Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 90: 581-603, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33823650

RESUMEN

SNARE proteins and Sec1/Munc18 (SM) proteins constitute the core molecular engine that drives nearly all intracellular membrane fusion and exocytosis. While SNAREs are known to couple their folding and assembly to membrane fusion, the physiological pathways of SNARE assembly and the mechanistic roles of SM proteins have long been enigmatic. Here, we review recent advances in understanding the SNARE-SM fusion machinery with an emphasis on biochemical and biophysical studies of proteins that mediate synaptic vesicle fusion. We begin by discussing the energetics, pathways, and kinetics of SNARE folding and assembly in vitro. Then, we describe diverse interactions between SM and SNARE proteins and their potential impact on SNARE assembly in vivo. Recent work provides strong support for the idea that SM proteins function as chaperones, their essential role being to enable fast, accurate SNARE assembly. Finally, we review the evidence that SM proteins collaborate with other SNARE chaperones, especially Munc13-1, and briefly discuss some roles of SNARE and SM protein deficiencies in human disease.


Asunto(s)
Proteínas SNARE/química , Proteínas SNARE/metabolismo , Enfermedad/genética , Humanos , Fusión de Membrana , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Mutación , Pinzas Ópticas , Fosforilación , Dominios Proteicos , Pliegue de Proteína , Proteínas SNARE/genética
2.
Cell ; 155(6): 1203-6, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24315088

RESUMEN

The 2013 Nobel Prize in Physiology or Medicine has been awarded to James Rothman, Randy Schekman, and Thomas Südhof "for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells". I present a personal view of the membrane trafficking field, highlighting the contributions of these three Nobel laureates in a historical context.


Asunto(s)
Fisiología/historia , Vesículas Transportadoras/metabolismo , Calcio/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Historia del Siglo XX , Premio Nobel , Proteínas SNARE/química
3.
Cell ; 147(5): 1118-31, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22118466

RESUMEN

SNAREs provide a large part of the specificity and energy needed for membrane fusion and, to do so, must be localized to their correct membranes. Here, we show that the R-SNAREs VAMP8, VAMP3, and VAMP2, which cycle between the plasma membrane and endosomes, bind directly to the ubiquitously expressed, PtdIns4,5P(2)-binding, endocytic clathrin adaptor CALM/PICALM. X-ray crystallography shows that the N-terminal halves of their SNARE motifs bind the CALM(ANTH) domain as helices in a manner that mimics SNARE complex formation. Mutation of residues in the CALM:SNARE interface inhibits binding in vitro and prevents R-SNARE endocytosis in vivo. Thus, CALM:R-SNARE interactions ensure that R-SNAREs, required for the fusion of endocytic clathrin-coated vesicles with endosomes and also for subsequent postendosomal trafficking, are sorted into endocytic vesicles. CALM's role in directing the endocytosis of small R-SNAREs may provide insight into the association of CALM/PICALM mutations with growth retardation, cognitive defects, and Alzheimer's disease.


Asunto(s)
Endocitosis , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo , Proteínas SNARE/química , Animales , Membrana Celular/metabolismo , Cristalografía por Rayos X , Células HeLa , Humanos , Ratones , Modelos Moleculares , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Ratas , Proteínas SNARE/metabolismo , Vesículas Transportadoras/metabolismo
4.
Hum Mol Genet ; 32(10): 1683-1697, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36645181

RESUMEN

Membrane fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. During neurotransmitter exocytosis, SNARE proteins on a synaptic vesicle and the target membrane form a complex, resulting in neurotransmitter release. N-ethylmaleimide-sensitive factor (NSF), a homohexameric ATPase, disassembles the complex, allowing individual SNARE proteins to be recycled. Recently, the association between pathogenic NSF variants and developmental and epileptic encephalopathy (DEE) was reported; however, the molecular pathomechanism of NSF-related DEE remains unclear. Here, three patients with de novo heterozygous NSF variants were presented, of which two were associated with DEE and one with a very mild phenotype. One of the DEE patients also had hypocalcemia from parathyroid hormone deficiency and neuromuscular junction impairment. Using PC12 cells, a neurosecretion model, we show that NSF with DEE-associated variants impaired the recycling of vesicular membrane proteins and vesicle enlargement in response to exocytotic stimulation. In addition, DEE-associated variants caused neurodegenerative change and defective autophagy through overactivation of the mammalian/mechanistic target of rapamycin (mTOR) pathway. Treatment with rapamycin, an mTOR inhibitor or overexpression of wild-type NSF ameliorated these phenotypes. Furthermore, neurons differentiated from patient-derived induced pluripotent stem cells showed neurite degeneration, which was also alleviated by rapamycin treatment or gene correction using genome editing. Protein structure analysis of NSF revealed that DEE-associated variants might disrupt the transmission of the conformational change of NSF monomers and consequently halt the rotation of ATP hydrolysis, indicating a dominant negative mechanism. In conclusion, this study elucidates the pathomechanism underlying NSF-related DEE and identifies a potential therapeutic approach.


Asunto(s)
Encefalopatías , Proteínas de Transporte Vesicular , Animales , Ratas , Proteínas de Transporte Vesicular/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Fusión de Membrana/fisiología , Proteínas Sensibles a N-Etilmaleimida/química , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Neurotransmisores/metabolismo , Mamíferos/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
5.
Annu Rev Biochem ; 78: 903-28, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19489736

RESUMEN

SNAREs are essential components of the machinery for Ca(2+)-triggered fusion of synaptic vesicles with the plasma membrane, resulting in neurotransmitter release into the synaptic cleft. Although much is known about their biophysical and structural properties and their interactions with accessory proteins such as the Ca(2+) sensor synaptotagmin, their precise role in membrane fusion remains an enigma. Ensemble studies of liposomes with reconstituted SNAREs have demonstrated that SNAREs and accessory proteins can trigger lipid mixing/fusion, but the inability to study individual fusion events has precluded molecular insights into the fusion process. Thus, this field is ripe for studies with single-molecule methodology. In this review, we discuss applications of single-molecule approaches to observe reconstituted SNAREs, their complexes, associated proteins, and their effect on biological membranes. Some of the findings are provocative, such as the possibility of parallel and antiparallel SNARE complexes or of vesicle docking with only syntaxin and synaptobrevin, but have been confirmed by other experiments.


Asunto(s)
Neuronas/química , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Análisis Espectral/métodos , Animales , Fluorescencia , Humanos , Microscopía de Fuerza Atómica , Neuronas/metabolismo , Sinaptotagminas/química
6.
Crit Rev Biochem Mol Biol ; 57(4): 443-460, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36151854

RESUMEN

Fusion of transmitter-containing vesicles with plasma membranes at the synaptic and neuromuscular junctions mediates neurotransmission and muscle contractions, respectively, thereby underlying all thoughts and actions. The fusion process is driven by the coupled folding and assembly of three synaptic SNARE proteins--syntaxin-1 and SNAP-25 on the target plasma membrane (t-SNAREs) and VAMP2 on the vesicular membrane (v-SNARE) into a four-helix bundle. Their assembly is chaperoned by Munc18-1 and many other proteins to achieve the speed and accuracy required for neurotransmission. However, the physiological pathway of SNARE assembly and its coupling to membrane fusion remains unclear. Here, we review recent progress in understanding SNARE assembly and membrane fusion, with a focus on results obtained by single-molecule manipulation approaches and electric recordings of single fusion pores. We describe two pathways of synaptic SNARE assembly, their associated intermediates, energetics, and kinetics. Assembly of the three SNAREs in vitro begins with the formation of a t-SNARE binary complex, on which VAMP2 folds in a stepwise zipper-like fashion. Munc18-1 significantly alters the SNARE assembly pathway: syntaxin-1 and VAMP2 first bind on the surface of Munc18-1 to form a template complex, with which SNAP-25 associates to conclude SNARE assembly and displace Munc18-1. During membrane fusion, multiple trans-SNARE complexes cooperate to open a dynamic fusion pore in a manner dependent upon their copy number and zippering states. Together, these results demonstrate that stepwise and cooperative SNARE assembly drive stagewise membrane fusion.


Asunto(s)
Fusión de Membrana , Proteínas SNARE , Cinética , Fusión de Membrana/fisiología , Proteínas Munc18/química , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas Qa-SNARE , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
7.
Crit Rev Biochem Mol Biol ; 57(2): 156-187, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34632886

RESUMEN

ATPases associated with diverse cellular activities (AAA+ proteins) are a superfamily of proteins found throughout all domains of life. The hallmark of this family is a conserved AAA+ domain responsible for a diverse range of cellular activities. Typically, AAA+ proteins transduce chemical energy from the hydrolysis of ATP into mechanical energy through conformational change, which can drive a variety of biological processes. AAA+ proteins operate in a variety of cellular contexts with diverse functions including disassembly of SNARE proteins, protein quality control, DNA replication, ribosome assembly, and viral replication. This breadth of function illustrates both the importance of AAA+ proteins in health and disease and emphasizes the importance of understanding conserved mechanisms of chemo-mechanical energy transduction. This review is divided into three major portions. First, the core AAA+ fold is presented. Next, the seven different clades of AAA+ proteins and structural details and reclassification pertaining to proteins in each clade are described. Finally, two well-known AAA+ proteins, NSF and its close relative p97, are reviewed in detail.


Asunto(s)
Proteínas AAA , Adenosina Trifosfato , Proteínas AAA/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Proteínas Sensibles a N-Etilmaleimida/química , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo
8.
Biophys J ; 123(20): 3569-3586, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39257001

RESUMEN

Synaptic vesicles (SVs) fuse with the presynaptic membrane (PM) to release neuronal transmitters. The SV protein synaptotagmin 1 (Syt1) serves as a Ca2+ sensor for evoked fusion. Syt1 is thought to trigger fusion by penetrating the PM upon Ca2+ binding; however, the mechanistic detail of this process is still debated. Syt1 interacts with the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex, a coiled-coil four-helical bundle that enables the SV-PM attachment. The SNARE-associated protein complexin (Cpx) promotes Ca2+-dependent fusion, possibly interacting with Syt1. We employed all-atom molecular dynamics to investigate the formation of the Syt1-SNARE-Cpx complex interacting with the lipid bilayers of the PM and SVs. Our simulations demonstrated that the PM-Syt1-SNARE-Cpx complex can transition to a "dead-end" state, wherein Syt1 attaches tightly to the PM but does not immerse into it, as opposed to a prefusion state, which has the tips of the Ca2+-bound C2 domains of Syt1 inserted into the PM. Our simulations unraveled the sequence of Syt1 conformational transitions, including the simultaneous docking of Syt1 to the SNARE-Cpx bundle and the PM, followed by Ca2+ chelation and the penetration of the tips of Syt1 domains into the PM, leading to the prefusion state of the protein-lipid complex. Importantly, we found that direct Syt1-Cpx interactions are required to promote these transitions. Thus, we developed the all-atom dynamic model of the conformational transitions that lead to the formation of the prefusion PM-Syt1-SNARE-Cpx complex. Our simulations also revealed an alternative dead-end state of the protein-lipid complex that can be formed if this pathway is disrupted.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Simulación de Dinámica Molecular , Proteínas SNARE , Sinaptotagmina I , Sinaptotagmina I/metabolismo , Sinaptotagmina I/química , Proteínas SNARE/metabolismo , Proteínas SNARE/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Unión Proteica , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Calcio/metabolismo , Proteínas del Tejido Nervioso
9.
EMBO J ; 39(16): e103631, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32643828

RESUMEN

Priming of synaptic vesicles involves Munc13-catalyzed transition of the Munc18-1/syntaxin-1 complex to the SNARE complex in the presence of SNAP-25 and synaptobrevin-2; Munc13 drives opening of syntaxin-1 via the MUN domain while Munc18-1 primes SNARE assembly via domain 3a. However, the underlying mechanism remains unclear. In this study, we have identified a number of residues in domain 3a of Munc18-1 that are crucial for Munc13 and Munc18-1 actions in SNARE complex assembly and synaptic vesicle priming. Our results showed that two residues (Q301/K308) at the side of domain 3a mediate the interaction between the Munc18-1/syntaxin-1 complex and the MUN domain. This interaction enables the MUN domain to drive the opening of syntaxin-1 linker region, thereby leading to the extension of domain 3a and promoting synaptobrevin-2 binding. In addition, we identified two residues (K332/K333) at the bottom of domain 3a that mediate the interaction between Munc18-1 and the SNARE motif of syntaxin-1. This interaction ensures Munc18-1 to persistently associate with syntaxin-1 during the conformational change of syntaxin-1 from closed to open, which reinforces the role of Munc18-1 in templating SNARE assembly. Taken together, our data suggest a mechanism by which Munc13 activates the Munc18-1/syntaxin-1 complex and enables Munc18-1 to prime SNARE assembly.


Asunto(s)
Proteínas Munc18 , Proteínas del Tejido Nervioso , Proteínas SNARE , Membranas Sinápticas , Sintaxina 1 , Animales , Células HEK293 , Humanos , Ratones , Proteínas Munc18/química , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Dominios Proteicos , Ratas , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Membranas Sinápticas/química , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Sintaxina 1/química , Sintaxina 1/genética , Sintaxina 1/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34413185

RESUMEN

α-Synuclein (α-synFL) is central to the pathogenesis of Parkinson's disease (PD), in which its nonfunctional oligomers accumulate and result in abnormal neurotransmission. The normal physiological function of this intrinsically disordered protein is still unclear. Although several previous studies demonstrated α-synFL's role in various membrane fusion steps, they produced conflicting outcomes regarding vesicular secretion. Here, we assess α-synFL's role in directly regulating individual exocytotic release events. We studied the micromillisecond dynamics of single recombinant fusion pores, the crucial kinetic intermediate of membrane fusion that tightly regulates the vesicular secretion in different cell types. α-SynFL accessed v-SNARE within the trans-SNARE complex to form an inhibitory complex. This activity was dependent on negatively charged phospholipids and resulted in decreased open probability of individual pores. The number of trans-SNARE complexes influenced α-synFL's inhibitory action. Regulatory factors that arrest SNARE complexes in different assembly states differentially modulate α-synFL's ability to alter fusion pore dynamics. α-SynFL regulates pore properties in the presence of Munc13-1 and Munc18, which stimulate α-SNAP/NSF-resistant SNARE complex formation. In the presence of synaptotagmin1(syt1), α-synFL contributes with apo-syt1 to act as a membrane fusion clamp, whereas Ca2+•syt1 triggered α-synFL-resistant SNARE complex formation that rendered α-synFL inactive in modulating pore properties. This study reveals a key role of α-synFL in controlling vesicular secretion.


Asunto(s)
Proteínas Hemolisinas/química , Proteínas SNARE/metabolismo , alfa-Sinucleína/metabolismo , Dispositivos Laboratorio en un Chip , Lípidos/química , Membranas Artificiales , Proteínas SNARE/química , alfa-Sinucleína/química
11.
PLoS Genet ; 17(3): e1009463, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33788833

RESUMEN

Fsv1/Stx8 is a Schizosaccharomyces pombe protein similar to mammalian syntaxin 8. stx8Δ cells are sensitive to salts, and the prevacuolar endosome (PVE) is altered in stx8Δ cells. These defects depend on the SNARE domain, data that confirm the conserved function of syntaxin8 and Stx8 in vesicle fusion at the PVE. Stx8 localizes at the trans-Golgi network (TGN) and the prevacuolar endosome (PVE), and its recycling depends on the retromer component Vps35, and on the sorting nexins Vps5, Vps17, and Snx3. Several experimental approaches demonstrate that Stx8 is a cargo of the Snx3-retromer. Using extensive truncation and alanine scanning mutagenesis, we identified the Stx8 sorting signal. This signal is an IEMeaM sequence that is located in an unstructured protein region, must be distant from the transmembrane (TM) helix, and where the 133I, 134E, 135M, and 138M residues are all essential for recycling. This sorting motif is different from those described for most retromer cargoes, which include aromatic residues, and resembles the sorting motif of mammalian polycystin-2 (PC2). Comparison of Stx8 and PC2 motifs leads to an IEMxx(I/M) consensus. Computer-assisted screening for this and for a loose Ψ(E/D)ΨXXΨ motif (where Ψ is a hydrophobic residue with large aliphatic chain) shows that syntaxin 8 and PC2 homologues from other organisms bear variation of this motif. The phylogeny of the Stx8 sorting motifs from the Schizosaccharomyces species shows that their divergence is similar to that of the genus, showing that they have undergone evolutionary divergence. A preliminary analysis of the motifs in syntaxin 8 and PC2 sequences from various organisms suggests that they might have also undergone evolutionary divergence, what suggests that the presence of almost-identical motifs in Stx8 and PC2 might be a case of convergent evolution.


Asunto(s)
Secuencias de Aminoácidos , Evolución Molecular , Dominios y Motivos de Interacción de Proteínas , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Secuencia de Aminoácidos , Endosomas/metabolismo , Proteínas Fúngicas , Humanos , Unión Proteica , Transporte de Proteínas , Proteínas SNARE/química , Estrés Salino , Tolerancia a la Sal/genética , Proteínas de Transporte Vesicular/metabolismo
12.
J Am Chem Soc ; 145(19): 10641-10650, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37158674

RESUMEN

Synaptic vesicle fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, including synaptobrevin-2 (Syb-2), syntaxin-1 (Syx-1), and SNAP-25. However, it remains controversial whether the formation of thoroughly contacted α-helical bundle from the SNARE motifs to the end of the transmembrane domains (TMDs) is necessary for SNARE-mediated membrane fusion. In this study, we characterized the conformation of Syb-2 in different assembly states using a combination of dipolar- and scalar-based solid-state NMR experiments in lipid bilayers. Our spectral analysis revealed a highly dynamic nature of the Syb-2 TMD with considerable α-helical contents. Chemical shift perturbation and mutational analysis indicated that the coupling between Syb-2 and Syx-1 TMDs mediated by residue Gly-100 of Syb-2 together with high mobility of the C-terminal segment of Syb-2 TMD are required for inner membrane merger. Our results provide new insights into the role of the Syb-2 TMD in driving membrane fusion, which improves the current understanding of the structural mechanism of SNARE complex assembly. This study highlights the significance of membrane environments in elucidating the mechanism of membrane proteins.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas SNARE , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Proteínas SNARE/química , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Fusión de Membrana , Sintaxina 1/química
13.
Phys Chem Chem Phys ; 25(18): 13019-13026, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37102975

RESUMEN

Membrane fusion is an essential part of the proper functioning of life. As such it is not only important that organisms carefully regulate the process, but also that it is well understood. One way to facilitate and study membrane fusion is to use artificial, minimalist, fusion peptides. In this study the efficiency and kinetics of two fusion peptides, denoted CPE and CPK, were studied using single-particle TIRF microscopy. CPE and CPK are helical peptides which interact with each other, forming a coiled-coil motif. The peptides can be inserted into a lipid membrane using a lipid anchor, and if these peptides are anchored in opposing lipid membranes, then the coiled-coil interaction can provide the mechanical force necessary to overcome the energy barrier to initiate fusion, much in the same way the SNARE complex does. In this study we find that the fusogenic facilitation of CPE and CPK in liposomes is, at least partially, dependent on the size of the particle. In addition, under certain fusogenic conditions such as when using small liposomes of ∼60 nm in diameter, CPK alone is enough to facilitate membrane fusion in both bulk and single-particle studies. We show this using bulk lipid mixing assays utilizing FRET and single-particle TIRF, making use of dequenching fluorophores to indicate fusion. This provides us with new insights into the mechanisms of peptide-mediated membrane fusion and illuminates both challenges as well as opportunities when designing drug delivery systems.


Asunto(s)
Liposomas , Proteínas SNARE , Proteínas SNARE/química , Liposomas/química , Fusión de Membrana , Péptidos/química , Lípidos/química
14.
Nature ; 548(7668): 420-425, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28813412

RESUMEN

Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE-complexin-synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for the primed pre-fusion state. Ca2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. The tripartite SNARE-complexin-synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Exocitosis , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas SNARE/metabolismo , Transmisión Sináptica , Sinaptotagmina I/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Cristalografía por Rayos X , Femenino , Masculino , Ratones , Modelos Moleculares , Mutación , Neurotransmisores/metabolismo , Proteínas SNARE/química , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/química
15.
Proc Natl Acad Sci U S A ; 117(2): 1036-1041, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31888993

RESUMEN

Munc13-1 is a large multifunctional protein essential for synaptic vesicle fusion and neurotransmitter release. Its dysfunction has been linked to many neurological disorders. Evidence suggests that the MUN domain of Munc13-1 collaborates with Munc18-1 to initiate SNARE assembly, thereby priming vesicles for fast calcium-triggered vesicle fusion. The underlying molecular mechanism, however, is poorly understood. Recently, it was found that Munc18-1 catalyzes neuronal SNARE assembly through an obligate template complex intermediate containing Munc18-1 and 2 SNARE proteins-syntaxin 1 and VAMP2. Here, using single-molecule force spectroscopy, we discovered that the MUN domain of Munc13-1 stabilizes the template complex by ∼2.1 kBT. The MUN-bound template complex enhances SNAP-25 binding to the templated SNAREs and subsequent full SNARE assembly. Mutational studies suggest that the MUN-bound template complex is functionally important for SNARE assembly and neurotransmitter release. Taken together, our observations provide a potential molecular mechanism by which Munc13-1 and Munc18-1 cooperatively chaperone SNARE folding and assembly, thereby regulating synaptic vesicle fusion.


Asunto(s)
Chaperonas Moleculares/metabolismo , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas SNARE/metabolismo , Exocitosis/fisiología , Cinética , Fusión de Membrana/fisiología , Chaperonas Moleculares/química , Proteínas Munc18/química , Proteínas del Tejido Nervioso/química , Neuronas/metabolismo , Pinzas Ópticas , Unión Proteica , Dominios Proteicos , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/química , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sintaxina 1/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
16.
EMBO J ; 37(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30120144

RESUMEN

Constitutive membrane fusion within eukaryotic cells is thought to be controlled at its initial steps, membrane tethering and SNARE complex assembly, and to rapidly proceed from there to full fusion. Although theory predicts that fusion pore expansion faces a major energy barrier and might hence be a rate-limiting and regulated step, corresponding states with non-expanding pores are difficult to assay and have remained elusive. Here, we show that vacuoles in living yeast are connected by a metastable, non-expanding, nanoscopic fusion pore. This is their default state, from which full fusion is regulated. Molecular dynamics simulations suggest that SNAREs and the SM protein-containing HOPS complex stabilize this pore against re-closure. Expansion of the nanoscopic pore to full fusion can thus be triggered by osmotic pressure gradients, providing a simple mechanism to rapidly adapt organelle volume to increases in its content. Metastable, nanoscopic fusion pores are then not only a transient intermediate but can be a long-lived, physiologically relevant and regulated state of SNARE-dependent membrane fusion.


Asunto(s)
Fusión de Membrana , Simulación de Dinámica Molecular , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacuolas , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/química , Vacuolas/genética , Vacuolas/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(18): 8699-8708, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30975750

RESUMEN

Intrinsically disordered proteins (IDPs) and their conformational transitions play an important role in neurotransmitter release at the neuronal synapse. Here, the SNARE proteins are essential by forming the SNARE complex that drives vesicular membrane fusion. While it is widely accepted that the SNARE proteins are intrinsically disordered in their monomeric prefusion form, important mechanistic aspects of this prefusion conformation and its lipid interactions, before forming the SNARE complex, are not fully understood at the molecular level and remain controversial. Here, by a combination of NMR and fluorescence spectroscopy methods, we find that vesicular synaptobrevin-2 (syb-2) in its monomeric prefusion conformation shows high flexibility, characteristic for an IDP, but also a high dynamic range and increasing rigidity from the N to C terminus. The gradual increase in rigidity correlates with an increase in lipid binding affinity from the N to C terminus. It could also explain the increased rate for C-terminal SNARE zippering, known to be faster than N-terminal SNARE zippering. Also, the syb-2 SNARE motif and, in particular, the linker domain show transient and weak membrane binding, characterized by a high off-rate and low (millimolar) affinity. The transient membrane binding of syb-2 may compensate for the repulsive forces between the two membranes and/or the SNARE motifs and the membranes, helping to destabilize the hydrophilic-hydrophobic boundary in the bilayer. Therefore, we propose that optimum flexibility and membrane binding of syb-2 regulate SNARE assembly and minimize repulsive forces during membrane fusion.


Asunto(s)
Lípidos/química , Proteínas SNARE/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Animales , Espectroscopía de Resonancia Magnética , Neuronas/metabolismo , Unión Proteica , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Proteínas SNARE/química , Proteína 2 de Membrana Asociada a Vesículas/química
19.
J Biol Chem ; 295(30): 10125-10135, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32409579

RESUMEN

Multisubunit-tethering complexes (MTCs) are large (250 to >750 kDa), conserved macromolecular machines that are essential for soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion in all eukaryotes. MTCs are thought to organize membrane trafficking by mediating the initial long-range interaction between a vesicle and its target membrane and promoting the formation of membrane-bridging SNARE complexes. Previously, we reported the structure of the yeast Dsl1 complex, the simplest known MTC, which is essential for coat protein I (COPI) mediated transport from the Golgi to the endoplasmic reticulum (ER). This structure suggests how the Dsl1 complex might tether a vesicle to its target membrane by binding at one end to the COPI coat and at the other to ER-associated SNAREs. Here, we used X-ray crystallography to investigate these Dsl1-SNARE interactions in greater detail. The Dsl1 complex comprises three subunits that together form a two-legged structure with a central hinge. We found that distal regions of each leg bind N-terminal Habc domains of the ER SNAREs Sec20 (a Qb-SNARE) and Use1 (a Qc-SNARE). The observed binding modes appear to anchor the Dsl1 complex to the ER target membrane while simultaneously ensuring that both SNAREs are in open conformations, with their SNARE motifs available for assembly. The proximity of the two SNARE motifs, and therefore their ability to enter the same SNARE complex, will depend on the relative orientation of the two Dsl1 legs. These results underscore the critical roles of SNARE N-terminal domains in mediating interactions with other elements of the vesicle docking and fusion machinery.


Asunto(s)
Modelos Moleculares , Proteínas SNARE/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína
20.
Nat Methods ; 15(7): 535-538, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29967493

RESUMEN

Molecular tools that target RNA at specific sites allow recoding of RNA information and processing. SNAP-tagged deaminases guided by a chemically stabilized guide RNA can edit targeted adenosine to inosine in several endogenous transcripts simultaneously, with high efficiency (up to 90%), high potency, sufficient editing duration, and high precision. We used adenosine deaminases acting on RNA (ADARs) fused to SNAP-tag for the efficient and concurrent editing of two disease-relevant signaling transcripts, KRAS and STAT1. We also demonstrate improved performance compared with that of the recently described Cas13b-ADAR.


Asunto(s)
Adenosina Desaminasa/metabolismo , Edición de ARN/fisiología , Proteínas SNARE/metabolismo , Animales , Secuencia de Bases , Línea Celular , Guanina/análogos & derivados , Humanos , Proteínas de Unión al ARN , Proteínas SNARE/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA