Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Arch Insect Biochem Physiol ; 117(1): e22152, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39323103

RESUMEN

An entomopathogenic nematode, Oscheius tipulae, was isolated from a soil sample. The identification of this species was supported by morphological and molecular markers. The nematode isolate exhibited pathogenicity against different target insects including lepidopteran, coleopteran, and dipteran insects. The virulence of this nematode was similar to that of a well-known entomopathogenic nematode, Steinernema carpocapsae, against the same insect targets. A comparative metagenomics analysis of these two nematode species predicted the existence of a combined total of 272 bacterial species in their intestines, of which 51 bacterial species were shared between the two nematode species. In particular, the common gut bacteria included several entomopathogenic bacteria including Xenorhabdus nematophila, which is known as a symbiotic bacterium to S. carpocapsae. The nematode virulence of O. tipulae to insects was enhanced by an addition of dexamethasone but suppressed by an addition of arachidonic acid, suggesting that the immune defenses of the target insects against the nematode infection is mediated by eicosanoids, which would be manipulated by the symbiotic bacteria of the nematode. Unlike S. carpocapsae, O. tipulae showed high virulence against dipteran insects including fruit flies, onion flies, and mosquitoes. O. tipulae showed particularly high control efficacies against the onion maggot, Delia platura, infesting the Welsh onion in the rhizosphere in both pot and field assays.


Asunto(s)
Dípteros , Animales , Dípteros/microbiología , Control Biológico de Vectores , Rabdítidos/patogenicidad , Rabdítidos/fisiología , Virulencia , Simbiosis , Nematodos , Xenorhabdus/genética , Xenorhabdus/patogenicidad , Xenorhabdus/fisiología
2.
Mol Genet Genomics ; 296(2): 259-269, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33169231

RESUMEN

Bursaphelenchus xylophilus is an emerging pathogenic nematode that is responsible for a devastating epidemic of pine wilt disease worldwide, causing severe ecological damage and economic losses to forestry. Two forms of this nematode have been reported, i.e., with strong and weak virulence, commonly referred as virulent and avirulent strains. However, the pathogenicity-related genes of B. xylophilus are not sufficiently characterized. In this study, to find pathogenesis related genes we re-sequenced and compared genomes of two virulent and two avirulent populations. We identified genes affected by genomic variation, and functional annotation of those genes indicated that some of them might play potential roles in pathogenesis. The performed analysis showed that both avirulent populations differed from the virulent ones by 1576 genes with high impact variants. Demonstration of genetic differences between virulent and avirulent strains will provide effective methods to distinguish these two nematode virulence forms at the molecular level. The reported results provide basic information that can facilitate development of a better diagnosis for B. xylophilus isolates/strains which present different levels of virulence and better understanding of the molecular mechanism involved in the development of the PWD.


Asunto(s)
Variación Genética , Rabdítidos/genética , Factores de Virulencia/genética , Secuenciación Completa del Genoma/métodos , Animales , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas Protozoarias/genética , Rabdítidos/patogenicidad
3.
PLoS Pathog ; 15(5): e1007626, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31042778

RESUMEN

Parasitic helminths release molecular effectors into their hosts and these effectors can directly damage host tissue and modulate host immunity. Excreted/secreted proteins (ESPs) are one category of parasite molecular effectors that are critical to their success within the host. However, most studies of nematode ESPs rely on in vitro stimulation or culture conditions to collect the ESPs, operating under the assumption that in vitro conditions mimic actual in vivo infection. This assumption is rarely if ever validated. Entomopathogenic nematodes (EPNs) are lethal parasites of insects that produce and release toxins into their insect hosts and are a powerful model parasite system. We compared transcriptional profiles of individual Steinernema feltiae nematodes at different time points of activation under in vitro and in vivo conditions and found that some but not all time points during in vitro parasite activation have similar transcriptional profiles with nematodes from in vivo infections. These findings highlight the importance of experimental validation of ESP collection conditions. Additionally, we found that a suite of genes in the neuropeptide pathway were downregulated as nematodes activated and infection progressed in vivo, suggesting that these genes are involved in host-seeking behavior and are less important during active infection. We then characterized the ESPs of activated S. feltiae infective juveniles (IJs) using mass spectrometry and identified 266 proteins that are released by these nematodes. In comparing these ESPs with those previously identified in activated S. carpocapsae IJs, we identified a core set of 52 proteins that are conserved and present in the ESPs of activated IJs of both species. These core venom proteins include both tissue-damaging and immune-modulating proteins, suggesting that the ESPs of these parasites include both a core set of effectors as well as a specialized set, more adapted to the particular hosts they infect.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteínas del Helminto/metabolismo , Interacciones Huésped-Parásitos , Lepidópteros/metabolismo , Infecciones por Rhabditida/metabolismo , Rabdítidos/patogenicidad , Ponzoñas/metabolismo , Animales , Drosophila melanogaster/parasitología , Perfilación de la Expresión Génica , Proteínas del Helminto/genética , Lepidópteros/parasitología , Infecciones por Rhabditida/parasitología , Simbiosis
4.
J Invertebr Pathol ; 184: 107620, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34004164

RESUMEN

Earthworms are ecological engineers that can contribute to the displacement of biological control agents such as the entomopathogenic nematodes (EPNs) and fungi (EPF). However, a previous study showed that the presence of cutaneous excreta (CEx) and feeding behavior of the earthworm species Eisenia fetida (Haplotaxida: Lumbricidae) compromise the biocontrol efficacy of certain EPN species by reducing, for example, their reproductive capability. Whether this phenomenon is a general pattern for the interaction of earthworms-entomopathogens is still unknown. We hypothesized that diverse earthworm species might differentially affect EPN and EPF infectivity and reproductive capability. Here we investigated the interaction of different earthworm species (Eisenia fetida, Lumbricus terrestris, and Perionyx excavatus) (Haplotaxida) and EPN species (Steinernema feltiae, S. riojaense, and Heterorhabditis bacteriophora) (Rhabditida) or EPF species (Beauveria bassiana and Metarhizium anisopliae) (Hypocreales), in two independent experiments. First, we evaluated the application of each entomopathogen combined with earthworms or their CEx in autoclaved soil. Hereafter, we studied the impact of the earthworms' CEx on entomopathogens applied at two different concentrations in autoclaved sand. Overall, we found that the effect of earthworms on entomopathogens was species-specific. For example, E. fetida reduced the virulence of S. feltiae, resulted in neutral effects for S. riojaense, and increased H. bacteriophora virulence. However, the earthworm P. excavates increased the virulence of S. feltiae, reduced the activity of H. bacteriophora, at least at specific timings, while S. riojaense remained unaffected. Finally, none of the EPN species were affected by the presence of L. terrestris. Also, the exposure to earthworm CEx resulted in a positive, negative or neutral effect on the virulence and reproduction capability depending on the earthworm-EPN species interaction. Concerning EPF, the impact of earthworms was also differential among species. Thus, E. fetida was detrimental to M. anisopliae and B. bassiana after eight days post-exposure, whereas Lumbricus terrestris resulted only detrimental to B. bassiana. In addition, most of the CEx treatments of both earthworm species decreased B. bassiana virulence and growth. However, the EPF M. anisopliae was unaffected when exposed to L. terrestris CEx, while the exposure to E. fetida CEx produced contrasting results. We conclude that earthworms and their CEx can have positive, deleterious, or neutral impacts on entomopathogens that often coinhabit soils, and that we must consider the species specificity of these interactions for mutual uses in biological control programs. Additional studies are needed to verify these interactions under natural conditions.


Asunto(s)
Beauveria/fisiología , Metarhizium/fisiología , Oligoquetos/química , Rabdítidos/fisiología , Microbiología del Suelo , Suelo/parasitología , Animales , Beauveria/patogenicidad , Metarhizium/patogenicidad , Reproducción , Rabdítidos/patogenicidad , Especificidad de la Especie , Virulencia
5.
J Invertebr Pathol ; 184: 107641, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34186086

RESUMEN

Entomopathogenic nematodes are used widely in biological insect control. Entomopathogenic nematodes can infect live insects as well as dead insects (i.e., they can act as scavengers). It is important to determine compatibility of entomopathogenic nematodes with other pest management tactics such as chemical insecticides. We hypothesized that chemical insecticides have negative impact on scavenging nematodes. According to our hypothesis, we first investigated the effects of direct exposure of Steinernema carpocapsae infectivity juveniles (IJs) to three chemical insecticides, cypermethrin, spinosad or diflubenzuron in terms of nematode survival and virulence. Subsequently, using the same chemicals, we tested the effects of insecticide-killed insects on scavenger nematode penetration efficiency, time of emergence and the number of nematode progeny. Prior to our study, the impact of pesticides on scavenger nematode fitness had not been studied. Fall webworm, Hyphantria cunea, and greater wax moth, Galleria mellonella, larvae were used as host insects. The survival rate of IJs after direct exposure was 83% for cypermethrin and 93-97% for the other insecticides and control. There were no significant differences in the survival and virulence of the nematodes after 24 h exposure to insecticides. The number of nematodes that invaded the insecticide-killed host was significantly higher in cypermethrin and spinosad treated groups and live H. cunea than in the diflubenzoron treated group and freeze-killed control. However, no significant differences were observed in time of emergence. Significantly more progeny IJs emerged from Spinosad-killed insects than the freeze-killed control. In conclusion, we discovered that the fitness of scavenging IJs is not diminished by insecticides in insect cadavers. In fact, in some cases the exposure to chemical insecticides may enhance virulence.


Asunto(s)
Diflubenzurón/toxicidad , Insecticidas/toxicidad , Macrólidos/toxicidad , Piretrinas/toxicidad , Rabdítidos/efectos de los fármacos , Animales , Combinación de Medicamentos , Insectos/efectos de los fármacos , Longevidad/efectos de los fármacos , Rabdítidos/patogenicidad , Virulencia/efectos de los fármacos
6.
BMC Genomics ; 21(1): 478, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660425

RESUMEN

BACKGROUND: The pine wood nematode (PWN; Bursaphelenchus xylophilus) is the most damaging biological pest in pine forest ecosystems in China. However, the pathogenic mechanism remains unclear. Tracheid cavitation induced by excess metabolism of volatile terpenes is a typical characteristic of pine trees infected by B. xylophilus. ß-pinene, one of the main volatile terpenes, influences PWN colonization and reproduction, stimulating pathogenicity during the early stages of infection. To elucidate the response mechanism of PWN to ß-pinene, pathogenesis, mortality, and reproduction rate were investigated under different concentrations of ß-pinene using a transcriptomics approach. RESULTS: A low concentration of ß-pinene (BL, C < 25.74 mg/ml) inhibited PWN reproduction, whereas a high concentration (BH, C > 128.7 mg/ml) promoted reproduction. Comparison of PWN expression profiles under low (BL, 21.66 mg/ml) and high (BH, 214.5 mg/ml) ß-pinene concentrations at 48 h identified 659 and 418 differentially expressed genes (DEGs), respectively, compared with controls. Some key DEGs are potential regulators of ß-pinene via detoxification metabolism (cytochrome P450, UDP-glucuronosyltransferases and short-chain dehydrogenases), ion channel/transporter activity (unc and ATP-binding cassette families), and nuclear receptor -related genes. Gene Ontology enrichment analysis of DEGs revealed metabolic processes as the most significant biological processes, and catalytic activity as the most significant molecular function for both BL and BH samples. Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) analysis showed that xenobiotics biodegradation and metabolism, carbohydrate metabolism, lipid metabolism, amino acid metabolism, metabolism of cofactors and vitamins, and transport and catabolism were the dominant terms in metabolism categories. CONCLUSION: In addition to detoxification via reduction/oxidation (redox) activity, PWN responds to ß-pinene through amino acid metabolism, carbohydrate metabolism, and other pathways including growth regulation and epidermal protein changes to overcome ß-pinene stress. This study lays a foundation for further exploring the pathogenic mechanism of PWN.


Asunto(s)
Adaptación Fisiológica/fisiología , Monoterpenos Bicíclicos/metabolismo , Pinus/parasitología , Rabdítidos/patogenicidad , Estrés Fisiológico/genética , Adaptación Fisiológica/genética , Animales , Monoterpenos Bicíclicos/farmacología , Perfilación de la Expresión Génica , Reproducción/efectos de los fármacos , Rabdítidos/efectos de los fármacos , Rabdítidos/genética
7.
J Invertebr Pathol ; 174: 107428, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32553640

RESUMEN

An entomopathogenic nematode, Steinernema feltiae K1, exhibits pathogenicity in various insect hosts, however, its virulence among the target insect species varies. Specifically, a coleopteran insect, Tenebrio molitor, is less susceptible to S. feltiae than are lepidopteran insects. We analyzed the low virulence of S. feltiae against T. molitor sequentially, in entering the gut lumen and penetrating the hemocoel, and in hemocoelic immune defenses by comparing the responses to those of a lepidopteran insect, Spodoptera exigua. Infective juveniles (IJs) of S. feltiae exhibited higher virulence and produced more progeny IJs in S. exigua than in T. molitor. The difference in IJ behavior was observed in the IJ invasion rate (IJs in gut lumen/IJs treated) after treatment, in which a lower rate was observed in T. molitor (20.4%) than in S. exigua (55.5%). Also, a lower hemocoelic penetration rate of IJs (IJs in hemocoel/IJs in gut) was observed in T. molitor (54%) than in S. exigua (74%) 24 h after feeding treatment. To investigate the immune defense in the hemocoel, insect hemolymph samples were incubated with IJs. The encapsulation behavior and phenoloxidase activity was higher in T. molitor hemolymph than in S. exigua hemolymph, which resulted in a significantly higher nematicidal activity in S. exigua. The humoral immune responses against S. feltiae were also different between the two species. The expression of two antimicrobial peptides, cecropin and attacin 1, was much higher in T. molitor. Furthermore, eicosanoid biosynthetic activity against S. feltiae was different in the two host species; sPLA2 activity was highly inducible in T. molitor but not in S. exigua. These results suggest that variability of the immune defense in the target insects, as well as in the invasion and penetration rates of IJs to the hemocoel, plays a crucial role in determining the insecticidal virulence of S. feltiae.


Asunto(s)
Interacciones Huésped-Parásitos , Inmunidad Innata , Rabdítidos/fisiología , Spodoptera/parasitología , Tenebrio/parasitología , Animales , Control de Insectos , Intestinos/parasitología , Control Biológico de Vectores , Rabdítidos/patogenicidad , Spodoptera/inmunología , Tenebrio/inmunología , Virulencia
8.
J Helminthol ; 94: e188, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32907645

RESUMEN

The potato tuber moth, Phthorimaea operculella (Zeller), is a serious pest of potato and other commercial crops belonging to the Solanaceae family. In recent years, it has become an emerging problem in potato-growing regions of the Nilgiri hills of southern India. It is responsible for the reduced quality and quantity of marketable potatoes. In this regard, the development of an eco-friendly control method for the management of the potato tuber moth is urgently required. Therefore, in the present study, the virulence of Steinernema cholashanense CPRSUS01 originally isolated from the potato rhizosphere was tested on fourth-instar larvae and pupae of P. operculella. Steinernema cholashanense caused the greatest mortality in the fourth-instar larval stage (100%) than the pupae (30%). In addition to this, penetration and reproduction of this nematode was also studied in fourth-instar larvae of P. operculella and this is the first report of penetration and reproduction of any entomopathogenic nematode species on potato tuber moth larvae. The reproduction capacity of S. cholashanense on P. operculella is higher (702 infective juveniles mg-1 body weight). Our results indicated that S. cholashanense has good potential as an alternative tool for the management of P. operculella. But before including S. cholashanense in the integrated pest management program of P. operculella, its efficacy should be tested under field conditions.


Asunto(s)
Mariposas Nocturnas/parasitología , Control Biológico de Vectores , Rabdítidos/patogenicidad , Solanum tuberosum/parasitología , Animales , Femenino , India , Larva/parasitología , Enfermedades de las Plantas/prevención & control , Pupa/parasitología , Rabdítidos/aislamiento & purificación , Rizosfera
9.
J Invertebr Pathol ; 167: 107245, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31518564

RESUMEN

Entomopathogenic nematodes (EPNs) continue to be explored for their potential usefulness in biological control and pest management programs. As more insect-associated species of nematodes are discovered and described, it is possible that scavengers and kleptoparasites may be mischaracterized as EPNs. If a nematode species is truly an entomopathogen it should display similar infectivity, as well as behaviors and preferences, to those of established EPN species, such as Steinernema carpocapsae. In this study we evaluated dauers of the putative EPN species Oscheius chongmingensis. We examined virulence, odor preferences as a measure of host-seeking behavior, and features of its bacterial symbiont Serratia nematodiphila. We determined that O. chongmingensis behaves more like a scavenger than an EPN. Not only did O. chongmingensis exhibit very poor pathogenicity in Galleria mellonella (wax moth larvae), it also displayed odor (host-seeking) preferences that are contrary to the well-known EPN S. carpocapsae. We also found that the bacterial symbiont of O. chongmingensis was antagonistic to S. carpocapsae; S. carpocapsae IJs were unable to develop when S. nematodiphila was a primary food source. We conclude that there is insufficient evidence to support the characterization of O. chongmingensis as an EPN; and based on the attributes of its preferences for already-infected or deceased hosts, suggest that this nematode is a scavenger, which may be on an evolutionary trajectory leading to an entomopathogenic lifestyle.


Asunto(s)
Conducta Alimentaria , Rabdítidos/patogenicidad , Animales , Mariposas Nocturnas/parasitología , Control Biológico de Vectores , Rabdítidos/microbiología , Serratia/fisiología , Virulencia
10.
J Invertebr Pathol ; 160: 54-60, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30528638

RESUMEN

The entomopathogenic nematode, Steinernema scapterisci, a specialist parasite of crickets, has been successfully used to combat the southern mole cricket, Neoscapteriscus borellii, which is an invasive pest of turf grass. As an entomopathogenic nematode, S. scapterisci causes rapid death of the insects it infects and uses bacteria to facilitate its parasitism. However, our understanding of the relative contributions of the nematode, S. scapterisci, and its bacterial symbiont, Xenorhabdus innexi, to parasitism remains limited. Here we utilized the sand cricket, Gryllus firmus, as a model host to evaluate the contributions of the EPNs S. scapterisci and S. carpocapsae, as well as their symbiotic bacteria, X. innexi and X. nematophila, respectively, to the virulence of the nematode-bacterial complex. We found that G. firmus has reduced susceptibility to infection from both S. scapterisci and the closely related generalist parasite S. carpocapsae, but that S. scapterisci is much more virulent than S. carpocapsae. Further, we found that N. borellii has reduced susceptibility to X. nematophila, and that G. firmus has reduced susceptibility to X. nematophila, X. innexi, and Serratia marcescens, much more so than other insects that have been studied. We found that the reduced susceptibility of G. firmus to bacterial infection is dependent on development, with adults being less susceptible to infection than nymphs. Our data provide evidence that unlike other EPNs, the virulence of S. scapterisci to crickets is dependent on the nematode rather than the bacterial symbiont that it carries and we speculate that S. scapterisci may be evolving independence from X. innexi.


Asunto(s)
Infecciones Bacterianas/parasitología , Gryllidae/parasitología , Infecciones por Nematodos , Rabdítidos/patogenicidad , Xenorhabdus/patogenicidad , Animales , Agentes de Control Biológico , Susceptibilidad a Enfermedades/parasitología , Gryllidae/microbiología , Infecciones por Nematodos/parasitología , Serratia/patogenicidad , Virulencia
11.
J Invertebr Pathol ; 168: 107257, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31634473

RESUMEN

Ascarosides are a modular series of signalling molecules that are widely conserved in nematodes where they function as pheromones with both behavioural and developmental effects. Here we show that the developmentally arrested infective juvenile (IJ) stage of entomopathogenic nematodes (EPN) secrete ascarosides into the surrounding medium. The exometabolome of Steinernema carpocapsae and Heterorhabditis megidis was examined at 0, 1, 7 and 21 days of storage. The concentration of several ascarosides (ascr#11, ascr#9, ascr#12, ascr#1 and ascr#14 for both species, plus ascr#10 for H. megidis) showed a progressive increase over this period, while the concentration of longer chain ascarosides increased up to day 7, with an apparent decline thereafter. Ascr #9 was the main ascaroside produced by both species. Similar ascarosides were found over a 7-day period for Steinernema longicaudum and S. feltiae. Ascaroside blends have previously been shown to promote nematode dispersal. S. carpocapsae and H. megidis IJs were stored for up to 12 weeks and assayed at intervals. IJs where exometabolome was allowed to accumulate showed higher dispersal rates than those where water was changed frequently, indicating that IJ exometabolome maintained high dispersal. Infectivity was not affected. IJ exometabolome accumulated over 7 days promoted dispersal of freshly harvested IJs, both of their own and other EPN species. Similarly, extracts of nematode-infected cadavers promoted dispersal of con- and heterospecific IJs. Thus, IJs are encouraged to disperse from a source cadaver or from other crowded conditions by public information cues, a finding that may have application in enhancing biocontrol. However, the complexity of the ascaroside blend produced by IJs suggests that it may have ecological functions other than dispersal.


Asunto(s)
Glucolípidos/metabolismo , Mariposas Nocturnas/parasitología , Rabdítidos/patogenicidad , Distribución Animal/fisiología , Animales , Conducta Animal/fisiología , Metabolómica/métodos , Control Biológico de Vectores , Feromonas/metabolismo , Rabdítidos/metabolismo
12.
J Invertebr Pathol ; 165: 22-45, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30940472

RESUMEN

Since the 1980s, research into entomopathogenic nematodes (EPNs) in Latin America has produced many remarkable discoveries. In fact, 16 out of the 117 recognized species of EPNs have been recovered and described in the subcontinent, with many more endemic species and/or strains remaining to be discovered and identified. In addition, from an applied perspective, numerous technological innovations have been accomplished in relation to their implementation in biocontrol. EPNs have been evaluated against over 170 species of agricultural and urban insects, mites, and plant-parasitic nematodes under laboratory and field conditions. While much success has been recorded, many accomplishments remain obscure, due to their publication in non-English journals, thesis dissertations, conference proceedings, and other non-readily available sources. The present review provides a brief history of EPNs in Latin America, including current findings and future perspectives.


Asunto(s)
Agentes de Control Biológico , Control de Insectos , Control Biológico de Vectores , Rabdítidos , Agricultura/tendencias , Animales , Insectos/parasitología , Larva/parasitología , América Latina , Control Biológico de Vectores/métodos , Control Biológico de Vectores/tendencias , Rabdítidos/clasificación , Rabdítidos/crecimiento & desarrollo , Rabdítidos/aislamiento & purificación , Rabdítidos/patogenicidad
13.
J Invertebr Pathol ; 164: 38-42, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31034842

RESUMEN

Inconsistency in entomopathogenic nematode (EPN) efficacy is still one of the biggest challenges for the wider adoption of EPNs as biocontrol agents. Previous studies demonstrated that extracts from EPN-infected hosts enhance dispersal and efficacy, two key factors in success of EPNs. Some active components in the insect host cadavers responsible for dispersal, ascarosides, have been identified as nematode pheromones. We hypothesized that pheromone extracts increase dispersal of EPN infective juveniles (IJs) leading to increased efficacy. First, we determined whether pheromone extracts improved IJ movement/dispersal in soil columns baited with Tenebrio molitor larvae. We found that pheromone extracts induced higher numbers of Steinernema carpocapsae and Steinernema feltiae IJs to move towards T. molitor larvae in the bottom of the column compared to IJs treated with infected cadaver macerate and water, positive and negative controls, respectively. Furthermore, the number of S. carpocapsae IJs that invaded T. molitor larvae was higher for the pheromone extract treatment than the controls. S. feltiae IJs that were pretreated with pheromone extracts and macerate (positive control) infected T. molitor at the same rate but invasion was superior to IJs that were treated with water. Consistent with the soil column tests, both S. carpocapsae and S. feltiae IJs treated with pheromone extracts performed better in killing larvae of two economically important insect larvae, pecan weevil, Curculio caryae, and black soldier fly, Hermetia illucens, in greenhouse tests compared to IJs treated with water. We demonstrated pheromone-mediated behavioral manipulation of a biological control agent to enhance pest control potential. Conceivably, nematodes can be exposed to efficacy-enhancing pheromones prior to field application.


Asunto(s)
Feromonas , Infecciones por Rhabditida/parasitología , Rabdítidos , Animales , Bioensayo , Agentes de Control Biológico , Dípteros/parasitología , Larva/parasitología , Mariposas Nocturnas/parasitología , Control Biológico de Vectores , Rabdítidos/patogenicidad , Suelo/parasitología , Gorgojos/parasitología
14.
J Invertebr Pathol ; 167: 107251, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31560882

RESUMEN

Steinernema nematodes and their Xenorhabdus symbionts are a malleable model system to study mutualistic relations. One of the advantages they possess is their ability to be disassociated under in vitro rearing conditions. Various in vitro methods have been developed to produce symbiont colonized and aposymbiotic (symbiont-free) nematodes. Until now, there has been no investigation on how in vitro rearing conditions may have an impact on the storage ability and the protein content of the infective juvenile at different storage temperatures. Thus, in this study, we investigated how infective juvenile longevity and protein content are impacted when the nematodes were reared with two in vitro methods (lipid and liver kidney agar) considering colonized and uncolonized nematodes, and under two different temperatures: 15 °C and 20 °C (mild stress). Infective juveniles reared in vitro (with or without their symbionts) had lower 8-week survival rates. No in vitro reared, colonized IJs survived to the desired 16-week time point. Survival of infective juveniles stored under mild stress temperature (20 °C) was lower than that observed at 15 °C. However, when comparing the interaction between rearing condition and storage temperature, there were not significant differences. With respect to protein content, in vivo, colonized infective juveniles maintained a static protein content over time, suggesting symbiont colonization may influence protein metabolism and/or turnover in infective juveniles.


Asunto(s)
Rabdítidos/crecimiento & desarrollo , Animales , Técnicas In Vitro/métodos , Longevidad , Mariposas Nocturnas/parasitología , Parasitología/métodos , Proteínas/análisis , Rabdítidos/microbiología , Rabdítidos/patogenicidad , Análisis de Supervivencia , Simbiosis/fisiología , Temperatura , Xenorhabdus/crecimiento & desarrollo
15.
J Helminthol ; 93(2): 226-241, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29743130

RESUMEN

In this study, molecular (ribosomal sequence data), morphological and cross-hybridization properties were used to identify a new Steinernema sp. from Florida, USA. Molecular and morphological data provided evidence for placing the novel species into Clade V, or the 'glaseri-group' of Steinernema spp. Within this clade, analysis of sequence data of the rDNA genes, 28S and internal transcribed spacer (ITS), depicted the novel species as a distinctive entity and closely related to S. glaseri and S. cubanum. Additionally, cross-hybridization assays showed that the new species is unable to interbreed with either of the latter two species, reinforcing its uniqueness from a biological species concept standpoint. Key morphological diagnostic characters for S. khuongi n. sp. include the mean morphometric features of the third-stage infective juveniles: total body length (average: 1066 µm), tail length (average: 65 µm), location of the excretory pore (average: 80.5 µm) and the values of c (average: 16.4), D% (average: 60.5), E% (average: 126) and H% (average: 46.6). Additionally, males can be differentiated from S. glaseri and S. cubanum by the values of several ratios: D% (average: 68), E% (average: 323) and SW% (average: 120). The natural distribution of this species in Florida encompasses both natural areas and citrus groves, primarily in shallow groundwater ecoregions designated as 'flatwoods'. The morphological, molecular, phylogenetic and ecological data associated with this nematode support its identity as a new species in the S. glaseri-group.


Asunto(s)
Rabdítidos/clasificación , Rabdítidos/patogenicidad , Animales , ADN de Helmintos/genética , ADN Ribosómico/genética , Florida , Larva/parasitología , Mariposas Nocturnas/parasitología , Filogenia , ARN Ribosómico 28S/genética , Rabdítidos/anatomía & histología , Análisis de Secuencia de ADN , Suelo/parasitología
16.
BMC Evol Biol ; 17(1): 100, 2017 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-28412935

RESUMEN

BACKGROUND: Steinernematid nematodes form obligate symbioses with bacteria from the genus Xenorhabdus. Together Steinernema nematodes and their bacterial symbionts successfully infect, kill, utilize, and exit their insect hosts. During this process the nematodes and bacteria disassociate requiring them to re-associate before emerging from the host. This interaction can be complicated when two different nematodes co-infect an insect host. RESULTS: Non-cognate nematode-bacteria pairings result in reductions for multiple measures of success, including total progeny production and virulence. Additionally, nematode infective juveniles carry fewer bacterial cells when colonized by a non-cognate symbiont. Finally, we show that Steinernema nematodes can distinguish heterospecific and some conspecific non-cognate symbionts in behavioral choice assays. CONCLUSIONS: Steinernema-Xenorhabdus symbioses are tightly governed by partner recognition and fidelity. Association with non-cognates resulted in decreased fitness, virulence, and bacterial carriage of the nematode-bacterial pairings. Entomopathogenic nematodes and their bacterial symbionts are a useful, tractable, and reliable model for testing hypotheses regarding the evolution, maintenance, persistence, and fate of mutualisms.


Asunto(s)
Evolución Biológica , Aptitud Genética , Rabdítidos/fisiología , Simbiosis , Xenorhabdus/fisiología , Animales , Insectos/parasitología , Filogenia , Rabdítidos/clasificación , Rabdítidos/genética , Rabdítidos/patogenicidad , Virulencia , Xenorhabdus/clasificación , Xenorhabdus/genética
17.
J Invertebr Pathol ; 135: 53-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26896698

RESUMEN

The success of parasites can be impacted by multi-trophic interactions. Tritrophic interactions have been observed in parasite-herbivore-host plant systems. Here we investigate aspects of multi-trophic interactions in a system involving an entomopathogenic nematode (EPN), its insect host, and host plant. Novel issues investigated include the impact of tritrophic interactions on nematode foraging behavior, the ability of EPNs to overcome negative tritrophic effects through genetic selection, and interactions with a fourth trophic level (nematode predators). We tested infectivity of the nematode, Steinernema riobrave, to corn earworm larvae (Helicoverpa zea) in three host plants, tobacco, eggplant and tomato. Tobacco reduced nematode virulence and reproduction relative to tomato and eggplant. However, successive selection (5 passages) overcame the deficiency; selected nematodes no longer exhibited reductions in phenotypic traits. Despite the loss in virulence and reproduction nematodes, first passage S. riobrave was more attracted to frass from insects fed tobacco than insects fed on other host plants. Therefore, we hypothesized the reduced virulence and reproduction in S. riobrave infecting tobacco fed insects would be based on a self-medicating tradeoff, such as deterring predation. We tested this hypothesis by assessing predatory success of the mite Sancassania polyphyllae and the springtail Sinella curviseta on nematodes reared on tobacco-fed larvae versus those fed on greater wax moth, Galleria mellonella, tomato fed larvae, or eggplant fed larvae. No advantage was observed in nematodes derived from tobacco fed larvae. In conclusion, our results indicated that insect-host plant diet has an important effect on nematode foraging, infectivity and reproduction. However, negative host plant effects, might be overcome through directed selection. We propose that host plant species should be considered when designing biocontrol programs using EPNs.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Mariposas Nocturnas/parasitología , Nicotiana/parasitología , Rabdítidos/fisiología , Solanum lycopersicum/parasitología , Solanum melongena/parasitología , Adaptación Fisiológica , Análisis de Varianza , Animales , Solanum lycopersicum/fisiología , Mariposas Nocturnas/fisiología , Reproducción , Rabdítidos/patogenicidad , Pase Seriado , Solanum melongena/fisiología , Nicotiana/fisiología , Virulencia
18.
J Helminthol ; 90(3): 364-71, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26156314

RESUMEN

Entomopathogenic nematodes have become a valuable addition to the range of biological control agents available for insect control. An endemic nematode, Steinernema yirgalemense, has been found to be effective against a wide range of key insect pests. The next step would be the mass production this nematode for commercial application. This requires the establishment of monoxenic cultures of both the nematode and the symbiotic bacterium Xenorhabdus indica. First-stage juveniles of S. yirgalemense were obtained from eggs, while X. indica was isolated from nematode-infected wax moth larvae. The population density of the various life stages of S. yirgalemense during the developmental phase in liquid culture was determined. The recovery of infective juveniles (IJs) to the third-stage feeding juveniles, was 67 ± 10%, reaching a maximum population density of 75,000 IJs ml- 1 on day 13 after inoculation. Adult density increased after 8 days, with the maximum female density being 4600 ml- 1 on day 15, whereas the maximum male density was 4300 ml- 1 on day 12. Growth curves for X. indica showed that the exponential phase was reached 15 h after inoculation to the liquid medium. The stationary phase was reached after 42 h, with an average of 51 × 107 colony-forming units ml- 1. Virulence tests showed a significant difference in insect mortality between in vitro- and in vivo-produced nematodes. The success obtained with the production of S. yirgalemense in liquid culture can serve as the first step in the optimizing and upscaling of the commercial production of nematodes in fermenters.


Asunto(s)
Rabdítidos/crecimiento & desarrollo , Rabdítidos/microbiología , Xenorhabdus/crecimiento & desarrollo , Animales , Femenino , Masculino , Mariposas Nocturnas/parasitología , Dinámica Poblacional , Rabdítidos/patogenicidad , Análisis de Supervivencia , Virulencia
19.
J Invertebr Pathol ; 128: 31-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25935140

RESUMEN

Parasitized animals can self-medicate. As ingested plant phenolics, mainly tannins, reduce strongyle nematode infections in mammalian herbivores. We investigated the effect of plant extracts known to be anthelmintic in vertebrate herbivores on the recovery of the parasitic entomopathogenic nematode Heterorhabditis bacteriophora infecting African cotton leafworm (Spodoptera littoralis). Nematode infective juveniles (IJs) were exposed to 0, 300, 900, 1200, 2400 ppm of Pistacia lentiscus L. (lentisk), Inula viscosa L. (strong-smelling inula), Quercus calliprinos Decne. (common oak) and Ceratonia siliqua L. (carob) extracts on growth medium (in vitro assay). In control treatments, 50-80% of IJs resumed development to J4, young and developed adult hermaphrodites, whereas all extracts, except for C. siliqua at 300 ppm, impaired IJ exsheathment and development. The highest concentration of I. viscosa extract (2400 ppm) had the strongest effect, killing 95% of exposed nematodes. Surviving nematodes did not recover, remaining at the IJ stage. Over the whole cycle, I. viscosa extract inhibited recovery to 25% or less, and did not allow full development to adulthood, whereas 65% of IJs in the control treatment recovered and resumed development, 12% reaching complete maturation within 72 h of incubation. When herbivorous S. littoralis larvae were fed with different plant extracts in vivo, I. viscosa had the strongest effect at concentrations above 300 ppm, with 90% of insect-invading IJs not developing to parasitic stages, whereas in the control treatment, 85% of IJs resumed development. Exposure to C. siliqua extract also inhibited exsheathment and development of 75% of the IJs. Half of those that resumed development reached full maturation. P. lentiscus and Q. calliprinos extracts also inhibited development of 50% IJs. Our results suggest that H. bacteriophora can be used to study herbal medication against parasites in animals.


Asunto(s)
Rabdítidos/patogenicidad , Spodoptera/parasitología , Taninos/farmacología , Animales , Interacciones Huésped-Parásitos/efectos de los fármacos , Interacciones Huésped-Parásitos/fisiología , Plaguicidas/química , Plaguicidas/farmacología , Extractos Vegetales/farmacología , Rabdítidos/efectos de los fármacos
20.
J Econ Entomol ; 107(1): 115-20, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24665692

RESUMEN

The potential impacts on natural enemies of crops that produce insecticidal Cry proteins from Bacillus thuringiensis (Bt) are an important part of an environmental risk assessment. Entomopathogenic nematodes are important natural enemies of lepidopteran pests, and the effects of Bt crops on these nontarget organisms should be investigated to avoid disruption of their biological control function. The objective of this study was to investigate the effects of Cry1Ac-expressing transgenic Bt broccoli on the entomopathogenic nematode, Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), under tri-trophic conditions. Using CrylAc-resistant Plutella xylostella L. (Lepidoptera: Plutellidae) larvae as hosts, we evaluated the potential impact of Cry1Ac-expressing Bt broccoli on several fitness parameters of H. bacteriophora. Virulence, reproductive potential, time of emergence, and preference of H. bacteriophora for the host (P. xylostella) were not significantly affected when CrylAc-resistant P. xylostella larvae were reared on leaves of Cry1Ac or non-Bt broccoli. Also the aforementioned parameters of the subsequent generation of H. bacteriophora did not differ between nematodes obtained from P. xylostella reared on CrylAc broccoli compared with those obtained from P. xylostella reared on non-Bt broccoli. To the best of our knowledge, the current study provides the first clear evidence that Cry1Ac does not affect important fitness parameters of H. bacteriophora.


Asunto(s)
Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Insecticidas , Mariposas Nocturnas/parasitología , Rabdítidos/patogenicidad , Animales , Toxinas de Bacillus thuringiensis , Brassica , Resistencia a los Insecticidas , Larva/parasitología , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA