Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(45): e2220518120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903276

RESUMEN

Structural details of a genome packaged in a viral capsid are essential for understanding how the structural arrangement of a viral genome in a capsid controls its release dynamics during infection, which critically affects viral replication. We previously found a temperature-induced, solid-like to fluid-like mechanical transition of packaged λ-genome that leads to rapid DNA ejection. However, an understanding of the structural origin of this transition was lacking. Here, we use small-angle neutron scattering (SANS) to reveal the scattering form factor of dsDNA packaged in phage λ capsid by contrast matching the scattering signal from the viral capsid with deuterated buffer. We used small-angle X-ray scattering and cryoelectron microscopy reconstructions to determine the initial structural input parameters for intracapsid DNA, which allows accurate modeling of our SANS data. As result, we show a temperature-dependent density transition of intracapsid DNA occurring between two coexisting phases-a hexagonally ordered high-density DNA phase in the capsid periphery and a low-density, less-ordered DNA phase in the core. As the temperature is increased from 20 °C to 40 °C, we found that the core-DNA phase undergoes a density and volume transition close to the physiological temperature of infection (~37 °C). The transition yields a lower energy state of DNA in the capsid core due to lower density and reduced packing defects. This increases DNA mobility, which is required to initiate rapid genome ejection from the virus capsid into a host cell, causing infection. These data reconcile our earlier findings of mechanical DNA transition in phage.


Asunto(s)
Bacteriófago lambda , Cápside , Bacteriófago lambda/genética , Cápside/química , Temperatura , Microscopía por Crioelectrón , ADN Viral/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/análisis
2.
Anal Chem ; 96(42): 17037-17046, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39434662

RESUMEN

Adeno-associated virus (AAV) vectors have attracted significant attention as the main platform for gene therapy. To ensure the safety and efficacy of AAV vectors when used as gene therapy drugs, it is essential to assess their critical quality attributes (CQAs). These CQAs include the genome packaging status, the size of the genome encapsidated within the AAV capsid, and the stoichiometry of viral proteins (VPs) that constitute the AAV capsids. Analytical methods have been established for evaluating CQAs, such as analytical ultracentrifugation, capillary gel electrophoresis with laser-induced fluorescence detection, and capillary gel electrophoresis using sodium dodecyl sulfate with UV detection. Here, we present a multimass analysis of AAV vectors using orbitrap-based charge detection mass spectrometry (CDMS), a single-ion mass spectrometry. Orbitrap-based CDMS facilitates the quantitative evaluation of the genome packaging status based on the mass distribution of empty and full particles. Additionally, we established a novel method to analyze the encapsidated genome directly without pretreatment, such as protein digestion or heat treatment, and to estimate the stoichiometric variation of VP for the capsid based on the mass distribution constituted by the single peak corresponding to AAV particles. Orbitrap-based CDMS is a distinctive method that allows multiple mass characterizations of AAV vectors with a small sample volume of 20 µL for 1013 cp/mL in a short time (30 min), and it holds the potential to become a new standard method in the assessment of CQAs for AAV vectors.


Asunto(s)
Dependovirus , Vectores Genéticos , Espectrometría de Masas , Dependovirus/genética , Espectrometría de Masas/métodos , Vectores Genéticos/genética , Humanos , Cápside/química , Proteínas de la Cápside/análisis , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Células HEK293
3.
Anal Bioanal Chem ; 416(4): 1069-1084, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38102410

RESUMEN

Adeno-associated viruses (AAVs) are viral vectors used as delivery systems for gene therapies. Intact protein characterization of AAV viral capsid proteins (VPs) and their post-translational modifications is critical to ensuring product quality. In this study, microchip-based ZipChip capillary electrophoresis-mass spectrometry (CE-MS) was applied for the rapid characterization of AAV intact VPs, specifically full and empty viral capsids of serotypes AAV6, AAV8 and AAV9, which was accomplished using 5 min of analysis time. Low levels of dimethyl sulfoxide (4%) in the background electrolyte (BGE) improved MS signal quality and component detection. A sensitivity evaluation revealed consistent detection of VP proteoforms when as little as 2.64 × 106 viral particles (≈26.4 picograms) were injected. Besides the traditional VP proteoforms used for serotype identification, multiple VP3 variants were detected, including truncated VP3 variants most likely generated by leaky scanning as well as unacetylated and un-cleaved VP3 proteoforms. Phosphorylation, known to impact AAV transduction efficiency, was also seen in all serotypes analysed. Additionally, low abundant fragments originating from either N- or C-terminus truncation were detected. As the aforementioned VP components can impact product quality and efficacy, the ZipChip's ability to rapidly characterize them illustrates its strength in monitoring product quality during AAV production.


Asunto(s)
Proteínas de la Cápside , Dependovirus , Dependovirus/genética , Dependovirus/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/análisis , Proteínas de la Cápside/metabolismo , Procesamiento Proteico-Postraduccional , Espectrometría de Masas , Electroforesis Capilar , Vectores Genéticos
4.
J Struct Biol ; 215(2): 107964, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37105277

RESUMEN

Flock House virus (FHV) is an animal virus and considered a model system for non-enveloped viruses. It has a small, icosahedral capsid (T=3) and a bipartite positive-sense RNA genome. We present an extensive study of the FHV capsid dynamics from all-atom molecular dynamics simulations of the complete capsid. The simulations explore different biologically relevant conditions (neutral/low pH, with/without RNA in the capsid) using the CHARMM force field. The results show that low pH destabilizes the capsid, causing radial expansion, and RNA stabilizes the capsid. The finding of low pH destabilization is biologically relevant because the capsid is exposed to low pH in the endosome, where conformational changes occur leading to genome release. We also observe structural changes at the fivefold and twofold symmetry axes that likely relate to the externalization of membrane active γ peptides through the fivefold vertex and extrusion of RNA at the twofold axis. Simulations using the Amber force field at neutral pH are also performed and display similar characteristics to the CHARMM simulations.


Asunto(s)
Cápside , Nodaviridae , Animales , Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/análisis , Nodaviridae/química , Nodaviridae/genética , ARN
5.
Acc Chem Res ; 55(10): 1349-1359, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35507643

RESUMEN

When viewed through the lens of materials science, nature provides a vast library of hierarchically organized structures that serve as inspiration and raw materials for new synthetic materials. The structural organization of complex bioarchitectures with advanced functions arises from the association of building blocks and is strongly supported by ubiquitous mechanisms of self-assembly, where interactions among components result in spontaneous assembly into defined structures. Viruses are exemplary, where a capsid structure, often formed from the self-assembly of many individual protein subunits, serves as a vehicle for the transport and protection of the viral genome. Higher-order assemblies of viral particles are also found in nature with unexpected collective behaviors. When the infectious aspect of viruses is removed, the self-assembly of viral particles and their potential for hierarchical assembly become an inspiration for the design and construction of a new class of functional materials at a range of different length scales.Salmonella typhimurium bacteriophage P22 is a well-studied model for understanding viral self-assembly and the construction of virus-like particle (VLP)-based materials. The formation of cage-like P22 VLP structures results from scaffold protein (SP)-directed self-assembly of coat protein (CP) subunits into icosahedral capsids with encapsulation of SP inside the capsid. Employing the CP-SP interaction during self-assembly, the encapsulation of guest protein cargos inside P22 VLPs can be achieved with control over the composition and the number of guest cargos. The morphology of cargo-loaded VLPs can be altered, along with changes in both the physical properties of the capsid and the cargo-capsid interactions, by mimicking aspects of the infectious P22 viral maturation. The structure of the capsid differentiates the inside cavity from the outside environment and serves as a protecting layer for the encapsulated cargos. Pores in the capsid shell regulate molecular exchange between inside and outside, where small molecules can traverse the capsid freely while the diffusion of larger molecules is limited by the pores. The interior cavity of the P22 capsid can be packed with hundreds of copies of cargo proteins (especially enzymes), enforcing intermolecular proximity, making this an ideal model system in which to study enzymatic catalysis in crowded and confined environments. These aspects highlight the development of functional nanomaterials from individual P22 VLPs, through biomimetic design and self-assembly, resulting in fabrication of nanoreactors with controlled catalytic behaviors.Individual P22 VLPs have been used as building blocks for the self-assembly of higher-order structures. This relies on a balance between the intrinsic interparticle repulsion and a tunable interparticle attraction. The ordering of VLPs within three-dimensional assemblies is dependent on the balance between repulsive and attractive interactions: too strong an attraction results in kinetically trapped disordered structures, while decreasing the attraction can lead to more ordered arrays. These higher-order assemblies display collective behavior of high charge density beyond those of the individual VLPs.The development of synthetic nanomaterials based on P22 VLPs demonstrates how the potential for hierarchical self-assembly can be applied to other self-assembling capsid structures across multiple length scales toward future bioinspired functional materials.


Asunto(s)
Bacteriófago P22 , Cápside , Bacteriófago P22/química , Bacteriófago P22/genética , Cápside/química , Proteínas de la Cápside/análisis , Proteínas de la Cápside/química , Proteínas de la Cápside/genética
6.
Anal Biochem ; 668: 115099, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871622

RESUMEN

Recombinant adeno-associated viral (AAV) vectors have taken center stage as gene delivery vehicles for gene therapy. Asparagine deamidation of AAV capsid proteins has been reported to reduce vector stability and potency of AAV gene therapy products. Deamidation of asparagine residue is a common post-translational modification of proteins that is detected and quantified by liquid chromatography-tandem mass spectrometry (LC-MS)-based peptide mapping. However, artificial deamidation can be spontaneously induced during sample preparation for peptide mapping prior to LC-MS analysis. We have developed an optimized sample preparation method to reduce and minimize deamidation artifacts induced during sample preparation for peptide mapping, which typically takes several hours to complete. To shorten turnaround time of deamidation results and to avoid artificial deamidation, we developed orthogonal RPLC-MS and RPLC-fluorescence detection methods for direct deamidation analysis at the intact AAV9 capsid protein level to routinely support downstream purification, formulation development, and stability testing. Similar trends of increasing deamidation of AAV9 capsid proteins in stability samples were observed at the intact protein level and peptide level, indicating that the developed direct deamidation analysis of intact AAV9 capsid proteins is comparable to the peptide mapping-based deamidation analysis and both methods are suitable for deamidation monitoring of AAV9 capsid proteins.


Asunto(s)
Proteínas de la Cápside , Cromatografía de Fase Inversa , Proteínas de la Cápside/genética , Proteínas de la Cápside/análisis , Cromatografía de Fase Inversa/métodos , Dependovirus/genética , Dependovirus/metabolismo , Asparagina/química , Asparagina/genética , Asparagina/metabolismo , Serogrupo
7.
Proc Natl Acad Sci U S A ; 117(10): 5486-5493, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094182

RESUMEN

HIV-1 capsid core disassembly (uncoating) must occur before integration of viral genomic DNA into the host chromosomes, yet remarkably, the timing and cellular location of uncoating is unknown. Previous studies have proposed that intact viral cores are too large to fit through nuclear pores and uncoating occurs in the cytoplasm in coordination with reverse transcription or at the nuclear envelope during nuclear import. The capsid protein (CA) content of the infectious viral cores is not well defined because methods for directly labeling and quantifying the CA in viral cores have been unavailable. In addition, it has been difficult to identify the infectious virions because only one of ∼50 virions in infected cells leads to productive infection. Here, we developed methods to analyze HIV-1 uncoating by direct labeling of CA with GFP and to identify infectious virions by tracking viral cores in living infected cells through viral DNA integration and proviral DNA transcription. Astonishingly, our results show that intact (or nearly intact) viral cores enter the nucleus through a mechanism involving interactions with host protein cleavage and polyadenylation specificity factor 6 (CPSF6), complete reverse transcription in the nucleus before uncoating, and uncoat <1.5 h before integration near (<1.5 µm) their genomic integration sites. These results fundamentally change our current understanding of HIV-1 postentry replication events including mechanisms of nuclear import, uncoating, reverse transcription, integration, and evasion of innate immunity.


Asunto(s)
Proteínas de la Cápside/análisis , Núcleo Celular/virología , Infecciones por VIH/virología , VIH-1/fisiología , Integración Viral , Desencapsidación Viral , Transporte Activo de Núcleo Celular , Proteínas de la Cápside/metabolismo , Proteínas Fluorescentes Verdes/análisis , Humanos , Poro Nuclear/metabolismo , Proteolisis , Replicación Viral , Factores de Escisión y Poliadenilación de ARNm/metabolismo
8.
J Proteome Res ; 21(4): 993-1001, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35192358

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) remains a deadly infectious disease despite existing antiretroviral therapies. A comprehensive understanding of the specific mechanisms of viral infectivity remains elusive and currently limits the development of new and effective therapies. Through in-depth proteomic analysis of HIV-1 virions, we discovered the novel post-translational modification of highly conserved residues within the viral matrix and capsid proteins to the dehydroamino acids, dehydroalanine and dehydrobutyrine. We further confirmed their presence by labeling the reactive alkene, characteristic of dehydroamino acids, with glutathione via Michael addition. Dehydroamino acids are rare, understudied, and have been observed mainly in select bacterial and fungal species. Until now, they have not been observed in HIV proteins. We hypothesize that these residues are important in viral particle maturation and could provide valuable insight into HIV infectivity mechanisms.


Asunto(s)
VIH-1 , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/análisis , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , VIH-1/genética , Humanos , Proteómica , Virión
9.
Anal Chem ; 94(2): 985-992, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34932317

RESUMEN

Virus assembly and disassembly are critical steps in the virus lifecycle; however, virus disassembly is much less well understood than assembly. For hepatitis B virus (HBV) capsids, disassembly of the virus capsid in the presence of guanidine hydrochloride (GuHCl) exhibits strong hysteresis that requires additional chemical energy to initiate disassembly and disrupt the capsid structure. To study disassembly of HBV capsids, we mixed T = 4 HBV capsids with 1.0-3.0 M GuHCl, monitored the reaction over time by randomly selecting particles, and measured their size with resistive-pulse sensing. Particles were cycled forward and backward multiple times to increase the observation time and likelihood of observing a disassembly event. The four-pore device used for resistive-pulse sensing produces four current pulses for each particle during translocation that improves tracking and identification of single particles and increases the precision of particle-size measurements when pulses are averaged. We studied disassembly at GuHCl concentrations below and above denaturing conditions of the dimer, the fundamental unit of HBV capsid assembly. As expected, capsids showed little disassembly at low GuHCl concentrations (e.g., 1.0 M GuHCl), whereas at higher GuHCl concentrations (≥1.5 M), capsids exhibited disassembly, sometimes as a complex series of events. In all cases, disassembly was an accelerating process, where capsids catastrophically disassembled within a few 100 ms of reaching critical stability; disassembly rates reached tens of dimers per second just before capsids fell apart. Some disassembly events exhibited metastable intermediates that appeared to lose one or more trimers of dimers in a stepwise fashion.


Asunto(s)
Cápside , Virión , Cápside/química , Proteínas de la Cápside/análisis , Virus de la Hepatitis B/química , Virión/química , Ensamble de Virus
10.
J Gen Virol ; 102(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34242156

RESUMEN

Bactrian camel hepatitis E virus (HEV) is a novel HEV belonging to genotype 8 (HEV-8) in the Orthohepevirus A species of the genus Hepevirus in the family Hepeviridae. HEV-8 cross-transmits to cynomolgus monkeys and has a potential risk for zoonotic infection. Until now, neither a cell-culture system to grow the virus nor a reverse genetics system to generate the virus has been developed. To generate replication-competent HEV-8 and to establish a cell-culture system, we synthesized capped genomic HEV-8 RNAs by in vitro transcription and used them to transfect into PLC/PRF/5 cells. A HEV-8 strain, HEV-8M2, was recovered from the capped HEV-8 RNA-transfected cell-culture supernatants and subsequently passaged in the cells, demonstrating that PLC/PRF/5 cells were capable of supporting the replication of the HEV-8, and that a cell-culture system for HEV-8 was successfully established. In addition to PLC/PRF/5 cells, A549 and Caco-2 cells appeared to be competent for the replication, but HepG2 C3/A, Vero, Hela S3, HEp-2C, 293T and GL37 cells were incompetent. The HEV-8M2 strain was capable of infecting cynomolgus monkeys by an intravenous inoculation, indicating that HEV-8 was infectious and again carried a risk for zoonotic infection. In contrast, HEV-8 did not infect nude rats and BALB/c nude mice, suggesting that the reservoir of HEV-8 was limited. In addition, the replication of the HEV-8M2 strain was efficiently abrogated by ribavirin but not by favipiravir, suggesting that ribavirin is a drug candidate for therapeutic treatment of HEV-8-induced hepatitis. The infectious HEV-8 produced by a reverse genetics system would be useful to elucidate the mechanisms of HEV replication and the pathogenesis of type E hepatitis.


Asunto(s)
Virus de la Hepatitis E/genética , Virus de la Hepatitis E/fisiología , Hepatitis E/virología , Genética Inversa , Amidas/farmacología , Animales , Antivirales/farmacología , Proteínas de la Cápside/análisis , Línea Celular , Femenino , Genoma Viral , Virus de la Hepatitis E/efectos de los fármacos , Virus de la Hepatitis E/patogenicidad , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Desnudos , Pirazinas/farmacología , ARN Viral/genética , Ratas , Ribavirina/farmacología , Transfección , Replicación Viral/efectos de los fármacos
11.
J Sep Sci ; 44(2): 557-564, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33217108

RESUMEN

A liquid chromatography-tandem mass spectrometry method was developed to determine nine types of capsid proteins simultaneously in nine-valent human papillomavirus vaccines. Signature peptides were optimized in terms of specificity, repeatability, determination accuracy and sensitivity. As a result, three signature peptides per capsid protein were obtained. The linear calibration curves were achieved in the range of 11.6-373.6 nmol/L (R2  > 0.998). Compared to our previous liquid chromatography-tandem mass spectrometry method, the current method was more sensitive (3.18-fold) and it can be used for quality evaluation of nine-valent human papillomavirus vaccines, unlike the previous method, which could only be used for bivalent human papillomavirus vaccines. Then, they were utilized to determine nine types of capsid proteins in nine-valent human papillomavirus vaccines from four different manufactures. Intraday and interday precision values for the determination of capsid proteins in nine-valent human papillomavirus vaccines were less than 6.8 and 9.1%, respectively. Recovery rates of all capsid proteins investigated were in the range of 80-120%. In addition, the current assay was used for determination of free capsid protein in nine-valent human papilloma virus vaccines, and the results were used to evaluate the adsorption rate of the adjuvant.


Asunto(s)
Proteínas de la Cápside/análisis , Vacunas contra Papillomavirus/química , Calibración , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas en Tándem
12.
Magn Reson Chem ; 59(3): 237-246, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32603513

RESUMEN

An important step in the process of protein research by NMR is the assignment of chemical shifts. In the coat protein of IKe bacteriophage, there are 53 residues making up a long helix resulting in relatively high spectral ambiguity. Assignment thus requires the collection of a set of three-dimensional (3D) experiments and the preparation of sparsely labeled samples. Increasing the dimensionality can facilitate fast and reliable assignment of IKe and of larger proteins. Recent progress in nonuniform sampling techniques made the application of multidimensional NMR solid-state experiments beyond 3D more practical. 4D 1 H-detected experiments have been demonstrated in high-fields and at spinning speeds of 60 kHz and higher but are not practical at spinning speeds of 10-20 kHz for fully protonated proteins. Here, we demonstrate the applicability of a nonuniformly sampled 4D 13 C/15 N-only correlation experiment performed at a moderate field of 14.1 T, which can incorporate sufficiently long acquisition periods in all dimensions. We show how a single CANCOCX experiment, supported by several 2D carbon-based correlation experiments, is utilized for the assignment of heteronuclei in the coat protein of the IKe bacteriophage. One sparsely labeled sample was used to validate sidechain assignment of several hydrophobic-residue sidechains. A comparison to solution NMR studies of isolated IKe coat proteins embedded in micelles points to key residues involved in structural rearrangement of the capsid upon assembly of the virus. The benefits of 4D to a quicker assignment are discussed, and the method may prove useful for studying proteins at relatively low fields.


Asunto(s)
Bacteriófago IKe/química , Proteínas de la Cápside/análisis , Cápside/química , Proteínas de la Cápside/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Micelas , Isótopos de Nitrógeno/química , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica en Hélice alfa
13.
J Gen Virol ; 101(11): 1219-1226, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32840476

RESUMEN

Jumbo phages are bacteriophages that carry more than 200 kbp of DNA. In this study we characterized two jumbo phages (ΦRSL2 and ΦXacN1) and one semi-jumbo phage (ΦRP13) at the structural level by cryo-electron microscopy. Focusing on their capsids, three-dimensional structures of the heads at resolutions ranging from 16 to 9 Å were calculated. Based on these structures we determined the geometrical basis on which the icosahedral capsids of these phages are constructed, which includes the accessory and decorative proteins that complement them. A triangulation number novel to Myoviridae (ΦRP13; T=21) was discovered as well as two others, which are more common for jumbo phages (T=27 and T=28). Based on one of the structures we also provide evidence that accessory or decorative proteins are not a prerequisite for maintaining the structural integrity of very large capsids.


Asunto(s)
Cápside/ultraestructura , Myoviridae/ultraestructura , Proteínas de la Cápside/análisis , Microscopía por Crioelectrón , Genoma Viral , Myoviridae/genética , Ralstonia solanacearum/virología , Xanthomonas/virología
14.
J Gen Virol ; 101(12): 1305-1312, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33001023

RESUMEN

The badnavirus replication cycle is poorly understood and most knowledge is based on extrapolations from model viruses such as Cauliflower mosaic virus (CaMV). However, in contrast to CaMV, badnaviruses are thought not to produce viroplasms and therefore it has been a mystery as to where virion assembly occurs. In this study, ultrathin sections of a banana leaf infected with a badnavirus, banana streak MY virus (BSMYV), were examined by transmission electron microscopy. Electron-dense inclusion bodies (EDIBs) were sporadically distributed in parenchymatous tissues of the leaf, most commonly in the palisade and spongy mesophyll cells. These EDIBs had a characteristic structure, comprising an electron-dense core, a single, encircling lacuna and an outer ring of electron-dense material. However, much less frequently, EDIBs with two or three lacunae were observed. In the outer ring, densely packed virions were visible with a shape and size consistent with that expected for badnaviruses. Immunogold labelling was done with primary antibodies that detected the N-terminus of the capsid protein and strong labelling of the outer ring but not the central core or lacuna was observed. It is concluded that the EDIBs that were observed are equivalent in function to the viroplasms of CaMV, although obviously different in composition as there is not a paralogue of the transactivation/viroplasm protein in the badnavirus genome. It is postulated that production of a viroplasm could be a conserved characteristic of all members of the Caulimoviridae.


Asunto(s)
Badnavirus/fisiología , Badnavirus/ultraestructura , Musa/virología , Enfermedades de las Plantas/virología , Compartimentos de Replicación Viral/ultraestructura , Proteínas de la Cápside/análisis , Inmunohistoquímica , Cuerpos de Inclusión Viral/ultraestructura , Microscopía Electrónica de Transmisión , Musa/ultraestructura
15.
Anal Chem ; 92(16): 11357-11364, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32806905

RESUMEN

Charge detection mass spectrometry is a single particle technique where the masses of individual ions are determined from simultaneous measurements of each ion's m/z ratio and charge. The ions pass through a conducting cylinder, and the charge induced on the cylinder is detected. The cylinder is usually placed inside an electrostatic linear ion trap so that the ions oscillate back and forth through the cylinder. The resulting time domain signal is analyzed by fast Fourier transformation; the oscillation frequency yields the m/z, and the charge is determined from the magnitudes. The mass resolving power depends on the uncertainties in both quantities. In previous work, the mass resolving power was modest, around 30-40. In this work we report around an order of magnitude improvement. The improvement was achieved by coupling high-accuracy charge measurements (obtained with dynamic calibration) with higher resolution m/z measurements. The performance was benchmarked by monitoring the assembly of the hepatitis B virus (HBV) capsid. The HBV capsid assembly reaction can result in a heterogeneous mixture of intermediates extending from the capsid protein dimer to the icosahedral T = 4 capsid with 120 dimers. Intermediates of all possible sizes were resolved, as well as some overgrown species. Despite the improved mass resolving power, the measured peak widths are still dominated by instrumental resolution. Heterogeneity makes only a small contribution. Resonances were observed in some of the m/z spectra. They result from ions with different masses and charges having similar m/z values. Analogous resonances are expected whenever the sample is a heterogeneous mixture assembled from a common building block.


Asunto(s)
Proteínas de la Cápside/análisis , Cápside/química , Espectrometría de Masas/métodos , Cápside/metabolismo , Virus de la Hepatitis B/química , Virus de la Hepatitis B/metabolismo
16.
J Virol ; 93(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31315991

RESUMEN

The flavivirus capsid protein is considered to be essential for the formation of nucleocapsid complexes with viral genomic RNA at the viral replication organelle that appears on the endoplasmic reticulum (ER), as well as for incorporation into virus particles. However, this protein is also detected at the lipid droplet (LD) and nucleolus, and physiological roles of these off-site localizations are still unclear. In this study, we made a series of alanine substitution mutants of Japanese encephalitis virus (JEV) capsid protein that cover all polar and hydrophobic amino acid residues to identify the molecular surfaces required for virus particle formation and for localization at the LD and nucleolus. Five mutants exhibited a defect in the formation of infectious particles, and two of these mutants failed to be incorporated into the subviral particles (SVP). Three mutants lost the ability to localize to the nucleolus, and only a single mutant, with mutations at α2, was unable to localize to the LD. Unlike the cytoplasmic capsid protein, the nucleolar capsid protein was resistant to detergent treatment, and the α2 mutant was hypersensitive to detergent treatment. To scrutinize the relationship between these localizations and viral particle formation, we made eight additional alanine substitution mutants and found that all the mutants that did not localize at the LD or nucleolus failed to form normal viral particles. These results support the functional correlation between LD or nucleolus localization of the flaviviral capsid protein and the formation of infectious viral particles.IMPORTANCE This study is the first to report the comprehensive mutagenesis of a flavivirus capsid protein. We assessed the requirement of each molecular surface for infectious viral particle formation as well as for LD and nucleolar localization and found functional relationships between the subcellular localization of the virus capsid protein and infectious virus particle formation. We developed a system to independently assess the packaging of viral RNA and that of the capsid protein and found a molecular surface of the capsid protein that is crucial for packaging of viral RNA but not for packaging of the capsid protein itself. We also characterized the biochemical properties of capsid protein mutants and found that the capsid protein localizes at the nucleolus in a different manner than for its localization to the LD. Our comprehensive alanine-scanning mutagenesis study will aid in the development of antiflavivirus small molecules that can target the flavivirus capsid protein.


Asunto(s)
Proteínas de la Cápside/análisis , Nucléolo Celular/química , Virus de la Encefalitis Japonesa (Especie)/crecimiento & desarrollo , Gotas Lipídicas/química , Ensamble de Virus , Replicación Viral , Sustitución de Aminoácidos , Proteínas de la Cápside/genética , Virus de la Encefalitis Japonesa (Especie)/genética , Proteínas Mutantes/análisis , Proteínas Mutantes/genética , Mutación Missense , Transporte de Proteínas
17.
J Struct Biol ; 206(1): 90-98, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30273657

RESUMEN

Dynamic Nuclear Polarization (DNP) is an effective approach to alleviate the inherently low sensitivity of solid-state NMR (ssNMR) under magic angle spinning (MAS) towards large-sized multi-domain complexes and assemblies. DNP relies on a polarization transfer at cryogenic temperatures from unpaired electrons to adjacent nuclei upon continuous microwave irradiation. This is usually made possible via the addition in the sample of a polarizing agent. The first pioneering experiments on biomolecular assemblies were reported in the early 2000s on bacteriophages and membrane proteins. Since then, DNP has experienced tremendous advances, with the development of extremely efficient polarizing agents or with the introduction of new microwaves sources, suitable for NMR experiments at very high magnetic fields (currently up to 900 MHz). After a brief introduction, several experimental aspects of DNP enhanced NMR spectroscopy applied to biomolecular assemblies are discussed. Recent demonstration experiments of the method on viral capsids, the type III and IV bacterial secretion systems, ribosome and membrane proteins are then described.


Asunto(s)
Proteínas de la Cápside/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos , Péptidos/química , Proteínas de la Cápside/análisis , Radicales Libres/química , Espectroscopía de Resonancia Magnética/instrumentación , Proteínas de la Membrana/análisis , Microondas , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular/instrumentación , Péptidos/análisis , Temperatura
18.
Anal Chem ; 91(21): 14002-14008, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31589418

RESUMEN

Charge detection mass spectrometry (CDMS) is emerging as a valuable tool to determine mass distributions for heterogeneous and high-mass samples. It is a single-particle technique where masses are determined for individual ions from simultaneous measurements of their mass-to-charge ratio (m/z) and charge. Ions are trapped in an electrostatic linear ion trap (ELIT) and oscillate back and forth through a detection cylinder. The trap is open and able to trap ions for a small fraction of the total measurement time so most of the ions (>99.8%) in a continuous ion beam are lost. Here, we implement an ion storage scheme where ions are accumulated and stored in a hexapole and then injected into the ELIT at the right time for them to be trapped. This pulsed mode of operation increases the sensitivity of CDMS by more than 2 orders of magnitude, which allows much lower titer samples to be analyzed. A limit of detection of 3.3 × 108 particles/mL was obtained for hepatitis B virus T = 4 capsids with a 1.3 µL sample. The hexapole where the ions are accumulated and stored is a significant distance from the ion trap so ions are dispersed in time by their m/z values as they travel between the hexapole and the ELIT. By varying the delay time between ion release and trapping, different windows of m/z values can be trapped.


Asunto(s)
Proteínas de la Cápside/análisis , Virus de la Hepatitis B/química , Espectrometría de Masas , Electricidad Estática
19.
Histochem Cell Biol ; 151(2): 101-114, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30488339

RESUMEN

The detailed analysis of secondary envelopment of the Human betaherpesvirus 5/human cytomegalovirus (HCMV) from transmission electron microscopy (TEM) images is an important step towards understanding the mechanisms underlying the formation of infectious virions. As a step towards a software-based quantification of different stages of HCMV virion morphogenesis in TEM, we developed a transfer learning approach based on convolutional neural networks (CNNs) that automatically detects HCMV nucleocapsids in TEM images. In contrast to existing image analysis techniques that require time-consuming manual definition of structural features, our method automatically learns discriminative features from raw images without the need for extensive pre-processing. For this a constantly growing TEM image database of HCMV infected cells was available which is unique regarding image quality and size in the terms of virological EM. From the two investigated types of transfer learning approaches, namely feature extraction and fine-tuning, the latter enabled us to successfully detect HCMV nucleocapsids in TEM images. Our detection method has outperformed some of the existing image analysis methods based on discriminative textural indicators and radial density profiles for virus detection in TEM images. In summary, we could show that the method of transfer learning can be used for an automated detection of viral capsids in TEM images with high specificity using standard computers. This method is highly adaptable and in future could be easily extended to automatically detect and classify virions of other viruses and even distinguish different virion maturation stages.


Asunto(s)
Proteínas de la Cápside/análisis , Proteínas de la Cápside/ultraestructura , Herpesviridae/química , Herpesviridae/ultraestructura , Aprendizaje Automático , Humanos , Microscopía Electrónica de Transmisión
20.
Anal Biochem ; 582: 113354, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31276652

RESUMEN

In the last decade, filamentous M13 bacteriophage has emerged into numerous biotechnological applications as a promising nontoxic and self-assembling biomaterial with specific binding properties. This raises a question about its upscale production that consequently requires an accurate phage enumeration during the various protocol developments. However, traditional methods of measuring phage concentration are mainly biological in nature and therefore time and labor intensive. These traditional methods also demonstrate poor reproducibility and are semi-quantitative at best. In the present work, we capitalized on mass spectrometry based absolute protein quantitation. We have optimized the quantitation conditions for a major coat protein, pVIII. Enumeration of M13 bacteriophage can be further performed using the determined molar concentration of pVIII, Avogadro's number, and known copy number of pVIII per phage. Since many different phages have well-defined copy number of capsid proteins, the proposed approach can be simply applied to any phage with known copy number of a specific capsid protein.


Asunto(s)
Bacteriófago M13/aislamiento & purificación , Proteínas de la Cápside/análisis , Espectrometría de Masas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA