RESUMEN
Applying various drug design strategies including ring variation, substituents variation, and ring fusion, two series of 2-(alkylthio)-5-(arylidene/heteroarylidene)imidazolones and imidazo[1,2-a]thieno[2,3-d]pyrimidines were designed and prepared as dual potential Chk1 and Chk2 inhibitors. The newly synthesized hybrids were screened in NCI 60 cell line panel where the most active derivatives 4b, d-f, and 6a were further estimated for their five dose antiproliferative activity against the most sensitive tumor cells including breast MCF-7 and MDA-MB-468 and non-small cell lung cancer EKVX as well as normal WI-38 cell. Noticeably, increasing the carbon chain attached to thiol moiety at C-2 of imidazolone scaffold elevated the cytotoxic activity. Hence, compounds 4e and 4f, containing S-butyl fragment, exhibited the most antiproliferative activity against the tested cells where 4f showed extremely potent selectivity toward them. As well, compound 6a, containing imidazothienopyrimidine core, exerted significant cytotoxic activity and selectivity toward the examined cells. The mechanistic investigation of the most active cytotoxic analogs was achieved through the evaluation of their inhibitory activity against Chk1 and Chk2. Results revealed that 4f displayed potent dual inhibition of both Chk1 and Chk2 with IC50 equal 0.137 and 0.25 µM, respectively. It also promoted its antiproliferative and Chk suppression activity via EKVX cell cycle arrest at S phase through stimulating the apoptotic approach. The apoptosis induction was also emphasized by elevating the expression of Caspase-3 and Bax, that are accompanied by Bcl-2 diminution. The in silico molecular docking and ADMET profiles of the most active analogs have been carried out to evaluate their potential as significant anticancer drug candidates.
Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Imidazoles , Inhibidores de Proteínas Quinasas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa de Punto de Control 2/antagonistas & inhibidores , Quinasa de Punto de Control 2/metabolismo , Imidazoles/farmacología , Imidazoles/química , Imidazoles/síntesis química , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Pirimidinas/síntesis química , Pirimidinas/química , Pirimidinas/farmacologíaRESUMEN
Nature provides us with a rich source of compounds with a wide range of applications, including the creation of innovative drugs. Despite advancements in chemically synthesized therapeutics, natural compounds are increasingly significant, especially in cancer treatment, a leading cause of death globally. One promising approach involves the use of natural inhibitors of checkpoint kinase 2 (Chk2), a critical regulator of DNA repair, cell cycle arrest, and apoptosis. Chk2's activation in response to DNA damage can lead to apoptosis or DNA repair, influencing glycolysis and mitochondrial function. In cancer therapy, inhibiting Chk2 can disrupt DNA repair and cell cycle progression, promoting cancer cell death and enhancing the efficacy of radiotherapy and chemotherapy. Additionally, Chk2 inhibitors can safeguard non-cancerous cells during these treatments by inhibiting p53-dependent apoptosis. Beyond oncology, Chk2 inhibition shows potential in treating hepatitis C virus (HCV) infections, as the virus relies on Chk2 for RNA replication in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), in which DNA damage plays a crucial role. Plant-derived Chk2 inhibitors, such as artemetin, rhamnetin, and curcumin, offer a promising future for treating various diseases with potentially milder side effects and broader metabolic impacts compared to conventional therapies. The review aims to underscore the immense potential of natural Chk2 inhibitors in various therapeutic contexts, particularly in oncology and the treatment of other diseases involving DNA damage and repair mechanisms. These natural Chk2 inhibitors hold significant promise for revolutionizing the landscape of cancer treatment and other diseases. Further research into these compounds could lead to the development of innovative therapies that offer hope for the future with fewer side effects and enhanced efficacy.
Asunto(s)
Quinasa de Punto de Control 2 , Quinasa de Punto de Control 2/metabolismo , Quinasa de Punto de Control 2/antagonistas & inhibidores , Humanos , Animales , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Neoplasias/tratamiento farmacológico , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacosRESUMEN
BACKGROUND: PHI-101 is an orally available, selective checkpoint kinase 2 (Chk2) inhibitor. PHI-101 has shown anti-tumour activity in ovarian cancer cell lines and impaired DNA repair pathways in preclinical experiments. Furthermore, the in vivo study suggests the synergistic effect of PHI-101 through combination with PARP inhibitors for ovarian cancer treatment. The primary objective of this study is to evaluate the safety and tolerability of PHI-101 in platinum-resistant recurrent ovarian cancer. METHODS: Chk2 inhibitor for Recurrent EpitheliAl periToneal, fallopIan, or oVarian cancEr (CREATIVE) trial is a prospective, multi-centre, phase IA dose-escalation study. Six cohorts of dose levels are planned, and six to 36 patients are expected to be enrolled in this trial. Major inclusion criteria include ≥ 19 years with histologically confirmed epithelial ovarian cancer, fallopian tube carcinoma, or primary peritoneal cancer. Also, patients who showed disease progression during platinum-based chemotherapy or disease progression within 24 weeks from completion of platinum-based chemotherapy will be included, and prior chemotherapy lines of more than five will be excluded. The primary endpoint of this study is to determine the dose-limiting toxicity (DLT) and maximum tolerated dose (MTD) of PHI-101. DISCUSSION: PHI-101 is the first orally available Chk2 inhibitor, expected to show effectiveness in treating recurrent ovarian cancer. Through this CREATIVE trial, DLT and MTD of this new targeted therapy can be confirmed to find the recommended dose for the phase II clinical trial. This study may contribute to developing a new combination regimen for the treatment of ovarian cancer. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04678102 .
Asunto(s)
Antineoplásicos Inmunológicos , Quinasa de Punto de Control 2 , Inhibidores de Puntos de Control Inmunológico , Recurrencia Local de Neoplasia , Neoplasias Ováricas , Adulto , Femenino , Humanos , Persona de Mediana Edad , Antineoplásicos Inmunológicos/administración & dosificación , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/inmunología , Quinasa de Punto de Control 2/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Neoplasias de las Trompas Uterinas/tratamiento farmacológico , Neoplasias de las Trompas Uterinas/inmunología , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Dosis Máxima Tolerada , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/inmunología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Peritoneales/inmunología , Estudios ProspectivosRESUMEN
BACKGROUND: Prexasertib (LY2606368) is a novel, second-generation, selective dual inhibitor of checkpoint kinase proteins 1 (CHK1) and 2 (CHK2). We conducted a phase 1 trial of prexasertib to estimate the maximum-tolerated dose (MTD) and/or recommended phase 2 dose (RP2D), to define and describe the toxicities, and to characterize the pharmacokinetics (PK) of prexasertib in pediatric patients with recurrent or refractory solid and central nervous system (CNS) tumors. METHODS: Prexasertib was administered intravenously (i.v.) on days 1 and 15 of a 28-day cycle. Four dose levels, 80, 100, 125, and 150 mg/m2 , were evaluated using a rolling-six design. PK analysis was performed during cycle 1. Tumor tissue was examined for biomarkers (CHK1 and TP53) of prexasertib activity. RESULTS: Thirty patients were enrolled; 25 were evaluable. The median age was 9.5 years (range: 2-20) and 21 (70%) were male. Twelve patients (40%) had solid tumors and 18 patients (60%) had CNS tumors. There were no cycle 1 or later dose-limiting toxicities. Common cycle 1, drug-related grade 3/4 toxicities (> 10% of patients) included neutropenia (100%), leukopenia (68%), thrombocytopenia (24%), lymphopenia (24%), and anemia (12%). There were no objective responses; best overall response was stable disease in three patients for five cycles (hepatocellular carcinoma), three cycles (ependymoma), and five cycles (undifferentiated sarcoma). The PK appeared dose proportional across the 80-150 mg/m2 dose range. CONCLUSIONS: Although the MTD of prexasertib was not defined by this study, 150 mg/m2 administered i.v. on days 1 and 15 of a 28-day cycle was determined to be the RP2D.
Asunto(s)
Neoplasias del Sistema Nervioso Central , Neoplasias , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirazinas/administración & dosificación , Pirazoles/administración & dosificación , Adolescente , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa de Punto de Control 2/antagonistas & inhibidores , Niño , Preescolar , Femenino , Humanos , Leucopenia , Masculino , Dosis Máxima Tolerada , Recurrencia Local de Neoplasia , Neoplasias/tratamiento farmacológico , Neutropenia , Inhibidores de Proteínas Quinasas/farmacocinética , Pirazinas/farmacocinética , Pirazoles/farmacocinética , Trombocitopenia , Adulto JovenRESUMEN
Elevated levels of replicative stress in gynecological cancers arising from uncontrolled oncogenic activation, loss of key tumor suppressors, and frequent defects in the DNA repair machinery are an intrinsic vulnerability for therapeutic exploitation. The presence of replication stress activates the DNA damage response and downstream checkpoint proteins including ataxia telangiectasia and Rad3 related kinase (ATR), checkpoint kinase 1 (CHK1), and WEE1-like protein kinase (WEE1), which trigger cell cycle arrest while protecting and restoring stalled replication forks. Strategies that increase replicative stress while lowering cell cycle checkpoint thresholds may allow unrepaired DNA damage to be inappropriately carried forward in replicating cells, leading to mitotic catastrophe and cell death. Moreover, the identification of fork protection as a key mechanism of resistance to chemo- and poly (ADP-ribose) polymerase inhibitor therapy in ovarian cancer further increases the priority that should be accorded to the development of strategies targeting replicative stress. Small molecule inhibitors designed to target the DNA damage sensors, such as inhibitors of ataxia telangiectasia-mutated (ATM), ATR, CHK1 and WEE1, impair smooth cell cycle modulation and disrupt efficient DNA repair, or a combination of the above, have demonstrated interesting monotherapy and combinatorial activity, including the potential to reverse drug resistance and have entered developmental pipelines. Yet unresolved challenges lie in balancing the toxicity profile of these drugs in order to achieve a suitable therapeutic index while maintaining clinical efficacy, and selective biomarkers are urgently required. Here we describe the premise for targeting of replicative stress in gynecological cancers and discuss the clinical advancement of this strategy.
Asunto(s)
Replicación del ADN/efectos de los fármacos , ADN/fisiología , Neoplasias de los Genitales Femeninos/tratamiento farmacológico , Proteínas Oncogénicas/fisiología , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa de Punto de Control 2/antagonistas & inhibidores , Daño del ADN , Reparación del ADN , Femenino , Inestabilidad Genómica , Humanos , Terapia Molecular Dirigida , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Transducción de SeñalRESUMEN
Although radiotherapy, especially carbon-ion radiotherapy, is an effective treatment modality against non-small-cell lung cancer (NSCLC), studies using radiation combined with sensitizer for improving the efficacy of radiotherapy are still needed. In this work, we aimed to investigate in NSCLC A549 and H1299 cell lines the effects of different linear energy transfer (LET) radiations combined with diverse sensitizing compounds. Cells pretreated with the CHK1/CHK2 inhibitor AZD7762, Honokiol or Tunicamycin were irradiated with low-LET X-rays and high-LET carbon ions. Cell survival was assessed using the clonogenic cell survival assay. Cell cycle distribution and apoptosis were measured with flow cytometry, and DNA double strand break (DSB) and repair were detected using γ-H2AX immunofluorescence staining. Our results revealed that AZD7762, Honokiol and Tunicamycin demonstrated low cytotoxicity to NSCLC cells and a pronounced radiosensitizing effect on NSCLC cells exposed to carbon ions than X-rays. Unrepaired DNA DSB damages, the abrogation of G2/M arrest induced by irradiation, and finally apoptotic cell death were the main causes of the radiosensitizing effect. Thus, our data suggest that high-LET carbon ion combined with these compounds may be a potentially effective therapeutic strategy for locally advanced NSCLC.
Asunto(s)
Antineoplásicos/farmacología , Compuestos de Bifenilo/farmacología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa de Punto de Control 2/antagonistas & inhibidores , Lignanos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Tiofenos/farmacología , Tunicamicina/farmacología , Urea/análogos & derivados , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Carbono , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Roturas del ADN de Doble Cadena , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Humanos , Iones , Transferencia Lineal de Energía , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Tolerancia a Radiación/efectos de los fármacos , Urea/farmacología , Rayos XRESUMEN
Natural products derived from herbal medicines have become a major focus of anti-cancer drug discovery studies. Acetyl-macrocalin B (A-macB) is an ent-diterpenoid isolated from Isodon silvatica. This study aimed to examine the effect and molecular action of A-macB in esophageal squamous cell carcinoma (ESCC) and explore possible drug synergistic modalities. A-macB induced cellular reactive oxygen species (ROS) generation, initiated the p38 mitogen-activated protein kinase (MAPK) signaling pathway, and triggered the caspase-9-dependent apoptosis cascade in ESCC cells. The ROS scavenger N-acetylcysteine (NAC) and the specific p38 inhibitor SB203580 reversed the effects of A-macB on the p38 network and thus rescued ESCC cells from apoptosis. The cellular ROS increase was at least partially due to the suppression of glutathione-S-transferase P1 (GSTP1) by A-macB. A-macB also upregulated the Chk1/Chk2-Cdc25C/Cdc2/Cyclin B1 axis to induce G2/M phase arrest. The cell growth inhibition induced by A-macB was further enhanced by AZD7762, a specific Chk1/Chk2 inhibitor, with a combination index (CI) of <1. Moreover, A-macB efficiently suppressed xenograft growth without inducing significant toxicity, and AZD7762 potentiated the effects of A-macB in the suppression of tumor growth in vivo. Taken together, A-macB is a promising lead compound for ESCC and exerts synergistic anti-cancer effects with AZD7762.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proliferación Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa de Punto de Control 2/antagonistas & inhibidores , Diterpenos de Tipo Kaurano/farmacología , Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Tiofenos/farmacología , Urea/análogos & derivados , Animales , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa de Punto de Control 2/metabolismo , Sinergismo Farmacológico , Neoplasias Esofágicas/enzimología , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/enzimología , Carcinoma de Células Escamosas de Esófago/patología , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Urea/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
BACKGROUND/AIMS: Cell cycle checkpoint kinase 2 (CHK2) performs essential cellular functions and might be associated with tumorigenesis and tumor progression. Here, we explored the function and molecular mechanisms of CHK2 in the progression of papillary thyroid cancer (PTC). METHODS: The expression levels of both total CHK2 and activated CHK2 (p-CHK2) in tissues from 100 PTC patients were detected and evaluated using immunohistochemistry. The roles of CHK2 on cell proliferation, invasion, migration, apoptosis and cancer stem cell (CSC) markers were investigated by CCK-8, Transwell, flow cytometry, western blot and ALDEFLOUR assay. PTC cells cultured in suspension conditions were assayed for anoikis. The anchorage-independent condition was further detected by soft agar colony formation assay. Furthermore, anoikis associated regulatory proteins were explored by western blot and verified by forced downregulation experiment, respectively. RESULTS: We found that the levels of both CHK2 and p-CHK2 were significantly upregulated in PTC cancer tissues compared with those in tumor-adjacent tissues. The overexpression of p-CHK2 in primary tumor tissues was associated with tumor aggressiveness and metastatic potential. However, the levels of both CHK2 and p-CHK2 were decreased in metastatic lymph nodes. Our results showed that CHK2 upregulated the levels of CSC markers with no effect on cell proliferation, invasion and migration. Interestingly, we revealed a previously undescribed anoikis-promoting role for CHK2 in PTC. Specifically, the detachment of PTC cells from the extracellular matrix (ECM) triggers CHK2 degradation. Then, the forced downregulation of CHK2 rescued PTC cells from anoikis, but no effect was observed on the apoptosis of adherent PTC cells. Additionally, as a novel regulator of anoikis, CHK2 can induce cell death in a p53-independent manner via the regulation of PRAS40 activation. CONCLUSION: High expression levels of CHK2 and p-CHK2 were associated with the progression of PTC. Our results defined an unexpected role for CHK2 as a mediator of anoikis that functions through the regulation of PRAS40 activation, which may be associated with the survival of circulating tumor cells and metastatic behavior.
Asunto(s)
Anoicis , Carcinoma Papilar/patología , Quinasa de Punto de Control 2/metabolismo , Neoplasias de la Tiroides/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Carcinoma Papilar/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Quinasa de Punto de Control 2/antagonistas & inhibidores , Quinasa de Punto de Control 2/genética , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia ArribaRESUMEN
BACKGROUND: Elevated APOBEC3B expression in tumours correlates with a kataegic pattern of localised hypermutation. We assessed the cellular phenotypes associated with high-level APOBEC3B expression and the influence of p53 status on these phenotypes using an isogenic system. METHODS: We used RNA interference of p53 in cells with inducible APOBEC3B and assessed DNA damage response (DDR) biomarkers. The mutational effects of APOBEC3B were assessed using whole-genome sequencing. In vitro small-molecule inhibitor sensitivity profiling was used to identify candidate therapeutic vulnerabilities. RESULTS: Although APOBEC3B expression increased the incorporation of genomic uracil, invoked DDR biomarkers and caused cell cycle arrest, inactivation of p53 circumvented APOBEC3B-induced cell cycle arrest without reversing the increase in genomic uracil or DDR biomarkers. The continued expression of APOBEC3B in p53-defective cells not only caused a kataegic mutational signature but also caused hypersensitivity to small-molecule DDR inhibitors (ATR, CHEK1, CHEK2, PARP, WEE1 inhibitors) as well as cisplatin/ATR inhibitor and ATR/PARP inhibitor combinations. CONCLUSIONS: Although loss of p53 might allow tumour cells to tolerate elevated APOBEC3B expression, continued expression of this enzyme might impart a number of therapeutic vulnerabilities upon tumour cells.
Asunto(s)
Puntos de Control del Ciclo Celular/genética , Citidina Desaminasa/genética , Daño del ADN/genética , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad Menor/genética , Proteína p53 Supresora de Tumor/genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Western Blotting , Sistemas CRISPR-Cas , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa de Punto de Control 2/antagonistas & inhibidores , Cisplatino/farmacología , Citidina Desaminasa/metabolismo , Daño del ADN/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Antígenos de Histocompatibilidad Menor/metabolismo , Mutación , Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Interferencia de ARN , Uracilo/metabolismoRESUMEN
Hyperthermia induced by heat stress (HS) is known to inhibit proliferation and induce cell death in cancer. We previously demonstrated that checkpoint kinase 1 (Chk1) contributes to G2/M arrest and cell survival under HS; however, the role of Chk2, a functional analog of Chk1, in regulation of the cell cycle and cell death under HS is still unknown. Here, we addressed the role of Chk2 using Molt-4 cells with p53-targeted shRNA (Molt-4/shp53) and parental control cells (Molt-4/V). Chk2 inhibition suppressed C-terminal acetylation of p53 and delayed the induction of p53-target genes in Molt-4/V cells under HS; however, Chk2 inhibition failed to inhibit apoptosis induced by HS, indicating that Chk2 was dispensable for p53-dependent apoptosis under HS. In contrast, Chk2 inhibition abrogated G2/M arrest and promoted cell death induced by HS in HeLa cells and Molt-4/shp53 cells. Thus, we demonstrated for the first time that Chk2 was required for cell cycle arrest and cell survival, particularly in cells with p53 defects under HS. These findings indicated that Chk2 may be a selective target for p53-mutated or -deficient cancer treated with hyperthermia.
Asunto(s)
Puntos de Control del Ciclo Celular/genética , Quinasa de Punto de Control 2/fisiología , Calor , Estrés Fisiológico/genética , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/fisiología , Línea Celular Tumoral , Supervivencia Celular/genética , Quinasa de Punto de Control 2/antagonistas & inhibidores , Quinasa de Punto de Control 2/genética , Daño del ADN , Citometría de Flujo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Mutación , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genéticaRESUMEN
The methyl methanesulfonate and ultraviolet-sensitive gene clone 81 protein is a structure-specific nuclease that plays important roles in DNA replication and repair. Knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 has been found to sensitize cancer cells to chemotherapy. However, the underlying molecular mechanism is not well understood. We found that methyl methanesulfonate and ultraviolet-sensitive gene clone 81 was upregulated and the ATM/Chk2 pathway was activated at the same time when MCF-7 cells were treated with cisplatin. By using lentivirus targeting methyl methanesulfonate and ultraviolet-sensitive gene clone 81 gene, we showed that knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 enhanced cell apoptosis and inhibited cell proliferation in MCF-7 cells under cisplatin treatment. Abrogation of ATM/Chk2 pathway inhibited cell viability in MCF-7 cells in response to cisplatin. Importantly, we revealed that ATM/Chk2 was required for the upregulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 resulted in inactivation of ATM/Chk2 pathway in response to cisplatin. Meanwhile, knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 activated the p53/Bcl-2 pathway in response to cisplatin. These data suggest that the ATM/Chk2 may promote the repair of DNA damage caused by cisplatin by sustaining methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and the double-strand breaks generated by methyl methanesulfonate and ultraviolet-sensitive gene clone 81 may activate the ATM/Chk2 pathway in turn, which provide a novel mechanism of how methyl methanesulfonate and ultraviolet-sensitive gene clone 81 modulates DNA damage response and repair.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Quinasa de Punto de Control 2/metabolismo , Cisplatino/farmacología , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Quinasa de Punto de Control 2/antagonistas & inhibidores , Quinasa de Punto de Control 2/genética , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos , Endonucleasas/genética , Retroalimentación , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Células MCF-7 , Morfolinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pironas/farmacología , Transducción de Señal , Tiofenos/farmacología , Urea/análogos & derivados , Urea/farmacologíaRESUMEN
Mediator complex subunit 1 (Med1)/Thyroid hormone receptor-associated protein 220 (TRAP220), an essential component of thyroid hormone receptor-associated proteins (TRAP)/mediator, plays important roles in hormone responses and tumorigenesis. However, the role of Med1 in the DNA damage response has not been studied. In this study, we found that DNA damage, resulted from γ-irradiation, ultraviolet (UV)-irradiation, or hydroxyurea, induced phosphorylation of Med1 in vivo. Phosphorylation of Med1 was abrogated by either caffeine or wortmannin treatment, suggesting that Med1 is phosphorylated through the DNA damage checkpoint pathway. A checkpoint kinase 1 (Chk1)/checkpoint kinase 2 (Chk2) consensus phosphorylation motif was identified at Serine 671 of Med1 and Ser671 motif was primarily phosphorylated by Chk2 in vitro. Moreover, the in vivo phosphorylation of Med1 was abrogated by a Chk2 inhibitor, and physical interaction between Chk2 and Med1 was observed, confirming that Chk2 is responsible for Med1 phosphorylation upon DNA damage. These results suggest that Med1 is a novel target for the DNA damage checkpoint pathway and may participate in the DNA damage response. Consistent with this notion, knockdown of Med1 expression caused a significant increase in cellular sensitivity to UV irradiation. Moreover, microarray analysis revealed that the UV-induced activation of the transcription of important regulators of cell cycle control and DNA repair, including p21, Gadd45, Rad50, DnaJ, and RecQL, was impaired upon Med1 knockdown. Taken together, our data suggest that Med1 is a novel target for Chk2-mediated phosphorylation and may play a role in cellular DNA damage responses by mediating proper induction of gene transcription upon DNA damage.
Asunto(s)
Quinasa de Punto de Control 2/metabolismo , Daño del ADN , Subunidad 1 del Complejo Mediador/metabolismo , Androstadienos/farmacología , Cafeína/farmacología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/antagonistas & inhibidores , Reparación del ADN/genética , Células HEK293 , Humanos , Células MCF-7 , Subunidad 1 del Complejo Mediador/genética , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Transcriptoma/efectos de la radiación , Rayos Ultravioleta , WortmaninaRESUMEN
BACKGROUND: Malignant melanoma has an increasing incidence rate and the metastatic disease is notoriously resistant to standard chemotherapy. Loss of cell cycle checkpoints is frequently found in many cancer types and makes the cells reliant on compensatory mechanisms to control progression. This feature may be exploited in therapy, and kinases involved in checkpoint regulation, such as Wee1 and Chk1/2, have thus become attractive therapeutic targets. METHODS: In the present study we combined a Wee1 inhibitor (MK1775) with Chk1/2 inhibitor (AZD7762) in malignant melanoma cell lines grown in vitro (2D and 3D cultures) and in xenografts models. RESULTS: Our in vitro studies showed that combined inhibition of Wee1 and Chk1/2 synergistically decreased viability and increased apoptosis (cleavage of caspase 3 and PARP), which may be explained by accumulation of DNA-damage (increased expression of γ-H2A.X)--and premature mitosis of S-phase cells. Compared to either inhibitor used as single agents, combined treatment reduced spheroid growth and led to greater tumour growth inhibition in melanoma xenografts. CONCLUSIONS: These data provide a rationale for further evaluation of the combination of Wee1 and Chk1/2 inhibitors in malignant melanoma.
Asunto(s)
Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2/genética , Sinergismo Farmacológico , Melanoma/tratamiento farmacológico , Proteínas Nucleares/genética , Proteínas Tirosina Quinasas/genética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa de Punto de Control 2/antagonistas & inhibidores , Humanos , Melanoma/genética , Melanoma/patología , Ratones , Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/administración & dosificación , Pirimidinas/administración & dosificación , Pirimidinonas , Neoplasias Cutáneas , Tiofenos/administración & dosificación , Urea/administración & dosificación , Urea/análogos & derivados , Ensayos Antitumor por Modelo de Xenoinjerto , Melanoma Cutáneo MalignoRESUMEN
BACKGROUND/AIMS: Herpes simplex virus (HSV) type I keratitis remains a leading cause of corneal morbidity, despite the availability of effective antiviral drugs. Improved understanding of virus-host interactions at the level of the host DNA damage response (DDR), a known factor in the development of HSV-1 keratitis, may shed light on potential new therapeutic targets. This report examines the role of checkpoint kinase 2 (Chk2), a DDR mediator protein, in corneal epithelial HSV-1 infection. METHODS: A small-molecule inhibitor of Chk2 (Chk2 inhibitor II) was applied to HSV-1-infected cultured human corneal epithelial cells (hTCEpi and HCE) as well as to explanted and organotypically cultured human and rabbit corneas. Infection levels were assessed by plaque assay and real-time PCR. RNAi-mediated depletion of Chk2 was performed to confirm the effect of the inhibitor. RESULTS: Inhibition of the Chk2 kinase activity greatly suppresses the cytopathic effect, genome replication and infectious progeny production in vitro and ex vivo. CONCLUSION: This report demonstrates the critical role of Chk2 kinase in the establishment of HSV-1 corneal epithelial infection. These data contribute to our understanding of herpesvirus-host interactions and underscore the significance of DDR activation in HSV-1 keratitis.
Asunto(s)
Quinasa de Punto de Control 2/metabolismo , Epitelio Corneal/virología , Herpesvirus Humano 1/fisiología , Queratitis Herpética/virología , Replicación Viral , Animales , Western Blotting , Células Cultivadas , Quinasa de Punto de Control 2/antagonistas & inhibidores , Efecto Citopatogénico Viral , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Epitelio Corneal/efectos de los fármacos , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Queratitis Herpética/enzimología , Técnicas de Cultivo de Órganos , Fosforilación , Conejos , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Ribonucleotide Reductase (RNR) is a rate-limiting enzyme in the production of deoxyribonucleoside triphosphates (dNTPs), which are essential substrates for DNA repair after radiation damage. We explored the radiosensitization property of RNR and investigated a selective RRM2 inhibitor, 3-AP, as a radiosensitizer in the treatment of metastatic pNETs. We investigated the role of RNR subunit, RRM2, in pancreatic neuroendocrine (pNET) cells and responses to radiation in vitro. We also evaluated the selective RRM2 subunit inhibitor, 3-AP, as a radiosensitizer to treat pNET metastases in vivo. Knockdown of RNR subunits demonstrated that RRM1 and RRM2 subunits, but not p53R3, play significant roles in cell proliferation. RRM2 inhibition activated DDR pathways through phosphorylation of ATM and DNA-PK protein kinases but not ATR. RRM2 inhibition also induced Chk1 and Chk2 phosphorylation, resulting in G1/S phase cell cycle arrest. RRM2 inhibition sensitized pNET cells to radiotherapy and induced apoptosis in vitro. In vivo, we utilized pNET subcutaneous and lung metastasis models to examine the rationale for RNR-targeted therapy and 3-AP as a radiosensitizer in treating pNETs. Combination treatment significantly increased apoptosis of BON (human pNET) xenografts and significantly reduced the burden of lung metastases. Together, our results demonstrate that selective RRM2 inhibition induced radiosensitivity of metastatic pNETs both in vitro and in vivo. Therefore, treatment with the selective RRM2 inhibitor, 3-AP, is a promising radiosensitizer in the therapeutic armamentarium for metastatic pNETs.
Asunto(s)
Apoptosis , Proliferación Celular , Ratones Desnudos , Neoplasias Pancreáticas , Tolerancia a Radiación , Fármacos Sensibilizantes a Radiaciones , Ribonucleósido Difosfato Reductasa , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/enzimología , Ribonucleósido Difosfato Reductasa/genética , Ribonucleósido Difosfato Reductasa/antagonistas & inhibidores , Ribonucleósido Difosfato Reductasa/metabolismo , Animales , Línea Celular Tumoral , Fármacos Sensibilizantes a Radiaciones/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Tolerancia a Radiación/efectos de los fármacos , Fosforilación , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/radioterapia , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/enzimología , Tumores Neuroendocrinos/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Transducción de Señal/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Ratones , Quinasa de Punto de Control 2/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/antagonistas & inhibidores , Femenino , Interferencia de ARN , Proteína Quinasa Activada por ADNRESUMEN
Checkpoint kinase 2 (CHK2) plays pivotal function as an effector of cell cycle checkpoint arrest following DNA damage. Recently, we found that co-treatment of NSC109555 (a potent and selective CHK2 inhibitor) potentiated the cytotoxic effect of gemcitabine (GEM) in pancreatic cancer MIA PaCa-2 cells. Here, we further examined whether NSC109555 could enhance the antitumour effect of GEM in pancreatic adenocarcinoma cell lines. In this study, the combination treatment of NSC109555 plus GEM demonstrated strong synergistic antitumour effect in four pancreatic cancer cells (MIA PaCa-2, CFPAC-1, Panc-1 and BxPC-3). In addition, the GEM/NSC109555 combination significantly increased the level of intracellular reactive oxygen species (ROS), accompanied by induction of apoptotic cell death. Inhibition of ROS generation by N-acetyl cysteine (NAC) significantly reversed the effect of GEM/NSC109555 in apoptosis and cytotoxicity. Furthermore, genetic knockdown of CHK2 by siRNA enhanced GEM-induced apoptotic cell death. These findings suggest that inhibition of CHK2 would be a beneficial therapeutic approach for pancreatic cancer therapy in clinical treatment.
Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antimetabolitos Antineoplásicos/uso terapéutico , Quinasa de Punto de Control 2/antagonistas & inhibidores , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Apoptosis , Western Blotting , Línea Celular Tumoral , Desoxicitidina/uso terapéutico , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , GemcitabinaRESUMEN
Damage to DNA is caused by ionizing radiation, genotoxic chemicals or collapsed replication forks. When DNA is damaged or cells fail to respond, a mutation that is associated with breast or ovarian cancer may occur. Mammalian cells control and stabilize the genome using a cell cycle checkpoint to prevent damage to DNA or to repair damaged DNA. Checkpoint kinase 2 (Chk2) is one of the important kinases, which strongly affects DNA-damage and plays an important role in the response to the breakage of DNA double-strands and related lesions. Therefore, this study concerns Chk2. Its purpose is to find potential inhibitors using the pharmacophore hypotheses (PhModels) and virtual screening techniques. PhModels can identify inhibitors with high biological activities and virtual screening techniques are used to screen the database of the National Cancer Institute (NCI) to retrieve compounds that exhibit all of the pharmacophoric features of potential inhibitors with high interaction energy. Ten PhModels were generated using the HypoGen best algorithm. The established PhModel, Hypo01, was evaluated by performing a cost function analysis of its correlation coefficient (r), root mean square deviation (RMSD), cost difference, and configuration cost, with the values 0.955, 1.28, 192.51, and 16.07, respectively. The result of Fischer's cross-validation test for the Hypo01 model yielded a 95% confidence level, and the correlation coefficient of the testing set (rtest) had a best value of 0.81. The potential inhibitors were then chosen from the NCI database by Hypo01 model screening and molecular docking using the cdocker docking program. Finally, the selected compounds exhibited the identified pharmacophoric features and had a high interaction energy between the ligand and the receptor. Eighty-three potential inhibitors for Chk2 are retrieved for further study.
Asunto(s)
Quinasa de Punto de Control 2/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Quinasa de Punto de Control 2/química , Daño del ADN , Diseño de Fármacos , Humanos , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa , Relación Estructura-Actividad , TermodinámicaAsunto(s)
Inmunoterapia/métodos , Terapia Molecular Dirigida/métodos , Neoplasias/terapia , Anticuerpos Monoclonales/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa de Punto de Control 2/antagonistas & inhibidores , Quinasa de Punto de Control 2/metabolismo , Humanos , Inmunoterapia/tendencias , Terapia Molecular Dirigida/tendencias , Neoplasias/metabolismo , Neoplasias/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéuticoRESUMEN
Patients with cancer treated with PARP inhibitors (PARPi) experience various side effects, with hematologic toxicity being most common. Short-term treatment of mice with olaparib resulted in depletion of reticulocytes, B-cell progenitors, and immature thymocytes, whereas longer treatment induced broader myelosuppression. We performed a CRISPR/Cas9 screen that targeted DNA repair genes in Eµ-Myc pre-B lymphoma cell lines as a way to identify strategies to suppress hematologic toxicity from PARPi. The screen revealed that single-guide RNAs targeting the serine/threonine kinase checkpoint kinase 2 (CHK2) were enriched following olaparib treatment. Genetic or pharmacologic inhibition of CHK2-blunted PARPi response in lymphoid and myeloid cell lines, and in primary murine pre-B/pro-B cells. Using a Cas9 base editor, we found that blocking CHK2-mediated phosphorylation of p53 also impaired olaparib response. Our results identify the p53 pathway as a major determinant of the acute response to PARPi in normal blood cells and demonstrate that targeting CHK2 can short circuit this response. Cotreatment with a CHK2 inhibitor did not antagonize olaparib response in ovarian cancer cell lines. Selective inhibition of CHK2 may spare blood cells from the toxic influence of PARPi and broaden the utility of these drugs. IMPLICATIONS: We reveal that genetic or pharmacologic inhibition of CHK2 may offer a way to alleviate the toxic influence of PARPi in the hematologic system.
Asunto(s)
Quinasa de Punto de Control 2/antagonistas & inhibidores , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Animales , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Transducción de Señal/efectos de los fármacosRESUMEN
During cell division, in response to chromatin bridges, the chromosomal passenger complex (CPC) delays abscission to prevent chromosome breakage or tetraploidization. Here, we show that inhibition of ATM or Chk2 kinases impairs CPC localization to the midbody center, accelerates midbody resolution in normally segregating cells, and correlates with premature abscission and chromatin breakage in cytokinesis with trapped chromatin. In cultured human cells, ATM activates Chk2 at late midbodies. In turn, Chk2 phosphorylates human INCENP-Ser91 to promote INCENP binding to Mklp2 kinesin and CPC localization to the midbody center through Mklp2 association with Cep55. Expression of truncated Mklp2 that does not bind to Cep55 or nonphosphorylatable INCENP-Ser91A impairs CPC midbody localization and accelerates abscission. In contrast, expression of phosphomimetic INCENP-Ser91D or a chimeric INCENP protein that is targeted to the midbody center rescues the abscission delay in Chk2-deficient or ATM-deficient cells. Furthermore, the Mre11-Rad50-Nbs1 complex is required for ATM activation at the midbody in cytokinesis with chromatin bridges. These results identify an ATM-Chk2-INCENP pathway that imposes the abscission checkpoint by regulating CPC midbody localization.