RESUMEN
Hemolysis drives susceptibility to bacterial infections and predicts poor outcome from sepsis. These detrimental effects are commonly considered to be a consequence of heme-iron serving as a nutrient for bacteria. We employed a Gram-negative sepsis model and found that elevated heme levels impaired the control of bacterial proliferation independently of heme-iron acquisition by pathogens. Heme strongly inhibited phagocytosis and the migration of human and mouse phagocytes by disrupting actin cytoskeletal dynamics via activation of the GTP-binding Rho family protein Cdc42 by the guanine nucleotide exchange factor DOCK8. A chemical screening approach revealed that quinine effectively prevented heme effects on the cytoskeleton, restored phagocytosis and improved survival in sepsis. These mechanistic insights provide potential therapeutic targets for patients with sepsis or hemolytic disorders.
Asunto(s)
Infecciones por Bacterias Gramnegativas/inmunología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hemo/metabolismo , Hemólisis/inmunología , Macrófagos/inmunología , Fagocitosis , Sepsis/inmunología , Animales , Antibacterianos/uso terapéutico , Citoesqueleto/metabolismo , Femenino , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Factores de Intercambio de Guanina Nucleótido/genética , Hemo-Oxigenasa 1/genética , Hemólisis/efectos de los fármacos , Humanos , Evasión Inmune , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/efectos de los fármacos , Quinina/uso terapéutico , Células RAW 264.7 , Sepsis/tratamiento farmacológico , Proteína de Unión al GTP cdc42/metabolismoRESUMEN
Potassium (K+) efflux across the plasma membrane is thought to be an essential mechanism for ATP-induced NLRP3 inflammasome activation, yet the identity of the efflux channel has remained elusive. Here we identified the two-pore domain K+ channel (K2P) TWIK2 as the K+ efflux channel triggering NLRP3 inflammasome activation. Deletion of Kcnk6 (encoding TWIK2) prevented NLRP3 activation in macrophages and suppressed sepsis-induced lung inflammation. Adoptive transfer of Kcnk6-/- macrophages into mouse airways after macrophage depletion also prevented inflammatory lung injury. The K+ efflux channel TWIK2 in macrophages has a fundamental role in activating the NLRP3 inflammasome and consequently mediates inflammation, pointing to TWIK2 as a potential target for anti-inflammatory therapies.
Asunto(s)
Inflamasomas/metabolismo , Inflamación/fisiopatología , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Caspasa 1/deficiencia , Caspasa 1/metabolismo , Línea Celular , Inflamasomas/efectos de los fármacos , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/fisiopatología , Macrófagos/trasplante , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Quinina/farmacología , ARN Interferente Pequeño/farmacología , Receptores Purinérgicos P2X7/deficiencia , Receptores Purinérgicos P2X7/metabolismo , Sepsis/metabolismo , Sepsis/fisiopatología , Transducción de Señal/efectos de los fármacosRESUMEN
About 247 million cases of malaria occurred in 2021 with Plasmodium falciparum accounting for the majority of 619,000 deaths. In the absence of a widely available vaccine, chemotherapy remains crucial to prevent, treat, and contain the disease. The efficacy of several drugs currently used in the clinic is likely to suffer from the emergence of resistant parasites. A global effort to identify lead compounds led to several initiatives such as the Medicine for Malaria Ventures (MMV), a repository of compounds showing promising efficacy in killing the parasite in cell-based assays. Here, we used mass spectrometry coupled with cellular thermal shift assay to identify putative protein targets of MMV000848, a compound with an in vitro EC50 of 0.5 µM against the parasite. Thermal shift assays showed a strong increase of P. falciparum purine nucleoside phosphorylase (PfPNP) melting temperature by up to 15 °C upon incubation with MMV000848. Binding and enzymatic assays returned a KD of 1.52 ± 0.495 µM and an IC50 value of 21.5 ± 2.36 µM. The inhibition is competitive with respect to the substrate, as confirmed by a cocrystal structure of PfPNP bound with MMV000848 at the active site, determined at 1.85 Å resolution. In contrast to transition states inhibitors, MMV000848 specifically inhibits the parasite enzyme but not the human ortholog. An isobologram analysis shows subadditivity with immucillin H and with quinine respectively, suggesting overlapping modes of action between these compounds. These results point to PfPNP as a promising antimalarial target and suggest avenues to improve inhibitor potency.
Asunto(s)
Antimaláricos , Plasmodium falciparum , Purina-Nucleósido Fosforilasa , Antimaláricos/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Purina-Nucleósido Fosforilasa/química , Quinina/química , Espectrometría de Masas , Unión ProteicaRESUMEN
Molecular imaging with antibodies radiolabeled with positron-emitting radionuclides combines the affinity and selectivity of antibodies with the sensitivity of Positron Emission Tomography (PET). PET imaging allows the visualization and quantification of the biodistribution of the injected radiolabeled antibody, which can be used to characterize specific biological interactions in individual patients. This characterization can provide information about the engagement of the antibody with a molecular target such as receptors present in elevated levels in tumors as well as providing insight into the distribution and clearance of the antibody. Potential applications of clinical PET with radiolabeled antibodies include identifying patients for targeted therapies, characterization of heterogeneous disease, and monitoring treatment response.Antibodies often take several days to clear from the blood pool and localize in tumors, so PET imaging with radiolabeled antibodies requires the use of a radionuclide with a similar radioactive half-life. Zirconium-89 is a positron-emitting radionuclide that has a radioactive half-life of 78 h and relatively low positron emission energy that is well suited to radiolabeling antibodies. It is essential that the zirconium-89 radionuclide be attached to the antibody through chemistry that provides an agent that is stable in vivo with respect to the dissociation of the radionuclide without compromising the biological activity of the antibody.This Account focuses on our research using a simple derivative of the bacterial siderophore desferrioxamine (DFO) with a squaramide ester functional group, DFO-squaramide (DFOSq), to link the chelator to antibodies. In our work, we produce conjugates with an average â¼4 chelators per antibody, and this does not compromise the binding of the antibody to the target. The resulting antibody conjugates of DFOSq are stable and can be easily radiolabeled with zirconium-89 in high radiochemical yields and purity. Automated methods for the radiolabeling of DFOSq-antibody conjugates have been developed to support multicenter clinical trials. Evaluation of several DFOSq conjugates with antibodies and low molecular weight targeting agents in tumor mouse models gave PET images with high tumor uptake and low background. The promising preclinical results supported the translation of this chemistry to human clinical trials using two different radiolabeled antibodies. The potential clinical impact of these ongoing clinical trials is discussed.The use of DFOSq to radiolabel relatively low molecular weight targeting molecules, peptides, and peptide mimetics is also presented. Low molecular weight molecules typically clear the blood pool and accumulate in target tissue more rapidly than antibodies, so they are usually radiolabeled with positron-emitting radionuclides with shorter radioactive half-lives such as fluorine-18 (t1/2 â¼ 110 min) or gallium-68 (t1/2 â¼ 68 min). Radiolabeling peptides and peptide mimetics with zirconium-89, with its longer radioactive half-life (t1/2 = 78 h), could facilitate the centralized manufacture and distribution of radiolabeled tracers. In addition, the ability to image patients at later time points with zirconium-89 based agents (e.g. 4-24 h after injection) may also allow the delineation of small or low-uptake disease sites as the delayed imaging results in increased clearance of the tracer from nontarget tissue and lower background signal.
Asunto(s)
Deferoxamina , Tomografía de Emisión de Positrones , Quinina/análogos & derivados , Radioisótopos , Circonio , Circonio/química , Radioisótopos/química , Deferoxamina/química , Tomografía de Emisión de Positrones/métodos , Animales , Humanos , Ratones , Radiofármacos/química , Neoplasias/diagnóstico por imagenRESUMEN
Over the past three decades, researchers have found that some engineered aptamers can be made to work well in test tubes but that these same aptamers might fail to function in cells. To help address this problem, we developed the 'Graftamer' approach, an experimental platform that exploits the architecture of a natural riboswitch to enhance in vitro aptamer selection and accelerate in vivo testing. Starting with combinatorial RNA pools that contain structural features of a guanine riboswitch aptamer interspersed with regions of random sequence, we performed multiplexed in vitro selection with a collection of small molecules. This effort yielded aptamers for quinine, guanine, and caffeine that appear to maintain structural features of the natural guanine riboswitch aptamer. Quinine and caffeine aptamers were each grafted onto a natural guanine riboswitch expression platform and reporter gene expression was monitored to determine that these aptamers function in cells. Additionally, we determined the secondary structure features and survival mechanism of a class of RNA sequences that evade the intended selection strategy, providing insight into improving this approach for future efforts. These results demonstrate that the Graftamer strategy described herein represents a convenient and straightforward approach to develop aptamers and validate their in vivo function.
Asunto(s)
Aptámeros de Nucleótidos , Ingeniería Genética , Riboswitch , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/química , Cafeína , Guanina , Ligandos , Conformación de Ácido Nucleico , Quinina , Riboswitch/genética , Ingeniería Genética/métodosRESUMEN
Hedonic processing is critical for guiding appropriate behavior, and the infralimbic cortex (IL) is a key neural substrate associated with this function in rodents and humans. We used deep brain in vivo calcium imaging and taste reactivity in freely behaving male and female Sprague Dawley rats to examine whether the infralimbic cortex is involved in encoding innate versus conditioned hedonic states. In experiment 1, we examined the IL neuronal ensemble responsiveness to intraoral innately rewarding (sucrose) versus aversive (quinine) tastants. Most IL neurons responded to either sucrose only or both sucrose and quinine, with fewer neurons selectively processing quinine. Among neurons that responded to both stimuli, some appear to encode hedonic processing. In experiment 2, we examined how IL neurons process devalued sucrose using conditioned taste aversion (CTA). We found that neurons that responded exclusively to sucrose were disengaged while additional quinine-exclusive neurons were recruited. Moreover, tastant-specific neurons that did not change their neuronal activity after CTA appeared to encode objective hedonic value. However, other neuronal ensembles responded to both tastants and appear to encode distinct aspects of hedonic processing. Specifically, some neurons responded differently to quinine and sucrose and shifted from appetitive-like to aversive-like activity after CTA, thus encoding the subjective hedonic value of the stimulus. Conversely, neurons that responded similarly to both tastants were heightened after CTA. Our findings show dynamic shifts in IL ensembles encoding devalued sucrose and support a role for parallel processing of objective and subjective hedonic value.SIGNIFICANCE STATEMENT Disrupted affective processing contributes to psychiatric disorders including depression, substance use disorder, and schizophrenia. We assessed how the infralimbic cortex, a key neural substrate involved in affect generation and affect regulation, processes innate and learned hedonic states using deep brain in vivo calcium imaging in freely behaving rats. We report that unique infralimbic cortex ensembles encode stimulus subjective and objective hedonic value. Further, our findings support similarities and differences in innate versus learned negative affective states. This study provides insight into the neural mechanisms underlying affect generation and helps to establish a foundation for the development of novel treatment strategies to reduce negative affective states that arise in many psychiatric disorders.
Asunto(s)
Quinina , Gusto , Humanos , Ratas , Masculino , Femenino , Animales , Gusto/fisiología , Ratas Sprague-Dawley , Quinina/farmacología , Calcio , Sacarosa , Neuronas/fisiologíaRESUMEN
All new drugs must go through preclinical screening tests to determine their proarrhythmic potential. While these assays effectively filter out dangerous drugs, they are too conservative, often misclassifying safe compounds as proarrhythmic. In this study, we attempt to address this shortcoming with a novel, medium-throughput drug-screening approach: we use an automated patch-clamp system to acquire optimized voltage clamp (VC) and action potential (AP) data from human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) at several drug concentrations (baseline, 3×, 10× and 20× the effective free plasma concentrations). With our novel method, we show correlations between INa block and upstroke slowing after treatment with flecainide or quinine. Additionally, after quinine treatment, we identify significant reductions in current during voltage steps designed to isolate If and IKs. However, we do not detect any IKr block by either drug, and upon further investigation, do not see any IKr present in the iPSC-CMs when prepared for automated patch experiments (i.e. in suspension) - this is in contrast to similar experiments we have conducted with these cells using the manual patch setup. In this study, we: (1) present a proof-of-concept demonstration of a single-cell medium-throughput drug study, and (2) characterize the non-canonical electrophysiology of iPSC-CMs when prepared for experiments in a medium-throughput setting. KEY POINTS: Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer potential as an in vitro model to study the proarrhythmic potential of drugs, but insights from these cells are often limited by the low throughput of manual patch-clamp. In this study, we use a medium-throughput automated patch-clamp system to acquire action potential (AP) and complex voltage clamp (VC) data from single iPSC-CMs at multiple drug concentrations. A correlation between AP upstroke and INa transients was identified and drug-induced changes in ionic currents found. We also characterize the substantially altered physiology of iPSC-CMs when patched in an automated system, suggesting the need to investigate differences between manual and automated patch experiments.
Asunto(s)
Potenciales de Acción , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/citología , Potenciales de Acción/efectos de los fármacos , Análisis de la Célula Individual/métodos , Técnicas de Placa-Clamp/métodos , Evaluación Preclínica de Medicamentos/métodos , Quinina/farmacología , Flecainida/farmacología , Antiarrítmicos/farmacología , Fenotipo , Células CultivadasRESUMEN
Malaria tropica, caused by the parasite Plasmodium falciparum (P. falciparum), remains one of the greatest public health burdens for humankind. Due to its pivotal role in parasite survival, the energy metabolism of P. falciparum is an interesting target for drug design. To this end, analysis of the central metabolite adenosine triphosphate (ATP) is of great interest. So far, only cell-disruptive or intensiometric ATP assays have been available in this system, with various drawbacks for mechanistic interpretation and partly inconsistent results. To address this, we have established fluorescent probes, based on Förster resonance energy transfer (FRET) and known as ATeam, for use in blood-stage parasites. ATeams are capable of measuring MgATP2- levels in a ratiometric manner, thereby facilitating in cellulo measurements of ATP dynamics in real-time using fluorescence microscopy and plate reader detection and overcoming many of the obstacles of established ATP analysis methods. Additionally, we established a superfolder variant of the ratiometric pH sensor pHluorin (sfpHluorin) in P. falciparum to monitor pH homeostasis and control for pH fluctuations, which may affect ATeam measurements. We characterized recombinant ATeam and sfpHluorin protein in vitro and stably integrated the sensors into the genome of the P. falciparum NF54attB cell line. Using these new tools, we found distinct sensor response patterns caused by several different drug classes. Arylamino alcohols increased and redox cyclers decreased ATP; doxycycline caused first-cycle cytosol alkalization; and 4-aminoquinolines caused aberrant proteolysis. Our results open up a completely new perspective on drugs' mode of action, with possible implications for target identification and drug development.
Asunto(s)
Adenosina Trifosfato , Antimaláricos , Transferencia Resonante de Energía de Fluorescencia , Plasmodium falciparum , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Plasmodium falciparum/genética , Adenosina Trifosfato/metabolismo , Antimaláricos/farmacología , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Humanos , Quinina/farmacología , Doxiciclina/farmacología , Artemisininas/farmacología , Cloroquina/farmacología , Concentración de Iones de HidrógenoRESUMEN
BACKGROUND: Malaria in the first trimester of pregnancy is associated with adverse pregnancy outcomes. Artemisinin-based combination therapies (ACTs) are a highly effective, first-line treatment for uncomplicated Plasmodium falciparum malaria, except in the first trimester of pregnancy, when quinine with clindamycin is recommended due to concerns about the potential embryotoxicity of artemisinins. We compared adverse pregnancy outcomes after artemisinin-based treatment (ABT) versus non-ABTs in the first trimester of pregnancy. METHODS: For this systematic review and individual patient data (IPD) meta-analysis, we searched MEDLINE, Embase, and the Malaria in Pregnancy Library for prospective cohort studies published between Nov 1, 2015, and Dec 21, 2021, containing data on outcomes of pregnancies exposed to ABT and non-ABT in the first trimester. The results of this search were added to those of a previous systematic review that included publications published up until November, 2015. We included pregnancies enrolled before the pregnancy outcome was known. We excluded pregnancies with missing estimated gestational age or exposure information, multiple gestation pregnancies, and if the fetus was confirmed to be unviable before antimalarial treatment. The primary endpoint was adverse pregnancy outcome, defined as a composite of either miscarriage, stillbirth, or major congenital anomalies. A one-stage IPD meta-analysis was done by use of shared-frailty Cox models. This study is registered with PROSPERO, number CRD42015032371. FINDINGS: We identified seven eligible studies that included 12 cohorts. All 12 cohorts contributed IPD, including 34 178 pregnancies, 737 with confirmed first-trimester exposure to ABTs and 1076 with confirmed first-trimester exposure to non-ABTs. Adverse pregnancy outcomes occurred in 42 (5·7%) of 736 ABT-exposed pregnancies compared with 96 (8·9%) of 1074 non-ABT-exposed pregnancies in the first trimester (adjusted hazard ratio [aHR] 0·71, 95% CI 0·49-1·03). Similar results were seen for the individual components of miscarriage (aHR=0·74, 0·47-1·17), stillbirth (aHR=0·71, 0·32-1·57), and major congenital anomalies (aHR=0·60, 0·13-2·87). The risk of adverse pregnancy outcomes was lower with artemether-lumefantrine than with oral quinine in the first trimester of pregnancy (25 [4·8%] of 524 vs 84 [9·2%] of 915; aHR 0·58, 0·36-0·92). INTERPRETATION: We found no evidence of embryotoxicity or teratogenicity based on the risk of miscarriage, stillbirth, or major congenital anomalies associated with ABT during the first trimester of pregnancy. Given that treatment with artemether-lumefantrine was associated with fewer adverse pregnancy outcomes than quinine, and because of the known superior tolerability and antimalarial effectiveness of ACTs, artemether-lumefantrine should be considered the preferred treatment for uncomplicated P falciparum malaria in the first trimester. If artemether-lumefantrine is unavailable, other ACTs (except artesunate-sulfadoxine-pyrimethamine) should be preferred to quinine. Continued active pharmacovigilance is warranted. FUNDING: Medicines for Malaria Venture, WHO, and the Worldwide Antimalarial Resistance Network funded by the Bill & Melinda Gates Foundation.
Asunto(s)
Aborto Espontáneo , Antimaláricos , Malaria Falciparum , Malaria , Femenino , Embarazo , Humanos , Antimaláricos/efectos adversos , Resultado del Embarazo , Quinina/efectos adversos , Primer Trimestre del Embarazo , Mortinato/epidemiología , Estudios Prospectivos , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria/tratamiento farmacológico , Combinación de Medicamentos , Etanolaminas/uso terapéuticoRESUMEN
DNA-encoded libraries (DELs) can be considered as one of the most powerful tools for the discovery of small molecules of biological interest. However, the ability to access large DELs is contingent upon having chemical transformations that work in aqueous phase and generate minimal DNA alterations and the availability of building blocks compatible with on-DNA chemistry. In addition, accessing scaffolds of interest to medicinal chemists can be challenging in a DEL setting because of inherent limitations of DNA-supported chemistry. In this context, a squaramide formation reaction was developed by using a two-step process. The mild and high-yielding reaction tolerates a wide array of functional groups and was shown to be safe for DNA, thereby making this methodology ideal for DELs.
Asunto(s)
ADN , Bibliotecas de Moléculas Pequeñas , ADN/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Biblioteca de Genes , Ésteres/química , Quinina/análogos & derivadosRESUMEN
Although studies have shown that olfaction may contribute to the perception of tastant, literature is scarce or circumstantial, especially in humans. This study aims to (i) explore whether humans can perceive solutions of basic prototypical tastants through orthonasal and retronasal olfaction and (ii) to examine what volatile odor compounds (VOCs) underlie this ability. Solutions of 5 basic tastants (sucrose, sodium chloride, citric acid, monosodium glutamate [MSG], quinine) dissolved in water, and 2 fatty acids (oleic and linoleic acid) dissolved in mineral oil were prepared. Triangle discrimination tests were performed (n = 41 in duplicate) to assess whether the tastant solutions can be distinguished from blanks (solvents) through ortho- and retronasal olfaction. Participants were able to distinguish all tastant solutions from blank through orthonasal olfaction. Only sucrose, sodium chloride, oleic acid, and linoleic acid were distinguished from blank by retronasal olfaction. Ethyl dichloroacetate, methylene chloride, and/or acetone were identified in the headspace of sucrose, MSG, and quinine solutions but not in the headspace of water, sodium chloride, and citric acid solutions. Fat oxidation compounds such as alcohols and aldehydes were detected in the headspace of the oleic and linoleic acid solutions but not the mineral oil. We conclude that prototypical tastant solutions can be discriminated from water and fatty acid solutions from mineral oil through orthonasal olfaction. Differences in the volatile headspace composition between blanks and tastant solutions may have facilitated the olfactory discrimination. These findings can have methodological implications for future studies assessing gustatory perception using these prototypical taste compounds.
Asunto(s)
Olfato , Cloruro de Sodio , Humanos , Glutamato de Sodio , Quinina , Aceite Mineral , Gusto , Agua , Sacarosa , Ácido Cítrico/farmacología , Ácidos LinoleicosRESUMEN
Quinine, a bitter compound, can act as an agonist to activate the family of bitter taste G protein-coupled receptor family of proteins. Previous work from our laboratory has demonstrated that quinine causes activation of RalA, a Ras p21-related small G protein. Ral proteins can be activated directly or indirectly through an alternative pathway that requires Ras p21 activation resulting in the recruitment of RalGDS, a guanine nucleotide exchange factor for Ral. Using normal mammary epithelial (MCF-10A) and non-invasive mammary epithelial (MCF-7) cell lines, we investigated the effect of quinine in regulating Ras p21 and RalA activity. Results showed that in the presence of quinine, Ras p21 is activated in both MCF-10A and MCF-7 cells; however, RalA was inhibited in MCF-10A cells, and no effect was observed in the case of MCF-7 cells. MAP kinase, a downstream effector for Ras p21, was activated in both MCF-10A and MCF-7 cells. Western blot analysis confirmed the expression of RalGDS in MCF-10A cells and MCF-7 cells. The expression of RalGDS was higher in MCF-10A cells in comparison to the MCF-7 cells. Although RalGDS was detected in MCF-10A and MCF-7 cells, it did not result in RalA activation upon Ras p21 activation with quinine suggesting that the Ras p21-RalGDS-RalA pathway is not active in the MCF-10A cells. The inhibition of RalA activity in MCF-10A cells due to quinine could be as a result of a direct effect of this bitter compound on RalA. Protein modeling and ligand docking analysis demonstrated that quinine can interact with RalA through the R79 amino acid, which is located in the switch II region loop of the RalA protein. It is possible that quinine causes a conformational change that results in the inhibition of RalA activation even though RalGDS is present in the cell. More studies are needed to elucidate the mechanism(s) that regulate Ral activity in mammary epithelial cells.
Asunto(s)
Quinina , Factor de Intercambio de Guanina Nucleótido ral , Factor de Intercambio de Guanina Nucleótido ral/metabolismo , Quinina/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células Epiteliales/metabolismoRESUMEN
Quinine-based polymers have previously demonstrated promising performance in delivering pDNA in cells owing to their electrostatic as well as the nonelectrostatic interactions with pDNA. Herein, we evaluate whether quinine-based polymers are versatile for delivery of mRNA and Cas9-sgRNA complexes, especially in a serum-rich environment. Both mRNA and the Cas9-sgRNA complex are potent therapeutics that are structurally, chemically, and functionally very different from pDNA. By exploring a family of 7 quinine-based polymers that vary in monomer structure and polymer composition, we tested numerous formulations (42 with pDNA, 96 with mRNA, and 48 with Cas9-sgRNA) for payload-polymer complexation and delivery to compare payload-dependent structure-activity relationships. Several formulations demonstrated performance comparable to or better than the commercially available transfection agent jetPEI. The results of this study demonstrate the potential of quinine-based as a versatile carrier platform for delivering a wide range of nucleic acid therapeutics and serving the drug delivery needs in the field genetic medicine.
Asunto(s)
Proteína 9 Asociada a CRISPR , Plásmidos , Quinina , ARN Mensajero , Quinina/química , Humanos , ARN Mensajero/genética , Plásmidos/administración & dosificación , Plásmidos/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Polímeros/química , Transfección/métodosRESUMEN
Nucleic acid delivery with cationic polymers is a promising alternative to expensive viral-based methods; however, it often suffers from a lower performance. Herein, we present a highly efficient delivery system based on cinchona alkaloid natural products copolymerized with 2-hydroxyethyl acrylate. Cinchona alkaloids are an attractive monomer class for gene delivery applications, given their ability to bind to DNA via both electrostatics and intercalation. To uncover the structure-activity profile of the system, four structurally similar cinchona alkaloids were incorporated into polymers: quinine, quinidine, cinchonine, and cinchonidine. These polymers differed in the chain length, the presence or absence of a pendant methoxy group, and stereochemistry, all of which were found to alter gene delivery performance and the ways in which the polymers overcome biological barriers to transfection. Longer polymers that contained the methoxy-bearing cinchona alkaloids (i.e., quinine and quinidine) were found to have the best performance. These polymers exhibited the tightest DNA binding, largest and most abundant DNA-polymer complexes, and best endosomal escape thanks to their increased buffering capacity and closest nuclear proximity of the payload. Overall, this work highlights the remarkable efficiency of polymer systems that incorporate cinchona alkaloid natural products while demonstrating the profound impact that small structural changes can have on overcoming biological hurdles associated with gene delivery.
Asunto(s)
Productos Biológicos , Alcaloides de Cinchona , Quinina/farmacología , Quinidina , Polímeros , Alcaloides de Cinchona/química , Alcaloides de Cinchona/metabolismo , ADN/genéticaRESUMEN
Chemical repellents play a crucial role in personal protection, serving as essential elements in reducing the transmission of vector-borne diseases. A biorational perspective that extends beyond the olfactory system as the classical target may be a promising direction to move. The taste system provides reliable information regarding food quality, helping animals to discriminate between nutritious and potentially harmful food sources, often associated with a bitter taste. Understanding how bitter compounds affect feeding in blood-sucking insects could unveil novel molecules with the potential to reduce biting and feeding. Here, we investigated the impact of two naturally occurring bitter compounds, caffeine and quinine, on the feeding decisions in female Aedes aegypti mosquitoes at two distinctive phases: (1) when the mosquito explores the biting substrate using external taste sensors and (2) when the mosquito takes a sip of food and tastes it using internal taste receptors. We assessed the aversiveness of bitter compounds through both an artificial feeding condition (artificial feeder test) and a real host (arm-in-cage test). Our findings revealed different sensitivities in the external and internal sensory pathways responsible for detecting bitter taste in Ae. aegypti. Internal detectors exhibited responsiveness to lower doses compared to the external sensors. Quinine exerted a more pronounced negative impact on biting and feeding activity than caffeine. The implications of our findings are discussed in the context of mosquito food recognition and the potential practical implications for personal protection.
Asunto(s)
Aedes , Cafeína , Conducta Alimentaria , Quinina , Gusto , Animales , Femenino , Cafeína/farmacología , Aedes/fisiología , Conducta Alimentaria/efectos de los fármacosRESUMEN
Targeting the homeostasis of anions and iron has emerged as a promising therapeutic approach for the treatment of cancers. However, single-targeted agents often fall short of achieving optimal treatment efficacy. Herein we designed and synthesized a series of novel dual-functional squaramide-hydroxamic acid conjugates that are capable of synergistically modulating the homeostasis of anions and iron. Among them, compound 16 exhibited the most potent antiproliferative activity against a panel of selected cancer cell lines, and strong in vivo anti-tumor efficacy. This compound effectively elevated lysosomal pH through anion transport, and reduced the levels of intracellular iron. Compound 16 could disturb autophagy in A549 cells and trigger robust apoptosis. This compound caused cell cycle arrest at the G1/S phase, altered the mitochondrial function and elevated ROS levels. The present findings clearly demonstrated that synergistic modulation of anion and iron homeostasis has high potentials in the development of promising chemotherapeutic agents with dual action against cancers.
Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Homeostasis , Ácidos Hidroxámicos , Hierro , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Hierro/metabolismo , Hierro/química , Proliferación Celular/efectos de los fármacos , Homeostasis/efectos de los fármacos , Relación Estructura-Actividad , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/síntesis química , Estructura Molecular , Apoptosis/efectos de los fármacos , Aniones/química , Aniones/farmacología , Relación Dosis-Respuesta a Droga , Animales , Línea Celular Tumoral , Ratones , Quinina/análogos & derivadosRESUMEN
Patients with diabetes exhibit altered taste sensitivity, but its details have not been clarified yet. Here, we examined alteration of sweet taste sensitivity with development of glucose intolerance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats as a model of non-insulin-dependent diabetes mellitus. Compared to the cases of Long Evans Tokushima Otsuka (LETO) rats as a control, glucose tolerance of OLETF rats decreased with aging, resulting in development of diabetes at 36-weeks-old. In brief-access tests with a mixture of sucrose and quinine hydrochloride, OLETF rats at 25 or more-weeks-old seemed to exhibit lower sweet taste sensitivity than age-matched LETO ones, but the lick ratios of LETO, but not OLETF, rats for the mixture and quinine hydrochloride solutions decreased and increased, respectively, aging-dependently. Expression of sweet taste receptors, T1R2 and T1R3, in circumvallate papillae (CP) was almost the same in LETO and OLETF rats at 10- and 40-weeks-old, while expression levels of a bitter taste receptor, T2R16, were greater in 40-weeks-old rats than in 10-weeks-old ones in both strains. There was no apparent morphological alteration in taste buds in CP between 10- and 40-weeks-old LETO and OLETF rats. Metagenomic analysis of gut microbiota revealed strain- and aging-dependent alteration of mucus layer-regulatory microbiota. Collectively, we concluded that the apparent higher sweet taste sensitivity in 25 or more-weeks-old OLETF rats than in age-matched LETO rats was due to the aging-dependent increase of bitter taste sensitivity in LETO rats with alteration of the gut microbiota.
Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Humanos , Ratas , Animales , Ratas Endogámicas OLETF , Gusto , Peso Corporal , Disgeusia , Quinina/farmacología , Prueba de Tolerancia a la Glucosa , Diabetes Mellitus Tipo 2/metabolismo , Ratas Long-Evans , Glucemia/análisisRESUMEN
AIMS: Continued alcohol consumption despite negative consequences is a core symptom of alcohol use disorder. This is modeled in mice by pairing negative stimuli with alcohol, such as adulterating alcohol solution with quinine. Mice consuming alcohol under these conditions are considered to be engaging in aversion-resistant intake. Previously, we have observed sex differences in this behavior, with females more readily expressing aversion-resistant consumption. We also identified three brain regions that exhibited sex differences in neuronal activation during quinine-alcohol drinking: ventromedial prefrontal cortex (vmPFC), posterior insular cortex (PIC), and ventral tegmental area (VTA). Specifically, male mice showed increased activation in vmPFC and PIC, while females exhibited increased activation in VTA. In this study, we aimed to identify what specific type of neurons are activated in these regions during quinine-alcohol drinking. METHOD: We assessed quinine-adulterated alcohol intake using the two-bottle choice procedure. We also utilized RNAscope in situ hybridization in the three brain regions that previously exhibited a sex difference to examine colocalization of Fos, glutamate, GABA, and dopamine. RESULT: Females showed increased aversion-resistant alcohol consumption compared to males. We also found that males had higher colocalization of glutamate and Fos in vmPFC and PIC, while females had greater dopamine and Fos colocalization in the VTA. CONCLUSIONS: Collectively, these experiments suggest that glutamatergic output from the vmPFC and PIC may have a role in suppressing, and dopaminergic activity in the VTA may promote, aversion-resistant alcohol consumption. Future experiments will examine neuronal circuits that contribute to sex differences in aversion resistant consumption.
Asunto(s)
Consumo de Bebidas Alcohólicas , Neuronas , Quinina , Caracteres Sexuales , Animales , Quinina/farmacología , Femenino , Masculino , Ratones , Neuronas/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Ratones Endogámicos C57BL , Corteza Prefrontal/efectos de los fármacos , Mesencéfalo/metabolismo , Mesencéfalo/efectos de los fármacos , Corteza Insular/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Etanol/farmacología , Ácido Glutámico/metabolismoRESUMEN
Previous experiments found that acceptance of saccharin by rats was reduced if they had prior experience of sucrose or some other highly palatable solution. This study tested whether such successive negative contrast (SNC) effects involve acquisition of an aversion to the new taste. In three experiments, rats were switched from sucrose exposure in Stage 1 to a less palatable solution containing a new taste in Stage 2. In Experiments 1 and 2, a novel flavor was added to a saccharin solution at the start of Stage 2. In Experiment 1, preference tests revealed a weak aversion to the added vanilla flavor in the Suc-Sacch group, while in Experiment 2 an aversion was found in the Suc-Sacch group to the salty flavor that was used, compared with controls given access either saccharin or water in Stage 1. In Experiment 3, the Suc-Quin group, given quinine solution in Stage 2, displayed a greater aversion to quinine than a Water-Quin control group. These results support the suggestion that taste aversion learning plays a role in the initial suppression of intakes in a qualitative consummatory SNC effect. However, in the light of other evidence, it seems that the unusual persistence of successive negative contrast when rats are switched from sucrose to saccharin is not due to a long-lasting reduction in the value of saccharin.
Asunto(s)
Reacción de Prevención , Sacarina , Sacarosa , Gusto , Animales , Reacción de Prevención/fisiología , Ratas , Masculino , Gusto/fisiología , QuininaRESUMEN
Pharmacy personnel that manipulate cytotoxic drugs are under continuous exposure risk. Therefore, training and strict adherence to recommended practices should always be promoted. The main objective of this study was to develop and apply a safe, effective and low-cost method for the training and assessment of the safe handling of cytotoxic drugs, using commercially available tonic water. To evaluate the potential of tonic water as a replacement marker for quinine hydrochloride, deliberate spills of 1â mL of four different tonic waters (one coloured and three non-coloured) were analysed under ultraviolet light (300-400â nm). The pigmented sample did not produce fluorescence under ultraviolet (UV) light. The three commercially available tonic waters that exhibited fluorescence were further analysed by UV/Vis spectrophotometry (300-500â nm). Afterwards, a protocol of simulated manipulation of cytotoxic drugs was developed and applied to 12 pharmacy technicians, that prepared 24 intravenous bags according to recommended routine procedures using tonic water. Participants responded to a brief questionnaire to evaluate the adequacy and applicability of the activity. Seven of the participants had spillages during manipulation, the majority of which recorded during manipulation with needles. All participants scored the tonic water manipulation simulation with 4 or 5 points for simplicity, efficiency and feasibility. The obtained results suggest that tonic water can be used to simulate the manipulation of cytotoxic drugs in training and assessment programs. By using this replacement marker for quinine hydrochloride, it is possible to perform a more cost-effective, yet equally effective, assessment.