Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Plant Biotechnol J ; 22(4): 863-875, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37984804

RESUMEN

Tree growth performance can be partly explained by genetics, while a large proportion of growth variation is thought to be controlled by environmental factors. However, to what extent DNA methylation, a stable epigenetic modification, contributes to phenotypic plasticity in the growth performance of long-lived trees remains unclear. In this study, a comparative analysis of targeted DNA genotyping, DNA methylation and mRNAseq profiling for needles of 44-year-old Douglas-fir trees (Pseudotsuga menziesii (Mirb.) Franco) having contrasting growth characteristics was performed. In total, we identified 195 differentially expressed genes (DEGs) and 115 differentially methylated loci (DML) that are associated with genes involved in fitness-related processes such as growth, stress management, plant development and energy resources. Interestingly, all four intronic DML were identified in mega-sized (between 100 and 180 kbp in length) and highly expressed genes, suggesting specialized regulation mechanisms of these long intron genes in gymnosperms. DNA repetitive sequences mainly comprising long-terminal repeats of retroelements are involved in growth-associated DNA methylation regulation (both hyper- and hypomethylation) of 99 DML (86.1% of total DML). Furthermore, nearly 14% of the DML was not tagged by single nucleotide polymorphisms, suggesting a unique contribution of the epigenetic variation in tree growth.


Asunto(s)
Pseudotsuga , Pseudotsuga/genética , Intrones/genética , Árboles , ADN , Epigénesis Genética/genética , Metilación
2.
New Phytol ; 243(2): 705-719, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38803110

RESUMEN

Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Pseudotsuga , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Pseudotsuga/genética , Pseudotsuga/microbiología , Pseudotsuga/fisiología , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Árboles/genética , Adaptación Fisiológica/genética , Herencia Multifactorial , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
3.
Mol Ecol ; 33(19): e17533, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39262289

RESUMEN

Habitat fragmentation reduces gene flow, causing genetic differentiation and diversity loss in endangered species through genetic drift and inbreeding. However, the impact of habitat fragmentation on ectomycorrhizal (ECM) fungi remains unexplored, despite their critical roles in forest ecosystems. Here, we investigated the population genetic structure and the demographic history of Rhizopogon togasawarius, the ECM fungus specifically colonizing the host tree Pseudotsuga japonica, across its entire distribution range (>200 km). These two species are designated as endangered species on the IUCN Red List since they are found only in small, fragmented forests in Japan. We analysed 236 R. togasawarius individuals from five remaining populations across the Kii Peninsula and the Shikoku Island, separated by a sea channel. Simple sequence repeat analyses using 20 loci revealed strong genetic differentiation among populations (FST = 0.255), even significant in the nearest population pair separated by a distance of only 8 km (FST = 0.075), indicating extremely limited gene flow between populations. DIYABC-RF analyses implied that population divergence occurred approximately 6000 generations ago between the two regions, and nearly 1500 generations ago between the nearest populations within Shikoku Island, related to past climate events. Because of prolonged genetic isolation, significant inbreeding was confirmed in four of five populations, where effective population sizes became very small (Ne = 9.0-58.0). Although evaluation of extinction risks for microorganisms is challenging, our conservation genetic results indicated that habitat fragmentation increases extinction risk through population genetic mechanisms, and therefore should not be overlooked in biodiversity conservation efforts.


Asunto(s)
Ecosistema , Especies en Peligro de Extinción , Flujo Génico , Genética de Población , Repeticiones de Microsatélite , Micorrizas , Pseudotsuga , Micorrizas/genética , Micorrizas/clasificación , Japón , Repeticiones de Microsatélite/genética , Pseudotsuga/microbiología , Pseudotsuga/genética , Variación Genética
4.
BMC Genomics ; 21(1): 9, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900111

RESUMEN

BACKGROUND: In forest trees, genetic markers have been used to understand the genetic architecture of natural populations, identify quantitative trait loci, infer gene function, and enhance tree breeding. Recently, new, efficient technologies for genotyping thousands to millions of single nucleotide polymorphisms (SNPs) have finally made large-scale use of genetic markers widely available. These methods will be exceedingly valuable for improving tree breeding and understanding the ecological genetics of Douglas-fir, one of the most economically and ecologically important trees in the world. RESULTS: We designed SNP assays for 55,766 potential SNPs that were discovered from previous transcriptome sequencing projects. We tested the array on ~ 2300 related and unrelated coastal Douglas-fir trees (Pseudotsuga menziesii var. menziesii) from Oregon and Washington, and 13 trees of interior Douglas-fir (P. menziesii var. glauca). As many as ~ 28 K SNPs were reliably genotyped and polymorphic, depending on the selected SNP call rate. To increase the number of SNPs and improve genome coverage, we developed protocols to 'rescue' SNPs that did not pass the default Affymetrix quality control criteria (e.g., 97% SNP call rate). Lowering the SNP call rate threshold from 97 to 60% increased the number of successful SNPs from 20,669 to 28,094. We used a subset of 395 unrelated trees to calculate SNP population genetic statistics for coastal Douglas-fir. Over a range of call rate thresholds (97 to 60%), the median call rate for SNPs in Hardy-Weinberg equilibrium ranged from 99.2 to 99.7%, and the median minor allele frequency ranged from 0.198 to 0.233. The successful SNPs also worked well on interior Douglas-fir. CONCLUSIONS: Based on the original transcriptome assemblies and comparisons to version 1.0 of the Douglas-fir reference genome, we conclude that these SNPs can be used to genotype about 10 K to 15 K loci. The Axiom genotyping array will serve as an excellent foundation for studying the population genomics of Douglas-fir and for implementing genomic selection. We are currently using the array to construct a linkage map and test genomic selection in a three-generation breeding program for coastal Douglas-fir.


Asunto(s)
Genoma de Planta/genética , Polimorfismo de Nucleótido Simple/genética , Pseudotsuga/genética , Árboles/genética , Adaptación Fisiológica/genética , Cruzamiento , Bosques , Genotipo , Técnicas de Genotipaje , Humanos , Oregon , Washingtón
5.
Heredity (Edinb) ; 122(6): 848-863, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30631145

RESUMEN

Here, we perform cross-generational GS analysis on coastal Douglas-fir (Pseudotsuga menziesii), reflecting trans-generational selective breeding application. A total of 1321 trees, representing 37 full-sib F1 families from 3 environments in British Columbia, Canada, were used as the training population for (1) EBVs (estimated breeding values) of juvenile height (HTJ) in the F1 generation predicting genomic EBVs of HTJ of 136 individuals in the F2 generation, (2) deregressed EBVs of F1 HTJ predicting deregressed genomic EBVs of F2 HTJ, (3) F1 mature height (HT35) predicting HTJ EBVs in F2, and (4) deregressed F1 HT35 predicting genomic deregressed HTJ EBVs in F2. Ridge regression best linear unbiased predictor (RR-BLUP), generalized ridge regression (GRR), and Bayes-B GS methods were used and compared to pedigree-based (ABLUP) predictions. GS accuracies for scenarios 1 (0.92, 0.91, and 0.91) and 3 (0.57, 0.56, and 0.58) were similar to their ABLUP counterparts (0.92 and 0.60, respectively) (using RR-BLUP, GRR, and Bayes-B). Results using deregressed values fell dramatically for both scenarios 2 and 4 which approached zero in many cases. Cross-generational GS validation of juvenile height in Douglas-fir produced predictive accuracies almost as high as that of ABLUP. Without capturing LD, GS cannot surpass the prediction of ABLUP. Here we tracked pedigree relatedness between training and validation sets. More markers or improved distribution of markers are required to capture LD in Douglas-fir. This is essential for accurate forward selection among siblings as markers that track pedigree are of little use for forward selection of individuals within controlled pollinated families.


Asunto(s)
Pseudotsuga/crecimiento & desarrollo , Pseudotsuga/genética , Colombia Británica , Genómica , Modelos Lineales , Modelos Genéticos , Fitomejoramiento
6.
Planta ; 248(6): 1569-1579, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30276470

RESUMEN

MAIN CONCLUSION: The PmBiPPro1 promoter of the luminal binding protein (BiP) from Douglas-fir is fully functional in transgenic potato, responsive to wounding, and has high transcriptional activity in tubers. A predefined pattern and level of transgene expression targeted to specific tissues or organs and at a particular developmental stage is a pre-requisite for the successful development of plants with desired traits. Here, we evaluated the transcriptional activity of the PmBiPPro1 promoter of the luminal binding protein (BiP) from Douglas-fir, by expressing reporter ß-D-glucuronidase (GUS) gene constructs containing three different PmBiPPro1 promoter versions (2258 bp, 1259 bp, and 278 bp) in transgenic potato. In conifers, this promoter regulates the endoplasmic reticulum (ER) molecular chaperon of the HSP70 stress-related protein family and is essential for proper functioning of the ER. Stable expression analysis demonstrated that two of three PmBiPPro1 promoter versions (PmBiPPro1-1 and PmBiPPro1-3) were fully functional in the heterologous host, exhibited high transcriptional activities in the leaves of unstressed potatoes, and were responsive to wounding. Deletion analysis showed that the positive cis-active regulatory elements necessary for higher level expression resided within the - 1243 to - 261 region, whereas negative cis-active elements encompassed nucleotides - 2242 to - 1243. Histochemical staining revealed high level of GUS activities in tissues associated with a high rate of cell division and secretory activities. Most importantly, the PmBiPPro1 promoters, especially the full-length version, had activity in microtubers at a level that was much higher than in any other potato organ or tissue. The - 2242 to - 1243 bp region likely contains important cis element(s) that interact with tuber-specific transcription factors required for promoter activation in the storage organs. The organ-specific activity of the PmBiPPro1 promoters may be useful for targeted expression of heterologous molecules in potato tubers.


Asunto(s)
Proteínas Portadoras/metabolismo , Regiones Promotoras Genéticas/genética , Pseudotsuga/genética , Solanum tuberosum/genética , Proteínas Portadoras/genética , Genes Reporteros , Especificidad de Órganos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Solanum tuberosum/metabolismo
7.
BMC Genomics ; 18(1): 558, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28738815

RESUMEN

BACKGROUND: Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA sequencing, we sampled 6.1 × 109 reads from 19 trees and constructed a de novo pan-transcriptome reference that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples that capture daily and annual variation. RESULTS: We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with approximately half of transcripts reaching maximum expression +/- 2 h from sunrise and sunset, and +/- 20 days from winter and summer solstices. Comparisons with published studies from other conifers shows congruent behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative orthologs from spruce (Picea) during the transition from fall to winter. CONCLUSIONS: Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7% show a significant circannual cycle. Remarkably, thousands of genes reach their annual peak activity during winter dormancy. Our study establishes the fine-scale timing of daily and annual maximum gene expression for diverse needle genes in Douglas-fir, and it highlights the potential for using this information for evaluating hypotheses concerning the daily or seasonal timing of gene activity in temperate-zone conifers, and for identifying cyclic transcriptome components in other conifer species.


Asunto(s)
Ritmo Circadiano/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Pseudotsuga/genética , Pseudotsuga/fisiología , Transcripción Genética , Oscuridad , Perfilación de la Expresión Génica , Fotoperiodo , Hojas de la Planta/efectos de la radiación , Pseudotsuga/efectos de la radiación , Transcripción Genética/efectos de la radiación
8.
BMC Genomics ; 18(1): 930, 2017 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-29197325

RESUMEN

BACKGROUND: Genomic selection (GS) can offer unprecedented gains, in terms of cost efficiency and generation turnover, to forest tree selective breeding; especially for late expressing and low heritability traits. Here, we used: 1) exome capture as a genotyping platform for 1372 Douglas-fir trees representing 37 full-sib families growing on three sites in British Columbia, Canada and 2) height growth and wood density (EBVs), and deregressed estimated breeding values (DEBVs) as phenotypes. Representing models with (EBVs) and without (DEBVs) pedigree structure. Ridge regression best linear unbiased predictor (RR-BLUP) and generalized ridge regression (GRR) were used to assess their predictive accuracies over space (within site, cross-sites, multi-site, and multi-site to single site) and time (age-age/ trait-trait). RESULTS: The RR-BLUP and GRR models produced similar predictive accuracies across the studied traits. Within-site GS prediction accuracies with models trained on EBVs were high (RR-BLUP: 0.79-0.91 and GRR: 0.80-0.91), and were generally similar to the multi-site (RR-BLUP: 0.83-0.91, GRR: 0.83-0.91) and multi-site to single-site predictive accuracies (RR-BLUP: 0.79-0.92, GRR: 0.79-0.92). Cross-site predictions were surprisingly high, with predictive accuracies within a similar range (RR-BLUP: 0.79-0.92, GRR: 0.78-0.91). Height at 12 years was deemed the earliest acceptable age at which accurate predictions can be made concerning future height (age-age) and wood density (trait-trait). Using DEBVs reduced the accuracies of all cross-validation procedures dramatically, indicating that the models were tracking pedigree (family means), rather than marker-QTL LD. CONCLUSIONS: While GS models' prediction accuracies were high, the main driving force was the pedigree tracking rather than LD. It is likely that many more markers are needed to increase the chance of capturing the LD between causal genes and markers.


Asunto(s)
Exoma , Modelos Genéticos , Fitomejoramiento , Pseudotsuga/genética , Selección Genética , Madera/química , Genómica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Lineales , Pseudotsuga/crecimiento & desarrollo , Sitios de Carácter Cuantitativo , Madera/genética
9.
Glob Chang Biol ; 23(8): 3348-3362, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28303652

RESUMEN

The phenology of diameter-growth cessation in trees will likely play a key role in mediating species and ecosystem responses to climate change. A common expectation is that warming will delay cessation, but the environmental and genetic influences on this process are poorly understood. We modeled the effects of temperature, photoperiod, and seed-source climate on diameter-growth-cessation timing in coast Douglas-fir (an ecologically and economically vital tree) using high-frequency growth measurements across broad environmental gradients for a range of genotypes from different seed sources. Our model suggests that cool temperatures or short photoperiods can induce cessation in autumn. At cool locations (high latitude and elevation), cessation seems to be induced primarily by low temperatures in early autumn (under relatively long photoperiods), so warming will likely delay cessation and extend the growing season. But at warm locations (low latitude or elevation), cessation seems to be induced primarily by short photoperiods later in autumn, so warming will likely lead to only slight extensions of the growing season, reflecting photoperiod limitations on phenological shifts. Trees from seed sources experiencing frequent frosts in autumn or early winter tended to cease growth earlier in the autumn, potentially as an adaptation to avoid frost. Thus, gene flow into populations in warm locations with little frost will likely have limited potential to delay mean cessation dates because these populations already cease growth relatively late. In addition, data from an abnormal heat wave suggested that very high temperatures during long photoperiods in early summer might also induce cessation. Climate change could make these conditions more common in warm locations, leading to much earlier cessation. Thus, photoperiod cues, patterns of genetic variation, and summer heat waves could limit the capacity of coast Douglas-fir to extend its growing season in response to climate change in the warm parts of its range.


Asunto(s)
Cambio Climático , Variación Genética , Pseudotsuga/genética , Fotoperiodo , Estaciones del Año
10.
Mol Plant Microbe Interact ; 28(3): 261-73, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25338146

RESUMEN

The coordinated transcriptomic responses of both mutualistic ectomycorrhizal (ECM) fungi and their hosts during the establishment of symbiosis are not well-understood. This study characterizes the transcriptomic alterations of the ECM fungus Laccaria bicolor during different colonization stages on two hosts (Populus trichocarpa and Pseudotsuga menziesii) and compares this to the transcriptomic variations of P. trichocarpa across the same time-points. A large number of L. bicolor genes (≥ 8,000) were significantly regulated at the transcriptional level in at least one stage of colonization. From our data, we identify 1,249 genes that we hypothesize is the 'core' gene regulon necessary for the mutualistic interaction between L. bicolor and its host plants. We further identify a group of 1,210 genes that are regulated in a host-specific manner. This variable regulon encodes a number of genes coding for proteases and xenobiotic efflux transporters that we hypothesize act to counter chemical-based defenses simultaneously activated at the transcriptomic level in P. trichocarpa. The transcriptional response of the host plant P. trichocarpa consisted of differential waves of gene regulation related to signaling perception and transduction, defense response, and the induction of nutrient transfer in P. trichocarpa tissues. This study, therefore, gives fresh insight into the shifting transcriptomic landscape in both the colonizing fungus and its host and the different strategies employed by both partners in orchestrating a mutualistic interaction.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Laccaria/genética , Populus/microbiología , Pseudotsuga/microbiología , Transcriptoma , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Laccaria/citología , Laccaria/fisiología , Micorrizas/citología , Micorrizas/genética , Micorrizas/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Populus/citología , Populus/genética , Populus/inmunología , Pseudotsuga/citología , Pseudotsuga/genética , Pseudotsuga/inmunología , Regulón/genética , Transducción de Señal , Especificidad de la Especie , Simbiosis
11.
Glob Chang Biol ; 21(2): 947-58, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25156589

RESUMEN

There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought-resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space-for-time substitution, common garden experiment with 35 populations of coast Douglas-fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as 'cool/moist', 'moderate', or 'warm/dry') to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought-resistance, (ii) the patterns of genetic variation are related to the native source-climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought-resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpiration(min)), water deficit (% below turgid saturation), and specific leaf area (SLA, cm(2) g(-1)) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought-resistance (i.e., lower transpiration(min), water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought-resistance across all test sites. Multiple regression analysis indicated that Douglas-fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future.


Asunto(s)
Cambio Climático , Sequías , Variación Genética , Pseudotsuga/fisiología , Oregon , Pseudotsuga/genética , Pseudotsuga/crecimiento & desarrollo , Washingtón
12.
Glob Chang Biol ; 21(10): 3814-26, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25920066

RESUMEN

The success of conifers over much of the world's terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer-dominated forests. The expression of cold hardiness is a product of environmental cues (E), genetic differentiation (G), and their interaction (G × E), although few studies have considered all components together. To better understand and manage for the impacts of climate change on conifer cold hardiness, we conducted a common garden experiment replicated in three test environments (cool, moderate, and warm) using 35 populations of coast Douglas-fir (Pseudotsuga menziesii var. menziesii) to test the hypotheses: (i) cool-temperature cues in fall are necessary to trigger cold hardening, (ii) there is large genetic variation among populations in cold hardiness that can be predicted from seed-source climate variables, (iii) observed differences among populations in cold hardiness in situ are dependent on effective environmental cues, and (iv) movement of seed sources from warmer to cooler climates will increase risk to cold injury. During fall 2012, we visually assessed cold damage of bud, needle, and stem tissues following artificial freeze tests. Cool-temperature cues (e.g., degree hours below 2 °C) at the test sites were associated with cold hardening, which were minimal at the moderate test site owing to mild fall temperatures. Populations differed 3-fold in cold hardiness, with winter minimum temperatures and fall frost dates as strong seed-source climate predictors of cold hardiness, and with summer temperatures and aridity as secondary predictors. Seed-source movement resulted in only modest increases in cold damage. Our findings indicate that increased fall temperatures delay cold hardening, warmer/drier summers confer a degree of cold hardiness, and seed-source movement from warmer to cooler climates may be a viable option for adapting coniferous forest to future climate.


Asunto(s)
Interacción Gen-Ambiente , Variación Genética , Pseudotsuga/fisiología , Cambio Climático , Frío , Noroeste de Estados Unidos , Pseudotsuga/genética , Pseudotsuga/crecimiento & desarrollo , Estaciones del Año
13.
BMC Ecol Evol ; 24(1): 70, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807083

RESUMEN

BACKGROUND: Selection of climate-change adapted ecotypes of commercially valuable species to date relies on DNA-assisted screening followed by growth trials. For trees, such trials can take decades, hence any approach that supports focussing on a likely set of candidates may save time and money. We use a non-stationary statistical analysis with spatially varying coefficients to identify ecotypes that indicate first regions of similarly adapted varieties of Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) in North America. For over 70,000 plot-level presence-absences, spatial differences in the survival response to climatic conditions are identified. RESULTS: The spatially-variable coefficient model fits the data substantially better than a stationary, i.e. constant-effect analysis (as measured by AIC to account for differences in model complexity). Also, clustering the model terms identifies several potential ecotypes that could not be derived from clustering climatic conditions itself. Comparing these six identified ecotypes to known genetically diverging regions shows some congruence, as well as some mismatches. However, comparing ecotypes among each other, we find clear differences in their climate niches. CONCLUSION: While our approach is data-demanding and computationally expensive, with the increasing availability of data on species distributions this may be a useful first screening step during the search for climate-change adapted varieties. With our unsupervised learning approach being explorative, finely resolved genotypic data would be helpful to improve its quantitative validation.


Asunto(s)
Cambio Climático , Pseudotsuga , Pseudotsuga/genética , Ecotipo , Adaptación Fisiológica , Modelos Biológicos , América del Norte
14.
BMC Ecol Evol ; 24(1): 117, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227766

RESUMEN

BACKGROUND: Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) plays a critical role in the ecology and economy of Western North America. This conifer species comprises two distinct varieties: the coastal variety (var. menziesii) along the Pacific coast, and the interior variety (var. glauca) spanning the Rocky Mountains into Mexico, with instances of inter-varietal hybridization in Washington and British Columbia. Recent investigations have focused on assessing environmental pressures shaping Douglas-fir's genomic variation for a better understanding of its evolutionary and adaptive responses. Here, we characterize range-wide population structure, estimate inter-varietal hybridization levels, identify candidate loci for climate adaptation, and forecast shifts in species and variety distribution under future climates. RESULTS: Using a custom SNP-array, we genotyped 540 trees revealing four distinct clusters with asymmetric admixture patterns in the hybridization zone. Higher genetic diversity observed in coastal and hybrid populations contrasts with lower diversity in inland populations of the southern Rockies and Mexico, exhibiting a significant isolation by distance pattern, with less marked but still significant isolation by environment. For both varieties, we identified candidate loci associated with local adaptation, with hundreds of genes linked to processes such as stimulus response, reactions to chemical compounds, and metabolic functions. Ecological niche modeling revealed contrasting potential distribution shifts among the varieties in the coming decades, with interior populations projected to lose habitat and become more vulnerable, while coastal populations are expected to gain suitable areas. CONCLUSIONS: Overall, our findings provide crucial insights into the population structure and adaptive potential of Douglas-fir, with the coastal variety being the most likely to preserve its evolutionary path throughout the present century, which carry implications for the conservation and management of this species across their range.


Asunto(s)
Pseudotsuga , Pseudotsuga/genética , Adaptación Fisiológica/genética , Variación Genética/genética , Hibridación Genética , Selección Genética , México , Polimorfismo de Nucleótido Simple , Colombia Británica
15.
BMC Genomics ; 14: 137, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23445355

RESUMEN

BACKGROUND: Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping platform. RESULTS: We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified 278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic. CONCLUSIONS: Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs, and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array-more SNPs than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation and potential responses to climate change.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Polimorfismo de Nucleótido Simple , Pseudotsuga/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Internet , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados
16.
G3 (Bethesda) ; 13(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36454025

RESUMEN

Douglas-fir (Pseudotsuga menziesii) is native to western North America. It grows in a wide range of environmental conditions and is an important timber tree. Although there are several studies on the gene expression responses of Douglas-fir to abiotic cues, the absence of high-quality transcriptome and genome data is a barrier to further investigation. Like for most conifers, the available transcriptome and genome reference dataset for Douglas-fir remains fragmented and requires refinement. We aimed to generate a highly accurate, and complete reference transcriptome and genome annotation. We deep-sequenced the transcriptome of Douglas-fir needles from seedlings that were grown under nonstress control conditions or a combination of heat and drought stress conditions using long-read (LR) and short-read (SR) sequencing platforms. We used 2 computational approaches, namely de novo and genome-guided LR transcriptome assembly. Using the LR de novo assembly, we identified 1.3X more high-quality transcripts, 1.85X more "complete" genes, and 2.7X more functionally annotated genes compared to the genome-guided assembly approach. We predicted 666 long noncoding RNAs and 12,778 unique protein-coding transcripts including 2,016 putative transcription factors. We leveraged the LR de novo assembled transcriptome with paired-end SR and a published single-end SR transcriptome to generate an improved genome annotation. This was conducted with BRAKER2 and refined based on functional annotation, repetitive content, and transcriptome alignment. This high-quality genome annotation has 51,419 unique gene models derived from 322,631 initial predictions. Overall, our informatics approach provides a new reference Douglas-fir transcriptome assembly and genome annotation with considerably improved completeness and functional annotation.


Asunto(s)
Pseudotsuga , Transcriptoma , Pseudotsuga/genética , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Secuencia de Bases
17.
Biomolecules ; 13(9)2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37759800

RESUMEN

The Douglas fir (Pseudotsuga menziesii) is a conifer native to North America that has become increasingly popular in plantations in France due to its many advantages as timber: rapid growth, quality wood, and good adaptation to climate change. Tree genetic improvement programs require knowledge of a species' genetic structure and history and the development of genetic markers. The very slow progress in this field, for Douglas fir as well as the entire genus Pinus, can be explained using the very large size of their genomes, as well as by the presence of numerous highly repeated sequences. Proteomics, therefore, provides a powerful way to access genomic information of otherwise challenging species. Here, we present the first Douglas fir proteomes acquired using nLC-MS/MS from 12 different plant organs or tissues. We identified 3975 different proteins and quantified 3462 of them, then examined the distribution of specific proteins across plant organs/tissues and their implications in various molecular processes. As the first large proteomic study of a resinous tree species with organ-specific profiling, this short note provides an important foundation for future genomic annotations of conifers and other trees.


Asunto(s)
Pseudotsuga , Tracheophyta , Proteoma/genética , Pseudotsuga/genética , Proteómica , Espectrometría de Masas en Tándem , Cambio Climático
18.
BMC Genom Data ; 24(1): 69, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37986039

RESUMEN

OBJECTIVES: Molecular cues linked to heartwood formation open new (complementary) perspectives to genetic breeding programs of Douglas-fir, a tree species largely cultivated in Europe for the natural durability and civil engineering properties of its wood. DATA DESCRIPTION: RNAs from a single genotype of Douglas-fir, extracted from three distinct wood zones (outer sapwood, inner sapwood and transition zone) at four vegetative seasons to generate an extensive RNA-seq dataset used to apprehend the in-wood dynamic and seasonality of heartwood formation in this hardwood model species. Previously published data collected on somatic embryos of the same genotype could be merged with the present dataset to upgrade grade the Douglas-fir reference transcriptome.


Asunto(s)
Pseudotsuga , Transcriptoma , Transcriptoma/genética , Pseudotsuga/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Madera/genética
19.
BMC Genomics ; 13: 673, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23190494

RESUMEN

BACKGROUND: Douglas-fir (Pseudotsuga menziesii) extends over a wide range of contrasting environmental conditions, reflecting substantial local adaptation. For this reason, it is an interesting model species to study plant adaptation and the effects of global climate change such as increased temperatures and significant periods of drought on individual trees and the forest landscape in general. However, genomic data and tools for studying genetic variation in natural populations to understand the genetic and physiological mechanisms of adaptation are currently missing for Douglas-fir. This study represents a first step towards characterizing the Douglas-fir transcriptome based on 454 sequencing of twelve cDNA libraries. The libraries were constructed from needle and wood tissue of coastal and interior provenances subjected to drought stress experiments. RESULTS: The 454 sequencing of twelve normalized cDNA libraries resulted in 3.6 million reads from which a set of 170,859 putative unique transcripts (PUTs) was assembled. Functional annotation by BLAST searches and Gene Ontology mapping showed that the composition of functional classes is very similar to other plant transcriptomes and demonstrated that a large fraction of the Douglas-fir transcriptome is tagged by the PUTs. Based on evolutionary conservation, we identified about 1,000 candidate genes related to drought stress. A total number of 187,653 single nucleotide polymorphisms (SNPs) were detected by three SNP detection tools. However, only 27,688 SNPs were identified by all three methods, indicating that SNP detection depends on the particular method used. The two alleles of about 60% of the 27,688 SNPs are segregating simultaneously in both coastal and interior provenances, which indicates a high proportion of ancestral shared polymorphisms or a high level of gene flow between these two ecologically and phenotypically different varieties. CONCLUSIONS: We established a catalogue of PUTs and large SNP database for Douglas-fir. Both will serve as a useful resource for the further characterization of the genome and transcriptome of Douglas-fir and for the analysis of genetic variation using genotyping or resequencing methods.


Asunto(s)
Adaptación Fisiológica/genética , Bases de Datos de Ácidos Nucleicos , Genoma de Planta , Pseudotsuga/genética , Plantones/genética , Estrés Fisiológico/genética , Transcriptoma , Aclimatación/genética , Secuencia de Bases , Clima , Sequías , Biblioteca de Genes , Variación Genética , Genotipo , Geografía , Polimorfismo de Nucleótido Simple , Pseudotsuga/fisiología , Plantones/fisiología , Análisis de Secuencia de ADN
20.
Sex Plant Reprod ; 24(4): 283-96, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21644002

RESUMEN

Control of female parthenogenetic apomixis and androsporogenesis of Douglas-fir embryonal initials was studied using an experimental culture system in which changes in growth condition can mediate changes in cell identity and outcomes. This culture system constitutes an artificial sporangium in which myriad culture conditions can be simulated and should be applicable for research on a variety of gymnosperms. In this study, embryonal initials from developing seeds from two Douglas-fir trees were rescued and became reprogrammed for female parthenogenetic apomixis (fPA) and parthenogenetic androsporogenesis (mPA). Female PA was initiated by endomitosis forming a binucleate cell with a diploid egg-equivalent and an apoptotic ventral canal nucleus in an archegonial tube. Egg-equivalent nuclei formed cells (parthenotes) that were discharged into an aqueous culture medium. Parthenotes developed axial tiers atypical of early embryogenesis in seeds. Earlier in the year, androsporangial tubes were parthenogenetically differentiated and released monads, dyads, triads, and tetrads into the culture medium. Spores showed chromosomal aberrations. PA demonstrated a temporal separation in gender expression (dichogamy). Embryonal initials brought forward and by-passed the long juvenile phases normally needed for cells to develop into trees and express reproductive maturity. Expressions of fPA and mPA indicated that the specialized culture flasks served as an artificial sporangium (AS). Awareness is raised for the value of an AS for research in gymnosperm life cycles and as a teaching and research laboratory.


Asunto(s)
Apomixis , Partenogénesis , Pseudotsuga/fisiología , Esporangios/fisiología , Árboles/fisiología , Pseudotsuga/embriología , Pseudotsuga/genética , Esporangios/embriología , Esporangios/genética , Esporas/genética , Esporas/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos , Árboles/embriología , Árboles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA