RESUMEN
The insulin receptor (IR) is a type II receptor tyrosine kinase that plays essential roles in metabolism, growth, and proliferation. Dysregulation of IR signaling is linked to many human diseases, such as diabetes and cancers. The resolution revolution in cryo-electron microscopy has led to the determination of several structures of IR with different numbers of bound insulin molecules in recent years, which have tremendously improved our understanding of how IR is activated by insulin. Here, we review the insulin-induced activation mechanism of IR, including (a) the detailed binding modes and functions of insulin at site 1 and site 2 and (b) the insulin-induced structural transitions that are required for IR activation. We highlight several other key aspects of the activation and regulation of IR signaling and discuss the remaining gaps in our understanding of the IR activation mechanism and potential avenues of future research.
Asunto(s)
Insulina , Receptor de Insulina , Humanos , Receptor de Insulina/genética , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Microscopía por Crioelectrón , Insulina/química , Insulina/metabolismo , Transducción de Señal , Proteínas Tirosina Quinasas Receptoras/metabolismo , FosforilaciónRESUMEN
Insulin receptor (IR) signaling is central to normal metabolic control and dysregulated in prevalent chronic diseases. IR binds insulin at the cell surface and transduces rapid signaling via cytoplasmic kinases. However, mechanisms mediating long-term effects of insulin remain unclear. Here, we show that IR associates with RNA polymerase II in the nucleus, with striking enrichment at promoters genome-wide. The target genes were highly enriched for insulin-related functions including lipid metabolism and protein synthesis and diseases including diabetes, neurodegeneration, and cancer. IR chromatin binding was increased by insulin and impaired in an insulin-resistant disease model. Promoter binding by IR was mediated by coregulator host cell factor-1 (HCF-1) and transcription factors, revealing an HCF-1-dependent pathway for gene regulation by insulin. These results show that IR interacts with transcriptional machinery at promoters and identify a pathway regulating genes linked to insulin's effects in physiology and disease.
Asunto(s)
Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Receptor de Insulina/metabolismo , Animales , Línea Celular Tumoral , Cromatina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Factor C1 de la Célula Huésped/antagonistas & inhibidores , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/metabolismo , Humanos , Insulina/metabolismo , Insulina/farmacología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Unión Proteica , Subunidades de Proteína/metabolismo , Interferencia de ARN , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/metabolismo , Receptor de Insulina/química , Transducción de Señal/efectos de los fármacosRESUMEN
The insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R) are homodimeric transmembrane glycoproteins that transduce signals across the membrane on binding of extracellular peptide ligands. The structures of IR/IGF1R fragments in apo and liganded states have revealed that the extracellular subunits of these receptors adopt Λ-shaped configurations to which are connected the intracellular tyrosine kinase (TK) domains. The binding of peptide ligands induces structural transitions in the extracellular subunits leading to potential dimerization of transmembrane domains (TMDs) and autophosphorylation in TKs. However, the activation mechanisms of IR/IGF1R, especially the role of TMDs in coordinating signal-inducing structural transitions, remain poorly understood, in part due to the lack of structures of full-length receptors in apo or liganded states. While atomistic simulations of IR/IGF1R TMDs showed that these domains can dimerize in single component membranes, spontaneous unbiased dimerization in a plasma membrane having a physiologically representative lipid composition has not been observed. We address this limitation by employing coarse-grained (CG) molecular dynamics simulations to probe the dimerization propensity of IR/IGF1R TMDs. We observed that TMDs in both receptors spontaneously dimerized independent of their initial orientations in their dissociated states, signifying their natural propensity for dimerization. In the dimeric state, IR TMDs predominantly adopted X-shaped configurations with asymmetric helical packing and significant tilt relative to the membrane normal, while IGF1R TMDs adopted symmetric V-shaped or parallel configurations with either no tilt or a small tilt relative to the membrane normal. Our results suggest that IR/IGF1R TMDs spontaneously dimerize and adopt distinct dimerized configurations.
Asunto(s)
Simulación de Dinámica Molecular , Multimerización de Proteína , Receptor IGF Tipo 1 , Receptor de Insulina , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Receptor de Insulina/química , Humanos , Dominios Proteicos , Membrana Celular/metabolismoRESUMEN
Understanding kinase-inhibitor selectivity continues to be a major objective in kinase drug discovery. We probe the molecular basis of selectivity of an allosteric inhibitor (MSC1609119A-1) of the insulin-like growth factor-I receptor kinase (IGF1RK), which has been shown to be ineffective for the homologous insulin receptor kinase (IRK). Specifically, we investigated the structural and energetic basis of the allosteric binding of this inhibitor to each kinase by combining molecular modeling, molecular dynamics (MD) simulations, and thermodynamic calculations. We predict the inhibitor conformation in the binding pocket of IRK and highlight that the charged residues in the histidine-arginine-aspartic acid (HRD) and aspartic acid-phenylalanine-glycine (DFG) motifs and the nonpolar residues in the binding pocket govern inhibitor interactions in the allosteric pocket of each kinase. We suggest that the conformational changes in the IGF1RK residues M1054 and M1079, movement of the âºC-helix, and the conformational stabilization of the DFG motif favor the selectivity of the inhibitor toward IGF1RK. Our thermodynamic calculations reveal that the observed selectivity can be rationalized through differences observed in the electrostatic interaction energy of the inhibitor in each inhibitor/kinase complex and the hydrogen bonding interactions of the inhibitor with the residue V1063 in IGF1RK that are not attained with the corresponding residue V1060 in IRK. Overall, our study provides a rationale for the molecular basis of recognition of this allosteric inhibitor by IGF1RK and IRK, which is potentially useful in developing novel inhibitors with improved affinity and selectivity.
Asunto(s)
Simulación de Dinámica Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas , Receptor IGF Tipo 1 , Termodinámica , Humanos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/metabolismo , Regulación Alostérica , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo , Sitio Alostérico , Sitios de Unión , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Receptor de Insulina/antagonistas & inhibidores , Enlace de HidrógenoRESUMEN
Insulin Wakayama is a clinical insulin variant where a conserved valine at the third residue on insulin's A chain (ValA3) is replaced with a leucine (LeuA3), weakening insulin receptor (IR) binding by 140-500-fold. This severe impact on binding from a subtle modification has posed an intriguing problem for decades. Although experimental investigations of natural and unnatural A3 mutations have highlighted the sensitivity of insulin-IR binding at this site, atomistic explanations of these binding trends have remained elusive. We investigate this problem computationally using λ-dynamics free energy calculations to model structural changes in response to perturbations of the ValA3 side chain and to calculate associated relative changes in binding free energy (ΔΔGbind). The Wakayama LeuA3 mutation and seven other A3 substitutions were studied in this work. The calculated ΔΔGbind results showed high agreement compared to experimental binding potencies with a Pearson correlation of 0.88 and a mean unsigned error of 0.68 kcal/mol. Extensive structural analyses of λ-dynamics trajectories revealed that critical interactions were disrupted between insulin and the insulin receptor as a result of the A3 mutations. This investigation also quantifies the effect that adding an A3 Cδ atom or losing an A3 Cγ atom has on insulin's binding affinity to the IR. Thus, λ-dynamics was able to successfully model the effects of mutations to insulin's A3 side chain on its protein-protein interactions with the IR and shed new light on a decades-old mystery: the exquisite sensitivity of hormone-receptor binding to a subtle modification of an invariant insulin residue.
Asunto(s)
Insulina , Simulación de Dinámica Molecular , Unión Proteica , Receptor de Insulina , Termodinámica , Receptor de Insulina/metabolismo , Receptor de Insulina/química , Receptor de Insulina/genética , Insulina/metabolismo , Insulina/química , Mutación , Humanos , Conformación ProteicaRESUMEN
The insulin receptor is a dimeric protein that has a crucial role in controlling glucose homeostasis, regulating lipid, protein and carbohydrate metabolism, and modulating brain neurotransmitter levels. Insulin receptor dysfunction has been associated with many diseases, including diabetes, cancer and Alzheimer's disease. The primary sequence of the receptor has been known since the 1980s, and is composed of an extracellular portion (the ectodomain, ECD), a single transmembrane helix and an intracellular tyrosine kinase domain. Binding of insulin to the dimeric ECD triggers auto-phosphorylation of the tyrosine kinase domain and subsequent activation of downstream signalling molecules. Biochemical and mutagenesis data have identified two putative insulin-binding sites, S1 and S2. The structures of insulin bound to an ECD fragment containing S1 and of the apo ectodomain have previously been reported, but details of insulin binding to the full receptor and the signal propagation mechanism are still not understood. Here we report single-particle cryo-electron microscopy reconstructions of the 1:2 (4.3 Å) and 1:1 (7.4 Å) complexes of the insulin receptor ECD dimer with insulin. The symmetrical 4.3 Å structure shows two insulin molecules per dimer, each bound between the leucine-rich subdomain L1 of one monomer and the first fibronectin-like domain (FnIII-1) of the other monomer, and making extensive interactions with the α-subunit C-terminal helix (α-CT helix). The 7.4 Å structure has only one similarly bound insulin per receptor dimer. The structures confirm the binding interactions at S1 and define the full S2 binding site. These insulin receptor states suggest that recruitment of the α-CT helix upon binding of the first insulin changes the relative subdomain orientations and triggers downstream signal propagation.
Asunto(s)
Microscopía por Crioelectrón , Insulina/química , Insulina/metabolismo , Multimerización de Proteína , Receptor de Insulina/química , Receptor de Insulina/ultraestructura , Apoproteínas/química , Apoproteínas/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Receptor de Insulina/metabolismo , Transducción de Señal , Imagen Individual de MoléculaRESUMEN
The insulin receptor (IR), the insulin-like growth factor-1 receptor (IGF1R), and the insulin/IGF1 hybrid receptors (hybR) are homologous transmembrane receptors. The peptide ligands, insulin and IGF1, exhibit significant structural homology and can bind to each receptor via site-1 and site-2 residues with distinct affinities. The variants of the Iridoviridae virus family show capability in expressing single-chain insulin/IGF1 like proteins, termed viral insulin-like peptides (VILPs), which can stimulate receptors from the insulin family. The sequences of VILPs lacking the central C-domain (dcVILPs) are known, but their structures in unbound and receptor-bound states have not been resolved to date. We report all-atom structural models of three dcVILPs (dcGIV, dcSGIV, and dcLCDV1) and their complexes with the receptors (µIR, µIGF1R, and µhybR), and probed the peptide/receptor interactions in each system using all-atom molecular dynamics (MD) simulations. Based on the nonbonded interaction energies computed between each residue of peptides (insulin and dcVILPs) and the receptors, we provide details on residues establishing significant interactions. The observed site-1 insulin/µIR interactions are consistent with previous experimental studies, and a residue-level comparison of interactions of peptides (insulin and dcVILPs) with the receptors revealed that, due to sequence differences, dcVILPs also establish some interactions distinct from those between insulin and IR. We also designed insulin analogs and report enhanced interactions between some analogs and the receptors.
Asunto(s)
Insulina , Virus , Insulina/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Receptor IGF Tipo 1/metabolismo , Modelos Estructurales , Simulación de Dinámica MolecularRESUMEN
Aptamers are single-stranded oligonucleotides that bind to a specific target with high affinity, and are widely applied in biomedical diagnostics and drug development. However, the use of aptamers has largely been limited to simple binders or inhibitors that interfere with the function of a target protein. Here, we show that an aptamer can also act as a positive allosteric modulator that enhances the activation of a receptor by stabilizing the binding of a ligand to that receptor. We developed an aptamer, named IR-A43, which binds to the insulin receptor, and confirmed that IR-A43 and insulin bind to the insulin receptor with mutual positive cooperativity. IR-A43 alone is inactive, but, in the presence of insulin, it potentiates autophosphorylation and downstream signaling of the insulin receptor. By using the species-specific activity of IR-A43 at the human insulin receptor, we demonstrate that residue Q272 in the cysteine-rich domain is directly involved in the insulin-enhancing activity of IR-A43. Therefore, we propose that the region containing residue Q272 is a hotspot that can be used to enhance insulin receptor activation. Moreover, our study implies that aptamers are promising reagents for the development of allosteric modulators that discriminate a specific conformation of a target receptor.
Asunto(s)
Antígenos CD/efectos de los fármacos , Aptámeros de Nucleótidos/farmacología , Receptor de Insulina/efectos de los fármacos , Regulación Alostérica , Animales , Antígenos CD/química , Antígenos CD/metabolismo , Células Cultivadas , Cricetinae , Glutamina/química , Humanos , Insulina/metabolismo , Ratones , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Ratas , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/efectos de los fármacos , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Técnica SELEX de Producción de Aptámeros , Estimulación QuímicaRESUMEN
Human InsR, IGF1R, and IRR receptor tyrosine kinases (RTK) of the insulin receptor subfamily play an important role in signaling pathways for a wide range of physiological processes and are directly associated with many pathologies, including neurodegenerative diseases. The disulfide-linked dimeric structure of these receptors is unique among RTKs. Sharing high sequence and structure homology, the receptors differ dramatically in their localization, expression, and functions. In this work, using high-resolution NMR spectroscopy supported by atomistic computer modeling, conformational variability of the transmembrane domains and their interactions with surrounding lipids were found to differ significantly between representatives of the subfamily. Therefore, we suggest that the heterogeneous and highly dynamic membrane environment should be taken into account in the observed diversity of the structural/dynamic organization and mechanisms of activation of InsR, IGF1R, and IRR receptors. This membrane-mediated control of receptor signaling offers an attractive prospect for the development of new targeted therapies for diseases associated with dysfunction of insulin subfamily receptors.
Asunto(s)
Desarrollo de Medicamentos , Receptor de Insulina , Humanos , Dominios Proteicos , Receptor de Insulina/química , Receptor de Insulina/fisiología , Transducción de SeñalRESUMEN
The insulin receptor (IR), insulin-like growth factor 1 receptor (IGF-1R), and insulin receptor-related receptor (IRR) form a mini family of predimerized receptor-like tyrosine kinases. IR and IGF-1R bind to their peptide agonists triggering metabolic and cell growth responses. In contrast, IRR, despite sharing with them a strong sequence homology, has no peptide-like agonist but can be activated by mildly alkaline media. The spatial structure and activation mechanisms of IRR have not been established yet. The present work represents the first account of a structural analysis of a predimerized receptor-like tyrosine kinase by high-resolution atomic force microscopy in their basal and activated forms. Our data suggest that in neutral media, inactive IRR has two conformations, where one is symmetrical and highly similar to the inactive Λ/U-shape of IR and IGF-1R ectodomains, whereas the second is drop-like and asymmetrical resembling the IRR ectodomain in solution. We did not observe complexes of IRR intracellular catalytic domains of the inactive receptor forms. At pH 9.0, we detected two presumably active IRR conformations, Γ-shaped and T-shaped. Both of conformations demonstrated formation of the complex of their intracellular catalytic domains responsible for autophosphorylation. The existence of two active IRR forms correlates well with the previously described positive cooperativity of the IRR activation. In conclusion, our data provide structural insights into the molecular mechanisms of alkali-induced IRR activation under mild native conditions that could be valuable for interpretation of results of IR and IGF-IR structural studies.
Asunto(s)
Receptor de Insulina/química , Receptor de Insulina/metabolismo , Humanos , Fosforilación , Conformación Proteica , Relación Estructura-ActividadRESUMEN
The venomous insulin-like peptides released by certain cone snails stimulate hypoglycemic shock to immobilize fish and catch the prey. Compared to human insulin (hIns), the cone snail insulins (Con-Ins) are typically monomeric and shorter in sequence, yet they exhibit moderate hIns-like biological activity. We have modeled six variants of Con-Ins (G3, K1, K2, T1A, T1B, and T2) and carried out explicit-solvent molecular dynamics (MD) simulations of eight types of insulins, two with known structures (hIns and Con-Ins-G1) and six Con-Ins with modeled structures, to characterize key residues of each insulin that interact with the truncated human insulin receptor (µIR). We show that each insulin/µIR complex is stable during explicit-solvent MD simulations and hIns interactions indicate the highest affinity for the "site 1" of IR. The residue contact maps reveal that each insulin preferably interacts with the αCT peptide than the L1 domain of IR. Through analysis of the average nonbonded interaction energy contribution of every residue of each insulin for the µIR, we probe the residues establishing favorable interactions with the receptor. We compared the interaction energy of each residue of every Con-Ins to the µIR and observed that γ-carboxylated glutamate (Gla), His, Thr, Tyr, Tyr/His, and Asn in Con-Ins are favorable substitutions for GluA4, AsnA21, ValB12, LeuB15, GlyB20, and ArgB22 in hIns, respectively. The identified insulin analogs, although lacking the last eight residues of the B-chain of hIns, bind strongly to µIR. Our findings are potentially useful in designing potent fast-acting therapeutic insulin.
Asunto(s)
Antígenos CD/química , Hipoglucemia/etiología , Insulinas/química , Receptor de Insulina/química , Secuencia de Aminoácidos , Animales , Humanos , Simulación de Dinámica Molecular , Venenos de Moluscos/química , Unión Proteica , Conformación Proteica , Relación Estructura-ActividadRESUMEN
IGF1R plays an important role in regulating cellular metabolism and cell growth, and has been identified as an anti-cancer and diabetes drug target. Although research have been reported many crystal and cryo-EM structures of IGF1R, the mechanism of ligand binding remains controversial, mainly because the structure differences among its cryo-EM, crystal and homologous protein insulin receptor structures. Here, we further determined one new high-resolution symmetric cryo-EM structure of ligand-bound IGF1R and be the first to prove that the receptor could bind to two IGFI molecules by single particle cryo-electron microscopy. And the structure is very different from its homologous protein insulin receptor: the two ligands just exist at the binding site 2 with saturating ligand conditions. Then, our findings resolved the major dispute about the comformational changes of IGF1R, and proposed a new theory how IGF1R binds to its ligands. Meanwhile, these findings imply more attention may be needed to study the relationship between the special conformation and their corresponding physiological functions in future.
Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Receptor IGF Tipo 1 , Humanos , Microscopía por Crioelectrón , Hormonas , Factor I del Crecimiento Similar a la Insulina/química , Ligandos , Dominios Proteicos , Receptor IGF Tipo 1/química , Receptor de Insulina/químicaRESUMEN
Multi-orthogonal molecular scaffolds can be applied as core structures of bioactive compounds. Here, we prepared four tri-orthogonal scaffolds based on adamantane or proline skeletons. The scaffolds were used for the solid-phase synthesis of model insulin mimetics bearing two different peptides on the scaffolds. We found that adamantane-derived compounds bind to the insulin receptor more effectively (Kd value of 0.5 µM) than proline-derived compounds (Kd values of 15-38 µM) bearing the same peptides. Molecular dynamics simulations suggest that spacers between peptides and central scaffolds can provide greater flexibility that can contribute to increased binding affinity. Molecular modeling showed possible binding modes of mimetics to the insulin receptor. Our data show that the structure of the central scaffold and flexibility of attached peptides in this type of compound are important and that different scaffolds should be considered when designing peptide hormone mimetics.
Asunto(s)
Adamantano/química , Insulina/análogos & derivados , Prolina/química , Receptor de Insulina/metabolismo , Animales , Sitios de Unión , Humanos , Insulina/síntesis química , Insulina/metabolismo , Cinética , Simulación de Dinámica Molecular , Unión Proteica , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Ratas , Receptor de Insulina/química , Técnicas de Síntesis en Fase Sólida , EstereoisomerismoRESUMEN
Insulin receptor plays an important role in the regulation of energy metabolism. Dysfunction of insulin receptor (IR) can lead to many disease states, such as diabetes mellitus. Deciphering the complex dynamic structures of human IR and its mechanism of activation would greatly aid in understanding IR-mediated signaling pathways and also in designing new drugs (including nonpeptidal insulin analogs) to treat diabetes mellitus. Experimental evidence about IR structures has been gradually obtained by biologists over the past three decades. Based on available experimental structures of IR in different states, here we employ molecular modeling approach to construct the full-length IR structures in different states and model its structural and conformational changes during insulin-induced IR activation. Several key possible intermediate states are constructed based on structural alignment, rotation, and computational modeling. Based on the structures of the full-length IR in different states, it appears that there are two possible conformational transition pathways: one is symmetric and the other one is asymmetric. Structural changes and motions of different domains of the full-length IR along the pathways are analyzed. The role of insulin binding to IR in facilitating the conformational transition of the receptor is analyzed. Information and insights derived from our present structural modeling analyses may aid in understanding the complex dynamic, structural, and conformational changes during the process of IR activation.
Asunto(s)
Insulina/química , Modelos Moleculares , Receptor de Insulina/química , Humanos , Estructura Cuaternaria de ProteínaRESUMEN
The accumulation of lipid intermediates may interfere with energy metabolism pathways and regulate cellular energy supplies. As increased levels of long-chain acylcarnitines have been linked to insulin resistance, we investigated the effects of long-chain acylcarnitines on key components of the insulin signalling pathway. We discovered that palmitoylcarnitine induces dephosphorylation of the insulin receptor (InsR) through increased activity of protein tyrosine phosphatase 1B (PTP1B). Palmitoylcarnitine suppresses protein kinase B (Akt) phosphorylation at Ser473, and this effect is not alleviated by the inhibition of PTP1B by the insulin sensitizer bis-(maltolato)-oxovanadium (IV). This result indicates that palmitoylcarnitine affects Akt activity independently of the InsR phosphorylation level. Inhibition of protein kinase C and protein phosphatase 2A does not affect the palmitoylcarnitine-mediated inhibition of Akt Ser473 phosphorylation. Additionally, palmitoylcarnitine markedly stimulates insulin release by suppressing Akt Ser473 phosphorylation in insulin-secreting RIN5F cells. In conclusion, long-chain acylcarnitines activate PTP1B and decrease InsR Tyr1151 phosphorylation and Akt Ser473 phosphorylation, thus limiting the cellular response to insulin stimulation.
Asunto(s)
Carnitina/análogos & derivados , Fosforilación/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Tirosina/metabolismo , Animales , Células CHO , Carnitina/farmacología , Cricetulus , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Insulina/metabolismo , Resistencia a la Insulina , Modelos Biológicos , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/químicaRESUMEN
Insulin receptor-related receptor (IRR) is a receptor tyrosine kinase of the insulin receptor family and functions as an extracellular alkali sensor that controls metabolic alkalosis in the regulation of the acid-base balance. In the present work, we sought to analyze structural features of IRR by comparing them with those of the insulin receptor, which is its closest homolog but does not respond to pH changes. Using small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM), we investigated the overall conformation of the recombinant soluble IRR ectodomain (ectoIRR) at neutral and alkaline pH. In contrast to the well-known inverted U-shaped (or λ-shaped) conformation of the insulin receptor, the structural models reconstructed at different pH values revealed that the ectoIRR organization has a "droplike" shape with a shorter distance between the fibronectin domains of the disulfide-linked dimer subunits within ectoIRR. We detected no large-scale pH-dependent conformational changes of ectoIRR in both SAXS and AFM experiments, an observation that agreed well with previous biochemical and functional analyses of IRR. Our findings indicate that ectoIRR's sensing of alkaline conditions involves additional molecular mechanisms, for example engagement of receptor juxtamembrane regions or the surrounding lipid environment.
Asunto(s)
Álcalis/metabolismo , Multimerización de Proteína , Receptor de Insulina/química , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Modelos Moleculares , Dominios Proteicos , Dispersión del Ángulo Pequeño , Soluciones , Difracción de Rayos XRESUMEN
Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2. Here, to resolve this discrepancy, we mutated these insulin residues and the equivalent residues in IGFs. Our findings revealed that equivalent mutations in the hormones can result in differential biological effects and that these effects can be receptor-specific. We noted that the insulin positions A10 and A17 are important for its binding to IR-A and IR-B and IGF-1R and that A13 is important only for IR-A and IR-B binding. The IGF-1/IGF-2 positions 51/50 and 54/53 did not appear to play critical roles in receptor binding, but mutations at IGF-1 position 58 and IGF-2 position 57 affected the binding. We propose that IGF-1 Glu-58 interacts with IGF-1R Arg-704 and belongs to IGF-1 site 1, a finding supported by the NMR structure of the less active Asp-58-IGF-1 variant. Computational analyses indicated that the aforementioned mutations can affect internal insulin dynamics and inhibit adoption of a receptor-bound conformation, important for binding to receptor site 1. We provide a molecular model and alternative hypotheses for how the mutated insulin residues affect activity.
Asunto(s)
Factor I del Crecimiento Similar a la Insulina/química , Insulina/química , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Anomalías Múltiples/genética , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Trastornos del Crecimiento/genética , Humanos , Insulina/análogos & derivados , Insulina/síntesis química , Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/química , Factor II del Crecimiento Similar a la Insulina/genética , Mutación/genética , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/genética , Dominios Proteicos/genética , Receptor IGF Tipo 1/genética , Receptor de Insulina/genéticaRESUMEN
Insulin binding to its cell surface receptor (IR) activates a cascade of events leading to its biological effects. The Insulin-IR complex is rapidly internalized and then is either recycled back to the plasma membrane or sent to lysosomes for degradation. Although most of the receptor is recycled or degraded, a small amount may escape this pathway and migrate to the nucleus of the cell where it might be important in promulgation of receptor signals. In this study we explored the mechanism by which insulin induces IR translocation to the cell nucleus. Experiments were performed cultured L6 myoblasts, AML liver cells and 3T3-L1 adipocytes. Insulin treatment induced a rapid increase in nuclear IR protein levels within 2 to 5â¯min. Treatment with WGA, an inhibitor of nuclear import, reduced insulin-induced increases nuclear IR protein; IR was, however, translocated to a perinuclear location. Bioinformatics tools predicted a potential nuclear localization sequence (NLS) on IR. Immunofluorescence staining showed that a point mutation on the predicted NLS blocked insulin-induced IR nuclear translocation. In addition, blockade of nuclear IR activation in isolated nuclei by an IR blocking antibody abrogated insulin-induced increases in IR tyrosine phosphorylation and nuclear PKCδ levels. Furthermore, over expression of mutated IR reduced insulin-induced glucose uptake and PKB phosphorylation. When added to isolated nuclei, insulin induced IR phosphorylation but had no effect on nuclear IR protein levels. These results raise questions regarding the possible role of nuclear IR in IR signaling and insulin resistance.
Asunto(s)
Núcleo Celular/metabolismo , Insulina/farmacología , Señales de Localización Nuclear/metabolismo , Receptor de Insulina/metabolismo , Células 3T3-L1 , Transporte Activo de Núcleo Celular/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Núcleo Celular/efectos de los fármacos , Glucosa/metabolismo , Humanos , Ratones , Proteínas Mutantes/metabolismo , Señales de Localización Nuclear/química , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/químicaRESUMEN
Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase-type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-HisB24, GlyB31, TyrB32]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-HisB24, GlyB31, TyrB32]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-HisB24, GlyB31, TyrB32]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin.
Asunto(s)
Insulina/agonistas , Insulina/metabolismo , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Factor I del Crecimiento Similar a la Insulina/química , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Cinética , Unión Proteica , Receptor IGF Tipo 1 , Receptor de Insulina/química , Receptor de Insulina/genética , Receptores de Somatomedina/química , Receptores de Somatomedina/genéticaRESUMEN
Breast cancer development and progression are influenced by insulin-like growth factor receptor 1 (IGF1R) and insulin receptor (InsR) signaling, which drive cancer phenotypes such as cell growth, proliferation, and migration. IGF1R and InsR form IGF1R/InsR hybrid receptors (HybRs) consisting of one molecule of IGF1R and one molecule of InsR. The specific signaling and functions of HybR are largely unknown, as HybR is activated by both IGF1 and insulin, and no cellular system expresses HybR in the absence of holo-IGF1R or holo-InsR. Here we studied the role of HybR by constructing inducible chimeric receptors and compared HybR signaling with that of holo-IGF1R and holo-InsR. We cloned chemically inducible chimeric IGF1R and InsR constructs consisting of the extracellular domains of the p75 nerve growth factor receptor fused to the intracellular ß subunit of IGF1R or InsR and a dimerization domain. Dimerization with the drugs AP20187 or AP21967 allowed specific and independent activation of holo-IGF1R, holo-InsR, or HybR, resulting in activation of the PI3K pathway. Holo-IGF1R and HybR both promoted cell proliferation and glucose uptake, whereas holo-InsR only promoted glucose uptake, and only holo-IGF1R showed anti-apoptotic effects. We also found that the three receptors differentially regulated gene expression: holo-IGF1R and HybR up-regulated EGR3; holo-InsR specifically down-regulated JUN and BCL2L1; holo-InsR down-regulated but HybR up-regulated HK2; and HybR specifically up-regulated FHL2, ITGA6, and PCK2. Our findings suggest that, when expressed and activated in mammary epithelial cells, HybR acts in a manner similar to IGF1R and support further investigation of the role of HybR in breast cancer.