Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 614(7946): 168-174, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36423657

RESUMEN

CRISPR defence systems such as the well-known DNA-targeting Cas9 and the RNA-targeting type III systems are widespread in prokaryotes1,2. The latter orchestrates a complex antiviral response that is initiated through the synthesis of cyclic oligoadenylates after recognition of foreign RNA3-5. Among the large set of proteins that are linked to type III systems and predicted to bind cyclic oligoadenylates6,7, a CRISPR-associated Lon protease (CalpL) stood out to us. CalpL contains a sensor domain of the SAVED family7 fused to a Lon protease effector domain. However, the mode of action of this effector is unknown. Here we report the structure and function of CalpL and show that this soluble protein forms a stable tripartite complex with two other proteins, CalpT and CalpS, that are encoded on the same operon. After activation by cyclic tetra-adenylate (cA4), CalpL oligomerizes and specifically cleaves the MazF homologue CalpT, which releases the extracytoplasmic function σ factor CalpS from the complex. Our data provide a direct connection between CRISPR-based detection of foreign nucleic acids and transcriptional regulation. Furthermore, the presence of a SAVED domain that binds cyclic tetra-adenylate in a CRISPR effector reveals a link to the cyclic-oligonucleotide-based antiphage signalling system.


Asunto(s)
Bacterias , Bacteriófagos , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Nucleótidos Cíclicos , Proteasa La , Bacterias/enzimología , Bacterias/inmunología , Bacterias/metabolismo , Bacterias/virología , Bacteriófagos/inmunología , Bacteriófagos/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , AMP Cíclico/análogos & derivados , AMP Cíclico/química , Activación Enzimática , Regulación Bacteriana de la Expresión Génica , Nucleótidos Cíclicos/inmunología , Nucleótidos Cíclicos/metabolismo , Operón , Proteasa La/química , Proteasa La/metabolismo , ARN Viral , Factor sigma , Transcripción Genética
2.
J Biol Chem ; 298(3): 101694, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35143841

RESUMEN

Lon protease is a conserved ATP-dependent serine protease composed of an AAA+ domain that mechanically unfolds substrates and a serine protease domain that degrades these unfolded substrates. In yeast, dysregulation of Lon protease (PIM1) attenuates lifespan and leads to gross mitochondrial morphological perturbations. Although structures of the bacterial and human Lon protease reveal a hexameric assembly, yeast PIM1 was speculated to form a heptameric assembly and is uniquely characterized by a ∼50-residue insertion between the ATPase and protease domains. To further understand the yeast-specific properties of PIM1, we determined a high-resolution cryo-electron microscopy structure of PIM1 in a substrate-translocating state. Here, we reveal that PIM1 forms a hexamer, conserved with that of bacterial and human Lon proteases, wherein the ATPase domains form a canonical closed spiral that enables pore loop residues to translocate substrates to the protease chamber. In the substrate-translocating state, PIM1 protease domains form a planar protease chamber in an active conformation and are uniquely characterized by a ∼15-residue C-terminal extension. These additional C-terminal residues form an α-helix located along the base of the protease domain. Finally, we did not observe density for the yeast-specific insertion between the ATPase and protease domains, likely due to high conformational flexibility. Biochemical studies to investigate the insertion using constructs that truncated or replaced the insertion with a glycine-serine linker suggest that the yeast-specific insertion is dispensable for PIM1's enzymatic function. Altogether, our structural and biochemical studies highlight unique components of PIM1 machinery and demonstrate evolutionary conservation of Lon protease function.


Asunto(s)
Proteínas Mitocondriales , Proteasa La , Proteínas Proto-Oncogénicas c-pim-1 , Proteínas de Saccharomyces cerevisiae , Serina Endopeptidasas , Proteasas ATP-Dependientes/metabolismo , Adenosina Trifosfatasas/metabolismo , Microscopía por Crioelectrón , Humanos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Péptido Hidrolasas/metabolismo , Proteasa La/química , Proteasa La/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/química , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad
3.
Biochemistry ; 61(1): 34-45, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34914378

RESUMEN

Type-II toxin-antitoxin (TA) systems are comprised of two tightly interacting proteins, and operons encoding these systems have been identified throughout the genomes of bacteria. In contrast to secretion system effector-immunity pairs, TA systems must remain paired to protect the host cell from toxicity. Continual depletion of the antitoxin results in a shorter half-life than that of the toxin, though it is unclear if antitoxins can be effectively degraded when complexed with toxins. The current work probed the protein-protein interface of the PaParDE1 TA system, guided by an X-ray crystal structure, to determine contributions of antitoxin amino acids to interaction kinetics and affinity. These studies identified a "hotspot" position that alters the binding mode and resulting affinity (KD) from 152 pM for a 1:1 model for wild type to 25.5 and 626 nM for a 2:1 model with mutated antitoxin. This correlates with an altered induced secondary structure upon complexation with PaParE1 and increased kinetics of Lon protease digestion of the antitoxin despite the toxin presence. However, the decreased affinity at this hotspot was essentially reversed when the antitoxin dimerization region was deleted, yielding insights into complex interactions involved in the tight association. Removal of the antitoxin C-terminal seven amino acids, corresponding to the site of a disorder-to-order transition, completely prevents association. These studies combine to provide a model for the initiation of the TA interaction and highlight how manipulation of the sequence can impact the antitoxin disorder-to-order transition, weakening the affinity and resulting in increased antitoxin susceptibility to degradation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteasa La/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Cristalografía por Rayos X , Escherichia coli/química , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/química , Humanos , Cinética , Proteasa La/química , Unión Proteica , Mapas de Interacción de Proteínas , Proteolisis , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/química
4.
J Biol Chem ; 297(4): 101239, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34563541

RESUMEN

The Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive translocation of a substrate into a hexameric proteolytic chamber. To understand the structural basis for the substrate translocation process, we determined the cryo-electron microscopy (cryo-EM) structure of Meiothermus taiwanensis LonA (MtaLonA) in a substrate-engaged state at 3.6 Å resolution. Our data indicate that substrate interactions are mediated by the dual pore loops of the ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in different ATP-binding and hydrolysis states. However, a closed AAA+ ring is maintained by two disengaged ADP-bound protomers transiting between the lowest and highest position. This structure reveals a processive rotary translocation mechanism mediated by LonA-specific nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by substrate binding.


Asunto(s)
Adenosina Trifosfatasas/química , Bacterias/enzimología , Proteínas Bacterianas/química , Proteasa La/química , Adenosina Trifosfatasas/genética , Bacterias/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Proteasa La/genética , Estructura Secundaria de Proteína
5.
J Bacteriol ; 203(14): e0014321, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33941609

RESUMEN

Proteolysis is a fundamental property of all living cells. In the bacterium Salmonella enterica serovar Typhimurium, the HspQ protein controls the specificities of the Lon and ClpAP proteases. Upon acetylation, HspQ stops being a Lon substrate and no longer enhances proteolysis of the Lon substrate Hha. The accumulated HspQ protein binds to the protease adaptor ClpS, hindering proteolysis of ClpS-dependent substrates of ClpAP, such as Oat, a promoter of antibiotic persistence. HspQ is acetylated by the protein acetyltransferase Pat from acetyl coenzyme A (acetyl-CoA) bound to the acetyl-CoA binding protein Qad. We now report that low cytoplasmic Mg2+ promotes qad expression, which protects substrates of Lon and ClpSAP by increasing HspQ amounts. The qad promoter is activated by PhoP, a regulatory protein highly activated in low cytoplasmic Mg2+ that also represses clpS transcription. Both the qad gene and PhoP repression of the clpS promoter are necessary for antibiotic persistence. PhoP also promotes qad transcription in Escherichia coli, which shares a similar PhoP box in the qad promoter region with S. Typhimurium, Salmonella bongori, and Enterobacter cloacae. Our findings identify cytoplasmic Mg2+ and the PhoP protein as critical regulators of protease specificity in multiple enteric bacteria. IMPORTANCE The bacterium Salmonella enterica serovar Typhimurium narrows down the spectrum of substrates degraded by the proteases Lon and ClpAP in response to low cytoplasmic Mg2+, a condition that decreases protein synthesis. This control is exerted by PhoP, a transcriptional regulator activated in low cytoplasmic Mg2+ that governs proteostasis and is conserved in enteric bacteria. The uncovered mechanism enables bacteria to control the abundance of preexisting proteins.


Asunto(s)
Citoplasma/metabolismo , Magnesio/metabolismo , Proteasa La/metabolismo , Salmonella typhimurium/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citoplasma/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteasa La/química , Proteasa La/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Especificidad por Sustrato
6.
Arch Biochem Biophys ; 710: 108983, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34228963

RESUMEN

Lon is an ATP-dependent protease belonging to the "ATPase associated with diverse cellular activities" (AAA+) protein family. In humans, Lon is translated as a precursor and imported into the mitochondria matrix through deletion of the first 114 amino acid residues. In mice, embryonic knockout of lon is lethal. In humans, some dysfunctional lon mutations are tolerated but they cause a developmental disorder known as the CODAS syndrome. To gain a better understanding on the enzymology of human mitochondrial Lon, this study compares the structure-function relationship of the WT versus one of the CODAS mutants R721G to identify the mechanistic features in Lon catalysis that are affected. To this end, steady-state kinetics were used to quantify the difference in ATPase and ATP-dependent peptidase activities between WT and R721G. The Km values for the intrinsic as well as protein-stimulated ATPase were increased whereas the kcat value for ATP-dependent peptidase activity was decreased in the R721G mutant. The mutant protease also displayed substrate inhibition kinetics. In vitro studies revealed that R721G did not degrade the endogenous mitochondrial Lon substrate pyruvate dehydrogenase kinase isoform 4 (PDK4) effectively like WT hLon. Furthermore, the pyruvate dehydrogenase complex (PDH) protected PDK4 from hLon degradation. Using hydrogen deuterium exchange/mass spectrometry and negative stain electron microscopy, structural perturbations associated with the R721G mutation were identified. To validate the in vitro findings under a physiologically relevant condition, the intrinsic stability as well as proteolytic activity of WT versus R721G mutant towards PDK 4 were compared in cell lysates prepared from immortalized B lymphocytes expressing the respective protease. The lifetime of PDK4 is longer in the mutant cells, but the lifetime of Lon protein is longer in the WT cells, which corroborate the in vitro structure-functional relationship findings.


Asunto(s)
Mitocondrias/enzimología , Proteasa La/química , Proteasa La/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Linfocitos B/enzimología , Biocatálisis , Anomalías Craneofaciales/enzimología , Anomalías Craneofaciales/genética , Estabilidad de Enzimas/genética , Anomalías del Ojo/enzimología , Anomalías del Ojo/genética , Trastornos del Crecimiento/enzimología , Trastornos del Crecimiento/genética , Luxación Congénita de la Cadera/enzimología , Luxación Congénita de la Cadera/genética , Humanos , Cinética , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Osteocondrodisplasias/enzimología , Osteocondrodisplasias/genética , Proteasa La/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Anomalías Dentarias/enzimología , Anomalías Dentarias/genética
7.
J Bacteriol ; 203(1)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33020222

RESUMEN

Protein degradation is an essential process in all organisms. This process is irreversible and energetically costly; therefore, protein destruction must be tightly controlled. While environmental stresses often lead to upregulation of proteases at the transcriptional level, little is known about posttranslational control of these critical machines. In this study, we show that in Caulobacter crescentus levels of the Lon protease are controlled through proteolysis. Lon turnover requires active Lon and ClpAP proteases. We show that specific determinants dictate Lon stability with a key carboxy-terminal histidine residue driving recognition. Expression of stabilized Lon variants results in toxic levels of protease that deplete normal Lon substrates, such as the replication initiator DnaA, to lethally low levels. Taken together, results of this work demonstrate a feedback mechanism in which ClpAP and Lon collaborate to tune Lon proteolytic capacity for the cell.IMPORTANCE Proteases are essential, but unrestrained activity can also kill cells by degrading essential proteins. The quality-control protease Lon must degrade many misfolded and native substrates. We show that Lon is itself controlled through proteolysis and that bypassing this control results in toxic consequences for the cell.


Asunto(s)
Caulobacter crescentus/metabolismo , Proteasa La/metabolismo , Secuencia de Aminoácidos , Western Blotting , Caulobacter crescentus/genética , Endopeptidasa Clp/genética , Endopeptidasa Clp/aislamiento & purificación , Endopeptidasa Clp/metabolismo , Citometría de Flujo , Microscopía de Contraste de Fase , Plásmidos , Proteasa La/química , Proteasa La/genética , Proteasa La/aislamiento & purificación , Proteolisis
8.
Anal Biochem ; 566: 62-66, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30419188

RESUMEN

A method is proposed in this paper for the determination of oxygen-18 labeled phosphate so that positional isotope experiments using sensitive and rapid liquid chromatography-QTOF-mass spectrometry (LC-QTOF-MS) experiments can be carried out. The positional isotope exchange technique is a useful tool in understanding the mechanisms and kinetics of many enzyme-catalyzed reactions. Detection of the positions and concentration of these exchanged isotopes is the key. Gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance imaging are commonly used analytical techniques for measurement of 18O/16O, 31P and 15N isotope enrichment. Since these techniques either require a time-consuming derivatization step or have a limited sensitivity, an LC and accurate mass-based method for monitoring 18O/16O exchange was developed and compared with a standard GC-MS method. Our results showed that the LC-QTOF-MS method developed was not only as accurate as the standard GC-MS method, but also a sensitive and robust analytical platform for the simultaneous determination of isotope enrichment and the analysis of positional isotopes without chemical derivation. The LC-QTOF-MS method developed was successfully applied to the measurement of 18O/16O in the reversibility study of ATP hydrolysis by Lon proteases.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Fosfatos/química , Proteasa La/química , Espectrometría de Masas en Tándem/métodos , Adenosina Trifosfato/química , Pruebas de Enzimas/métodos , Isótopos de Oxígeno/química
9.
Proc Natl Acad Sci U S A ; 113(1): E23-31, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26677871

RESUMEN

Peroxide operon regulator (PerR) is a broadly conserved hydrogen peroxide sensor in bacteria, and oxidation of PerR at its regulatory metal-binding site is considered irreversible. Here, we tested whether this oxidation specifically targets PerR for proteolysis. We find that oxidizing conditions stimulate PerR degradation in vivo, and LonA is the principal AAA+ (ATPases associated with diverse cellular activities) protease that degrades PerR. Degradation of PerR by LonA is recapitulated in vitro, and biochemical dissection of this degradation reveals that the presence of regulatory metal and PerR-binding DNA dramatically extends the half-life of the protein. We identified a LonA-recognition site critical for oxidation-controlled PerR turnover. Key residues for LonA-interaction are exposed to solvent in PerR lacking metal, but are buried in the metal-bound form. Furthermore, one residue critical for Lon recognition is also essential for specific DNA-binding by PerR, thus explaining how both the metal and DNA ligands prevent PerR degradation. This ligand-controlled allosteric mechanism for protease recognition provides a compelling explanation for how the oxidation-induced conformational change in PerR triggers degradation. Interestingly, the critical residues recognized by LonA and exposed by oxidation do not function as a degron, because they are not sufficient to convert a nonsubstrate protein into a LonA substrate. Rather, these residues are a conformation-discriminator sequence, which must work together with other residues in PerR to evoke efficient degradation. This mechanism provides a useful example of how other proteins with only mild or localized oxidative damage can be targeted for degradation without the need for extensive oxidation-dependent protein denaturation.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteasa La/metabolismo , Proteolisis , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , ADN/metabolismo , Ligandos , Datos de Secuencia Molecular , Mutación , Oxidación-Reducción , Proteasa La/química , Estabilidad Proteica , Desplegamiento Proteico , Proteínas Represoras/química , Proteínas Represoras/genética
10.
Proteomics ; 18(13): e1800080, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29710379

RESUMEN

Controlling the cellular abundance and proper function of proteins by proteolysis is a universal process in all living organisms. In Escherichia coli, the ATP-dependent Lon protease is crucial for protein quality control and regulatory processes. To understand how diverse substrates are selected and degraded, unbiased global approaches are needed. We employed a quantitative Super-SILAC (stable isotope labeling with amino acids in cell culture) mass spectrometry approach and compared the proteomes of a lon mutant and a strain producing the protease to discover Lon-dependent physiological functions. To identify Lon substrates, we took advantage of a Lon trapping variant, which is able to translocate substrates but unable to degrade them. Lon-associated proteins were identified by label-free LC-MS/MS. The combination of both approaches revealed a total of 14 novel Lon substrates. Besides the identification of known pathways affected by Lon, for example, the superoxide stress response, our cumulative data suggests previously unrecognized fundamental functions of Lon in sulfur assimilation, nucleotide biosynthesis, amino acid and central energy metabolism.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteasa La/metabolismo , Proteómica/métodos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteasa La/química , Proteasa La/genética , Proteolisis , Especificidad por Sustrato
11.
Biochim Biophys Acta ; 1857(8): 1300-1306, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27033304

RESUMEN

Lon protease is a nuclear-encoded, mitochondrial ATP-dependent protease highly conserved throughout the evolution, crucial for the maintenance of mitochondrial homeostasis. Lon acts as a chaperone of misfolded proteins, and is necessary for maintaining mitochondrial DNA. The impairment of these functions has a deep impact on mitochondrial functionality and morphology. An altered expression of Lon leads to a profound reprogramming of cell metabolism, with a switch from respiration to glycolysis, which is often observed in cancer cells. Mutations of Lon, which likely impair its chaperone properties, are at the basis of a genetic inherited disease named of the cerebral, ocular, dental, auricular, skeletal (CODAS) syndrome. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Asunto(s)
Anomalías Craneofaciales/genética , ADN Mitocondrial/genética , Anomalías del Ojo/genética , Trastornos del Crecimiento/genética , Luxación Congénita de la Cadera/genética , Mitocondrias/enzimología , Chaperonas Moleculares/química , Mutación , Osteocondrodisplasias/genética , Proteasa La/química , Anomalías Dentarias/genética , Reprogramación Celular , Anomalías Craneofaciales/enzimología , Anomalías Craneofaciales/patología , ADN Mitocondrial/metabolismo , Anomalías del Ojo/enzimología , Anomalías del Ojo/patología , Trastornos del Crecimiento/enzimología , Trastornos del Crecimiento/patología , Luxación Congénita de la Cadera/enzimología , Luxación Congénita de la Cadera/patología , Homeostasis , Humanos , Mitocondrias/patología , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Osteocondrodisplasias/enzimología , Osteocondrodisplasias/patología , Proteasa La/genética , Proteasa La/metabolismo , Pliegue de Proteína , Anomalías Dentarias/enzimología , Anomalías Dentarias/patología
12.
Microb Pathog ; 93: 38-43, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26796296

RESUMEN

Lon proteases are a family of ATP-dependent proteases that are involved in the degradation of abnormal proteins in bacteria exposed to adverse environmental stress. An analysis of the genome sequence of Actinobacillus pleuropneumoniae revealed the unusual presence of two putative ATP-dependent Lon homologues, LonA and LonC. Sequence comparisons indicated that LonA has the classical domain organization of the LonA subfamily, which includes the N-terminal domain, central ATPase (AAA) domain, and C-terminal proteolytic (P) domain. LonC belongs to the recently classified LonC subfamily, which includes Lon proteases that contain neither the N-terminal domain of LonA nor the transmembrane region that is present only in LonB subfamily members. To investigate the roles of LonA and LonC in A. pleuropneumoniae, mutants with deletions in the lonA and lonC genes were constructed. The impaired growth of the △lonA mutant exposed to low and high temperatures and osmotic and oxidative stress conditions indicates that the LonA protease is required for the stress tolerance of A. pleuropneumoniae. Furthermore, the △lonA mutant exhibited significantly reduced biofilm formation compared to the wild-type strain. However, no significant differences in stress responses or biofilm formation were observed between the △lonC mutant and the wild-type strain. The △lonA mutant exhibited reduced colonization ability and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model compared to the wild-type strain. Disruption of lonC gene did not significantly influence the colonization and virulence of A. pleuropneumoniae. The data presented in this study illustrate that the LonA protease, but not the LonC protease, is required for the stress tolerance, biofilm formation and pathogenicity of A. pleuropneumoniae.


Asunto(s)
Infecciones por Actinobacillus/microbiología , Actinobacillus pleuropneumoniae/enzimología , Actinobacillus pleuropneumoniae/fisiología , Proteínas Bacterianas/metabolismo , Biopelículas , Proteasa La/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Proteasa La/química , Proteasa La/genética , Dominios Proteicos , Estrés Fisiológico
13.
Proc Natl Acad Sci U S A ; 110(22): E2002-8, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23674680

RESUMEN

Lon is an ATPase associated with cellular activities (AAA+) protease that controls cell division in response to stress and also degrades misfolded and damaged proteins. Subunits of Lon are known to assemble into ring-shaped homohexamers that enclose an internal degradation chamber. Here, we demonstrate that hexamers of Escherichia coli Lon also interact to form a dodecamer at physiological protein concentrations. Electron microscopy of this dodecamer reveals a prolate structure with the protease chambers at the distal ends and a matrix of N domains forming an equatorial hexamer-hexamer interface, with portals of ∼45 Šproviding access to the enzyme lumen. Compared with hexamers, Lon dodecamers are much less active in degrading large substrates but equally active in degrading small substrates. Our results support a unique gating mechanism that allows the repertoire of Lon substrates to be tuned by its assembly state.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Modelos Moleculares , Complejos Multienzimáticos/química , Proteasa La/química , Conformación Proteica , Proteolisis , Western Blotting , Cromatografía en Gel , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Rayos Láser , Microscopía Electrónica , Complejos Multienzimáticos/metabolismo , Mutación Missense/genética , Proteasa La/genética , Proteasa La/metabolismo , Dispersión de Radiación , Ultracentrifugación
14.
Mol Microbiol ; 91(1): 66-78, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24205897

RESUMEN

Degron binding regulates the activities of the AAA+ Lon protease in addition to targeting proteins for degradation. The sul20 degron from the cell-division inhibitor SulA is shown here to bind to the N domain of Escherichia coli Lon, and the recognition site is identified by cross-linking and scanning for mutations that prevent sul20-peptide binding. These N-domain mutations limit the rates of proteolysis of model sul20-tagged substrates and ATP hydrolysis by an allosteric mechanism. Lon inactivation of SulA in vivo requires binding to the N domain and robust ATP hydrolysis but does not require degradation or translocation into the proteolytic chamber. Lon-mediated relief of proteotoxic stress and protein aggregation in vivo can also occur without degradation but is not dependent on robust ATP hydrolysis. In combination, these results demonstrate that Lon can function as a protease or a chaperone and reveal that some of its ATP-dependent biological activities do not require translocation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Proteasa La/química , Proteasa La/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas , Regulación Alostérica , Sitios de Unión , Endopeptidasa Clp , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Mutación , Proteasa La/genética , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato
15.
Bioorg Khim ; 41(5): 579-86, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-26762095

RESUMEN

ATP-Dependent protease LonA from E. coli (Ec-Lon), belonging to the superfamily of AAA+ proteins, is a key member of the protein quality control system in bacterial cells. Ec-Lon functions as homohexamer and degrades abnormal and defective polypeptides as well as a number of regulatory proteins by the processive mechanism. Ec-Lon subunit includes--the both ATPase and proteolytic components (AAA+ module and P domain) in addition to the unique non-catalytic region formed by the N-terminal (N) and the inserted c-helical (HI(CC)) domains. The mutant forms Lon-R164A, Lon-R192A and Lon-Y294A have been obtained and characterized in order to reveal the role of the HI (CC) domain for the enzyme functioning. C-Terminal part of the HI (CC) domain is shown to display an allosteric effect on the efficiency of the enzyme ATPase and proteolytic sites while its coiled-coil (CC) region is involved in the interaction with the protein substrate.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Mutación , Proteasa La/química , Proteasa La/genética , Cromatografía de Afinidad , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
16.
Bioorg Khim ; 41(6): 696-700, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-27125023

RESUMEN

ATP-dependent Lon protease of E. coli (Ec-Lon) is a key enzyme of the quality control system of the cell proteome. Ec-Lon subunit comprises N-terminal non-catalytic region, ATPase module and proteolytic domain (serine-lysine endopeptidase). A distinctive feature of the Ec-Lon is its ability to interact with DNA, however either DNA binding site(s) or the role ofthe complex Ec-Lon · DNA have not yet been characterized. A promising tool for the study of molecular mechanisms of interaction between nucleic acids and protein ligands are known to be aptamers (small nucleic acids with high specificity to organic compounds of different nature). Ec-Lon-protease was found to form complexes with the previously obtained thrombin aptamers whose molecules comprise the duplex domains and G-quadruplex region. The aptamer affinities to the enzyme have been characterized. The synthesis of novel aptamers specific to Ec-Lon protease is planed for studying the mechanism of the enzyme-DNA complexation.


Asunto(s)
Aptámeros de Nucleótidos/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , G-Cuádruplex , Proteasa La/química
17.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 218-30, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24531457

RESUMEN

Lon belongs to a unique group of AAA+ proteases that bind DNA. However, the DNA-mediated regulation of Lon remains elusive. Here, the crystal structure of the α subdomain of the Lon protease from Brevibacillus thermoruber (Bt-Lon) is presented, together with biochemical data, and the DNA-binding mode is delineated, showing that Arg518, Arg557 and Arg566 play a crucial role in DNA binding. Electrostatic interactions contributed by arginine residues in the AAA+ module are suggested to be important to DNA binding and allosteric regulation of enzymatic activities. Intriguingly, Arg557, which directly binds DNA in the α subdomain, has a dual role in the negative regulation of ATPase stimulation by DNA and in the domain-domain communication in allosteric regulation of Bt-Lon by substrate. In conclusion, structural and biochemical evidence is provided to show that electrostatic interaction in the AAA+ module is important for DNA binding by Lon and allosteric regulation of its enzymatic activities by DNA and substrate.


Asunto(s)
Arginina/química , Proteínas Bacterianas/química , Brevibacillus/química , ADN Bacteriano/química , Proteasa La/química , Regulación Alostérica , Arginina/metabolismo , Proteínas Bacterianas/genética , Brevibacillus/enzimología , Dominio Catalítico , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Mutagénesis , Proteasa La/genética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Electricidad Estática , Termodinámica
18.
EMBO J ; 29(20): 3520-30, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20834233

RESUMEN

Lon proteases are distributed in all kingdoms of life and are required for survival of cells under stress. Lon is a tandem fusion of an AAA+ molecular chaperone and a protease with a serine-lysine catalytic dyad. We report the 2.0-Å resolution crystal structure of Thermococcus onnurineus NA1 Lon (TonLon). The structure is a three-tiered hexagonal cylinder with a large sequestered chamber accessible through an axial channel. Conserved loops extending from the AAA+ domain combine with an insertion domain containing the membrane anchor to form an apical domain that serves as a gate governing substrate access to an internal unfolding and degradation chamber. Alternating AAA+ domains are in tight- and weak-binding nucleotide states with different domain orientations and intersubunit contacts, reflecting intramolecular dynamics during ATP-driven protein unfolding and translocation. The bowl-shaped proteolytic chamber is contiguous with the chaperone chamber allowing internalized proteins direct access to the proteolytic sites without further gating restrictions.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteasa La/química , Proteasa La/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Proteasa La/genética , Multimerización de Proteína , Alineación de Secuencia , Thermococcus/enzimología
19.
Folia Biol (Praha) ; 60 Suppl 1: 62-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25369343

RESUMEN

The Lon protein is a protease belonging to the superfamily of ATPases associated with diverse cellular activities (AAA+). Its main function is the control of protein quality and the maintenance of proteostasis by degradation of misfolded and damaged proteins, which occur in response to numerous stress conditions. It also participates in the regulation of levels of transcription factors that control pathogenesis, development and stress response. We focus our interest on the structure of human mitochondrial Lon (hLon) protease, whose altered expression levels are linked to some severe diseases such as epilepsy, myopathy, or lateral sclerosis. We present the first 3D structure of the ADP-bound human Lon S885A mutant obtained by electron microscopy as a result of preliminary negative staining studies. S885A appears as a hexameric ring of 120 Å diameter having 90 Å in height. Its resolution was estimated at 19 Å by the FSC = 0.5 criterion. This model is a primary step towards the understanding of the mechanism of action of the Lon protease and its involvement in the pathogenesis development.


Asunto(s)
Imagenología Tridimensional , Mitocondrias/enzimología , Modelos Moleculares , Proteínas Mutantes/química , Proteasa La/química , Humanos , Coloración Negativa , Proteasa La/ultraestructura
20.
Bioorg Khim ; 40(6): 673-81, 2014.
Artículo en Ruso | MEDLINE | ID: mdl-25895363

RESUMEN

Homooligomeric ATP-dependent LonA proteases are bifunctional enzymes belonging to the superfamily of AAA+ proteins. Their subunits are formed by five successively connected domains: N-terminal (N), α-helical (HI(CC)), nucleotide binding (NB), the second α-helical (H) and proteolytic (P). The presence of the inserted HI(CC) domain defines the uniqueness of LonA proteases among AAA+ proteins. The role of α-helical domains in the LonA protease functioning is investigated on the example of E. coli Lon protease (Ec-Lon). A comparative study of properties of the intact Ec-Lon and its mutants of Lon-R164A and Lon-R542A with the substitutions of arginine residues located in similar positions in the HI(CC) and H domains is carried out. The H domain is shown to play a crucial role for the ATP hydrolysis and enzyme binding to the target protein. HI(CC) domain does not have a fundamental significance for the catalytic properties of the enzyme. However, it affects the functioning of Lon ATPase and peptidase sites and is involved in maintaining the enzyme stability. The participation of HI(CC) domain in formation of the spatial structures of LonA proteases and/or formation of their complexes with DNA is suggested.


Asunto(s)
Proteasas ATP-Dependientes/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteasa La/química , Estructura Secundaria de Proteína , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Proteínas de Unión al ADN/química , Hidrólisis , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA