica/etiología , Anemia Ferropénica/fisiopatología , Animales , Modelos Animales de Enfermedad , Compuestos Férricos/administración & dosificación , Tasa de Filtración Glomerular , Insuficiencia Cardíaca/tratamiento farmacológico , Hematínicos/uso terapéutico , Humanos , Infusiones Intravenosas , Proteínas Reguladoras del Hierro/deficiencia , Proteínas Reguladoras del Hierro/fisiología , Maltosa/administración & dosificación , Maltosa/uso terapéutico , Metaanálisis como Asunto , Ratones , Estudios Multicéntricos como Asunto , Guías de Práctica Clínica como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/fisiopatología , Volumen Sistólico/efectos de los fármacos
16.
FEBS J ; 273(16): 3828-36, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16911529

RESUMEN

The discovery of iron-responsive elements (IREs), along with the identification of iron regulatory proteins (IRP1, IRP2), has provided a molecular basis for our current understanding of the remarkable post-transcriptional regulation of intracellular iron homeostasis. In iron-depleted conditions, IRPs bind to IREs present in the 5'-UTR of ferritin mRNA and the 3'-UTR of transferrin receptor (TfR) mRNA. Such binding blocks the translation of ferritin, the iron storage protein, and stabilizes TfR mRNA, whereas the opposite scenario develops when iron in the intracellular transit pool is plentiful. Nitrogen monoxide (commonly designated nitric oxide; NO), a gaseous molecule involved in numerous functions, is known to affect cellular iron metabolism via the IRP/IRE system. We previously demonstrated that the oxidized form of NO, NO(+), causes IRP2 degradation that is associated with an increase in ferritin synthesis [Kim, S & Ponka, P (2002) Proc Natl Acad Sci USA99, 12214-12219]. Here we report that sodium nitroprusside (SNP), an NO(+) donor, causes a dramatic and rapid increase in ferritin synthesis that initially occurs without changes in the RNA-binding activities of IRPs. Moreover, we demonstrate that the translational efficiency of ferritin mRNA is significantly higher in cells treated with SNP compared with those incubated with ferric ammonium citrate, an iron donor. Importantly, we also provide definitive evidence that the iron moiety of SNP is not responsible for such changes. These results indicate that SNP-mediated increase in ferritin synthesis is, in part, due to an IRP-independent and NO(+)-dependent post-transcriptional, regulatory mechanism.


Asunto(s)
Ferritinas/biosíntesis , Proteínas Reguladoras del Hierro/fisiología , Óxido Nítrico/fisiología , Animales , Línea Celular , Células Cultivadas , Compuestos Férricos/farmacología , Ferritinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Interferón gamma/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Unión Proteica , Compuestos de Amonio Cuaternario/farmacología , ARN Mensajero/biosíntesis
17.
Dev Comp Immunol ; 30(9): 746-55, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16325907

RESUMEN

Hepcidin, originally identified as a 25 amino acid peptide antibiotic produced in the liver, is a key regulator of iron balance and recycling in humans and mice. Closely related hepcidin genes and peptides also have been identified in other mammals, amphibians, and a number of fish species. We hypothesize that hepcidin, the iron-regulatory hormone in humans, may have evolved from an antimicrobial peptide in fishes. In this review we will highlight the evidence that indicates hepcidin evolved from an antimicrobial peptide to an iron-regulatory hormone in vertebrate evolution. This evidence includes the discovery of hepcidin as an antimicrobial peptide and iron-regulatory hormone, structural comparison of mammalian hepcidins and nonmammalian hepcidins, and the cellular and molecular evidence indicating that, while some fish hepcidins may serve only as antimicrobial peptides, other fish and amphibian hepcidins may function as iron regulators.


Asunto(s)
Anfibios/fisiología , Péptidos Catiónicos Antimicrobianos/fisiología , Peces/fisiología , Proteínas Reguladoras del Hierro/fisiología , Secuencia de Aminoácidos , Anfibios/genética , Anfibios/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Péptidos Catiónicos Antimicrobianos/metabolismo , Evolución Molecular , Peces/genética , Peces/inmunología , Hepcidinas , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/inmunología , Datos de Secuencia Molecular , Alineación de Secuencia
18.
Insect Biochem Mol Biol ; 36(4): 310-21, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16551545

RESUMEN

All animals require iron for survival. This requirement reflects the role of this mineral as a cofactor of numerous proteins. However, under physiological conditions, Fe(2+) oxidizes to Fe(3+) encouraging the formation of toxic free radicals. In mammals, the potential for oxidative damage from iron is minimized by binding iron to proteins. Mammalian iron metabolism is complex and numerous proteins are involved in iron absorption, transport, uptake and utilization. We have analyzed the Anopheles gambiae translated protein database for candidates that show identity to proteins involved in mammalian iron metabolism (Holt et al., 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298, 129-149). Our results indicate that proteins involved in iron absorption and intracellular iron utilization are, for the most part, conserved in A. gambiae. In contrast, proteins involved in the pathways of iron export from the gut, transport in hemolymph and uptake at peripheral tissues in mosquitos differ from those for mammals.


Asunto(s)
Anopheles/metabolismo , Proteínas de Insectos/fisiología , Insectos Vectores/metabolismo , Hierro/metabolismo , Animales , Anopheles/genética , Péptidos Catiónicos Antimicrobianos/fisiología , Transporte Biológico/fisiología , Bases de Datos de Proteínas , Hepcidinas , Humanos , Proteínas de Insectos/química , Proteínas de Insectos/genética , Insectos Vectores/genética , Mucosa Intestinal/metabolismo , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/fisiología , Proteínas Reguladoras del Hierro/fisiología , Proteínas de la Membrana/fisiología , Modelos Biológicos , Oxidorreductasas/fisiología , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido
19.
Sci STKE ; 2003(182): pe17, 2003 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-12746546

RESUMEN

The iron regulatory proteins (IRPs) are an example of different proteins regulating the same metabolic process, iron uptake and metabolism. IRP1 is an iron-sulfur cluster-containing protein that can be converted from a cytosolic aconitase to an RNA binding posttranscriptional regulator in response to nitric oxide (NO). IRP2 lacks aconitase activity and its expression is decreased by NO signaling. In macrophages, NO is produced in response to such inflammatory ligands as interferon-gamma, which is expressed in response to mitogenic and antigenic stimuli, and lipopolysaccharide, a marker of bacterial invasion. Until recently, research results predict that the cellular response to increased NO production should be a decrease in ferritin synthesis, due to IRP1 binding to ferritin mRNA, and an increase in transferrin receptor biosynthesis, due to IRP1 binding to the transferrin mRNA. Surprisingly, however, macrophages exhibit decreased transferrin receptor concentration in response to inflammatory ligands. Bouton and Drapier discuss the physiological role and the mechanisms that may underlie this contradictory response.


Asunto(s)
Proteínas Reguladoras del Hierro/fisiología , Óxido Nítrico/fisiología , Transducción de Señal/fisiología , Animales , Humanos
20.
Neurobiol Aging ; 36(2): 1183-93, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25467637

RESUMEN

Elevated iron levels and increased expression of divalent metal transporter 1 (DMT1) in the substantia nigra of Parkinson's disease (PD) have been reported. Nedd4 family-interacting protein 1 (Ndfip1), an adaptor protein for the Nedd4 family of ubiquitin ligases, played an essential role in regulating DMT1 and iron homeostasis in human cortical neurons. In this study, we demonstrated that the expression of Ndfip1 decreased in 6-hydroxydopamine (6-OHDA)-induced PD rats and 6-OHDA-treated MES23.5 dopaminergic cells. Further study showed that the decrease of Ndfip1 occurred earlier than the increase of DMT1 with iron-responsive element (DMT1 + IRE) in 6-OHDA-treated MES23.5 cells, indicating that the decrease of Ndfip1 might be involved in the increase of DMT1 + IRE. In addition, we demonstrated that overexpression of Ndfip1 caused DMT1 + IRE downregulation, resulting in the decreased iron influx and iron-induced neurotoxicity. Although Ndfip1 knockdown led to decreased protein levels of DMT1 + IRE, partially aggravated iron-induced neurotoxicity. Further experiments showed that 6-OHDA-induced decrease in Ndfip1 levels might be related to proteasomal and lysosomal activations and oxidative stress caused by 6-OHDA. These data suggest that decreased Ndfip1 expression might contribute to the pathogenesis of 6-OHDA-induced iron accumulation and Ndfip1 could attenuate 6-OHDA-induced iron accumulation via regulating the degradation of DMT1.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/fisiología , Hierro/metabolismo , Proteínas de la Membrana/fisiología , Oxidopamina/efectos adversos , Enfermedad de Parkinson/genética , Proteolisis , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Neuronas Dopaminérgicas/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular , Hierro/toxicidad , Proteínas Reguladoras del Hierro/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Enfermedad de Parkinson/metabolismo , Ratas , Sustancia Negra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA