Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 596(7870): 138-142, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34290405

RESUMEN

In early mitosis, the duplicated chromosomes are held together by the ring-shaped cohesin complex1. Separation of chromosomes during anaphase is triggered by separase-a large cysteine endopeptidase that cleaves the cohesin subunit SCC1 (also known as RAD212-4). Separase is activated by degradation of its inhibitors, securin5 and cyclin B6, but the molecular mechanisms of separase regulation are not clear. Here we used cryogenic electron microscopy to determine the structures of human separase in complex with either securin or CDK1-cyclin B1-CKS1. In both complexes, separase is inhibited by pseudosubstrate motifs that block substrate binding at the catalytic site and at nearby docking sites. As in Caenorhabditis elegans7 and yeast8, human securin contains its own pseudosubstrate motifs. By contrast, CDK1-cyclin B1 inhibits separase by deploying pseudosubstrate motifs from intrinsically disordered loops in separase itself. One autoinhibitory loop is oriented by CDK1-cyclin B1 to block the catalytic sites of both separase and CDK19,10. Another autoinhibitory loop blocks substrate docking in a cleft adjacent to the separase catalytic site. A third separase loop contains a phosphoserine6 that promotes complex assembly by binding to a conserved phosphate-binding pocket in cyclin B1. Our study reveals the diverse array of mechanisms by which securin and CDK1-cyclin B1 bind and inhibit separase, providing the molecular basis for the robust control of chromosome segregation.


Asunto(s)
Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/metabolismo , Ciclina B1/química , Ciclina B1/metabolismo , Securina/química , Securina/metabolismo , Separasa/química , Separasa/metabolismo , Secuencias de Aminoácidos , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteína Quinasa CDC2/ultraestructura , Quinasas CDC2-CDC28/química , Quinasas CDC2-CDC28/metabolismo , Quinasas CDC2-CDC28/ultraestructura , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Microscopía por Crioelectrón , Ciclina B1/ultraestructura , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Moleculares , Fosfoserina/metabolismo , Unión Proteica , Dominios Proteicos , Securina/ultraestructura , Separasa/antagonistas & inhibidores , Separasa/ultraestructura , Especificidad por Sustrato
2.
Nature ; 580(7804): 536-541, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32322060

RESUMEN

Separation of eukaryotic sister chromatids during the cell cycle is timed by the spindle assembly checkpoint (SAC) and ultimately triggered when separase cleaves cohesion-mediating cohesin1-3. Silencing of the SAC during metaphase activates the ubiquitin ligase APC/C (anaphase-promoting complex, also known as the cyclosome) and results in the proteasomal destruction of the separase inhibitor securin1. In the absence of securin, mammalian chromosomes still segregate on schedule, but it is unclear how separase is regulated under these conditions4,5. Here we show that human shugoshin 2 (SGO2), an essential protector of meiotic cohesin with unknown functions in the soma6,7, is turned into a separase inhibitor upon association with SAC-activated MAD2. SGO2-MAD2 can functionally replace securin and sequesters most separase in securin-knockout cells. Acute loss of securin and SGO2, but not of either protein individually, resulted in separase deregulation associated with premature cohesin cleavage and cytotoxicity. Similar to securin8,9, SGO2 is a competitive inhibitor that uses a pseudo-substrate sequence to block the active site of separase. APC/C-dependent ubiquitylation and action of the AAA-ATPase TRIP13 in conjunction with the MAD2-specific adaptor p31comet liberate separase from SGO2-MAD2 in vitro. The latter mechanism facilitates a considerable degree of sister chromatid separation in securin-knockout cells that lack APC/C activity. Thus, our results identify an unexpected function of SGO2 in mitotically dividing cells and a mechanism of separase regulation that is independent of securin but still supervised by the SAC.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/metabolismo , Securina , Separasa/antagonistas & inhibidores , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdc20/metabolismo , Línea Celular , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Unión Proteica , Securina/metabolismo , Separasa/metabolismo , Cohesinas
3.
Biochem Biophys Res Commun ; 734: 150740, 2024 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-39342798

RESUMEN

BACKGROUND: Psoriasis, characterized by chronic inflammation, is a persistent skin condition that is notoriously challenging to manage and prone to relapse. Despite significant advancements in its treatment, many adverse reactions still occur. Therefore, exploring the mechanisms behind the occurrence and development of psoriasis is extremely important. METHODS: The weighted correlation network analysis (WGCNA) algorithm was used to identify phenotype-related genes in patients with psoriasis. We recruited clinical samples of patients with psoriasis, and used single-cell RNA sequencing (scRNA-seq) to visualize divergent genes and metabolisms of varied cells for the psoriasis. Various machine-learning methods were used to identify core genes, and molecular docking was used to analyze the stability of leptomycin B targeting pituitary tumor transforming 1 (PTTG1). Immunofluorescence (IHC) analysis, multiplex immunofluorescence (mIF) analysis, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to validate the results. RESULTS: Our results identified 1391 genes associated with the phenotype in patients with psoriasis and highlighted the significant alterations in T-cell functionality observed in the disease by WGCNA. There were nine distinct cellular clusters in psoriasis analyzed with the aid of scRNA-seq data. Each subtype of cell exhibited distinct genetic profiles, functional roles, signaling mechanisms, and metabolic characteristics. Machine-learning methods further demonstrated the potential diagnostic value of T cell-derived PTTG1 and its relationship with T-cell exhaustion in psoriasis. Lastly, the leptomycin B was scrutinized and verified had high stability targeting PTTG1. CONCLUSIONS: This study elucidates the biological basis of psoriasis. At the same time, it was discovered that PTTG1 derived from exhausted T cells serves as a diagnostic biomarker for psoriasis. Leptomycin B could be a potential drug for targeted treatment of psoriasis on PTTG1.


Asunto(s)
Psoriasis , Securina , Linfocitos T , Humanos , Psoriasis/inmunología , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Securina/genética , Securina/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Masculino , Aprendizaje Automático , Femenino , Persona de Mediana Edad , Simulación del Acoplamiento Molecular , Adulto , Multiómica
4.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34463328

RESUMEN

Pathogenic gene variants in humans that affect the sonic hedgehog (SHH) pathway lead to severe brain malformations with variable penetrance due to unknown modifier genes. To identify such modifiers, we established novel congenic mouse models. LRP2-deficient C57BL/6N mice suffer from heart outflow tract defects and holoprosencephaly caused by impaired SHH activity. These defects are fully rescued on a FVB/N background, indicating a strong influence of modifier genes. Applying comparative transcriptomics, we identified Pttg1 and Ulk4 as candidate modifiers upregulated in the rescue strain. Functional analyses showed that ULK4 and PTTG1, both microtubule-associated proteins, are positive regulators of SHH signaling, rendering the pathway more resilient to disturbances. In addition, we characterized ULK4 and PTTG1 as previously unidentified components of primary cilia in the neuroepithelium. The identification of genes that powerfully modulate the penetrance of genetic disturbances affecting the brain and heart is likely relevant to understanding the variability in human congenital disorders.


Asunto(s)
Encéfalo/embriología , Genes Modificadores/fisiología , Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Encéfalo/metabolismo , Cilios/metabolismo , Modelos Animales de Enfermedad , Cardiopatías Congénitas/genética , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Mutación , Células Neuroepiteliales/metabolismo , Penetrancia , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Securina/genética , Securina/metabolismo
5.
Histochem Cell Biol ; 162(6): 447-464, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39093409

RESUMEN

Oocyte meiotic maturation failure and chromosome abnormality is one of the main causes of infertility, abortion, and diseases. The mono-orientation of sister chromatids during the first meiosis is important for ensuring accurate chromosome segregation in oocytes. MEIKIN is a germ cell-specific protein that can regulate the mono-orientation of sister chromatids and the protection of the centromeric cohesin complex during meiosis I. Here we found that MEIKIN is a maternal protein that was highly expressed in mouse oocytes before the metaphase I (MI) stage, but became degraded by the MII stage and dramatically reduced after fertilization. Strikingly, MEIKIN underwent phosphorylation modification after germinal vesicle breakdown (GVBD), indicating its possible function in subsequent cellular event regulation. We further showed that MEIKIN phosphorylation was mediated by PLK1 at its carboxyl terminal region and its C-terminus was its key functional domain. To clarify the biological significance of meikin degradation during later stages of oocyte maturation, exogenous expression of MEIKIN was employed, which showed that suppression of MEIKIN degradation resulted in chromosome misalignment, cyclin B1 and Securin degradation failure, and MI arrest through a spindle assembly checkpoint (SAC)-independent mechanism. Exogenous expression of MEIKIN also inhibited metaphase II (MII) exit and early embryo development. These results indicate that proper MEIKIN expression level and its C-terminal phosphorylation by PLK1 are critical for regulating the metaphase-anaphase transition in meiotic oocyte. The findings of this study are important for understanding the regulation of chromosome segregation and the prevention meiotic abnormality.


Asunto(s)
Proteínas de Ciclo Celular , Ciclina B1 , Meiosis , Metafase , Oocitos , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Securina , Animales , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ratones , Oocitos/metabolismo , Oocitos/citología , Fosforilación , Femenino , Ciclina B1/metabolismo , Securina/metabolismo , Anafase , Ratones Endogámicos ICR , Mesotelina
6.
BMC Cancer ; 24(1): 1315, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39455949

RESUMEN

BACKGROUND: Pituitary tumor-transforming gene 1 (PTTG1) is an important gene in tumour development. However, the relevance of PTTG1 in tumour prognosis, immunotherapy response, and medication sensitivity in human pan-cancer has to be determined. METHODS: TIMER, GEPIA, the human protein atlas, GEPIA, TISCH2, and cBioportal examined the gene expression, protein expression, prognostic value, and genetic modification landscape of PTTG1 in 33 malignancies based on the TCGA cohort. The association between PTTG1 and tumour immunity, tumour microenvironment, immunotherapy response, and anticancer drug sensitivity was investigated using GSCA, TIDE, and CellMiner CDB. Molecular docking was used to validate the possible chemotherapeutic medicines for PTTG1. Additionally, siRNA-mediated knockdown was employed to confirm the probable role of PTTG1 in paclitaxel-resistant cells. RESULTS: PTTG1 is overexpressed and associated with poor survival in most tumors. Functional enrichment study revealed that PTTG1 is involved in the cell cycle and DNA replication. A substantial connection between PTTG1 expression and immune cell infiltration points to PTTG1's possible role in the tumour microenvironment. High PTTG1 expression is associated with tumour immunotherapy resistance. The process could be connected to PTTG1, which mediates T cell exhaustion and promotes cytotoxic T lymphocyte malfunction. Furthermore, PTTG1 was found to be substantially linked with sensitivity to several anticancer medications. Suppressing PTTG1 with siRNA reduced clone formation and migration, implying that PTTG1 may play a role in paclitaxel resistance. CONCLUSION: PTTG1 shows potential as a cancer diagnostic, prognostic, and chemosensitivity marker. Increased PTTG1 expression is linked to resistance to cancer treatment. The mechanism could be linked to PTTG1's role in promoting cytotoxic T lymphocyte dysfunction and mediating T cell exhaustion. It is feasible to consider PTTG1, which is expressed on Treg and Tprolif cells, as a new therapeutic target for overcoming immunotherapy resistance.


Asunto(s)
Biomarcadores de Tumor , Resistencia a Antineoplásicos , Inmunoterapia , Neoplasias , Securina , Microambiente Tumoral , Humanos , Resistencia a Antineoplásicos/genética , Securina/genética , Securina/metabolismo , Pronóstico , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Microambiente Tumoral/inmunología , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Paclitaxel/uso terapéutico , Paclitaxel/farmacología , Multiómica
7.
J Biol Chem ; 298(10): 102405, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988650

RESUMEN

Cellular senescence is a form of irreversible growth arrest that cancer cells evade. The cell division cycle protein 20 homolog (Cdc20) is a positive regulator of cell division, but how its dysregulation may relate to senescence is unclear. Here, we find that Cdc20 mRNA and protein expression are downregulated in stress-induced premature senescent lung fibroblasts in a p53-dependent manner. Either Cdc20 downregulation or inhibition of anaphase-promoting complex/cyclosome (APC/C) is sufficient to induce premature senescence in lung fibroblasts, while APC/C activation inhibits stress-induced premature senescence. Mechanistically, we show both Cdc20 downregulation and APC/C inhibition induce premature senescence through glycogen synthase kinase (GSK)-3ß-mediated phosphorylation and downregulation of securin expression. Interestingly, we determined Cdc20 expression is upregulated in human lung adenocarcinoma. We find that downregulation of Cdc20 in non-small cell lung cancer (NSCLC) cells is sufficient to inhibit cell proliferation and growth in soft agar and to promote apoptosis, but not senescence, in a manner dependent on downregulation of securin following GSK-3ß-mediated securin phosphorylation. Similarly, we demonstrate securin expression is downregulated and cell viability is inhibited in NSCLC cells following inhibition of APC/C. Furthermore, we show chemotherapeutic drugs downregulate both Cdc20 and securin protein expression in NSCLC cells. Either Cdc20 downregulation by siRNA or APC/C inhibition sensitize, while securin overexpression inhibits, chemotherapeutic drug-induced NSCLC cell death. Together, our findings provide evidence that Cdc20/APC/C/securin-dependent signaling is a key regulator of cell survival, and its disruption promotes premature senescence in normal lung cells and induces apoptosis in lung cancer cells that have bypassed the senescence barrier.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Senescencia Celular , Neoplasias Pulmonares , Humanos , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Securina/genética , Securina/metabolismo
8.
Nature ; 542(7640): 255-259, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28146474

RESUMEN

Separase is a cysteine protease with a crucial role in the dissolution of cohesion among sister chromatids during chromosome segregation. In human tumours separase is overexpressed, making it a potential target for drug discovery. The protease activity of separase is strictly regulated by the inhibitor securin, which forms a tight complex with separase and may also stabilize this enzyme. Separases are large, 140-250-kilodalton enzymes, with an amino-terminal α-helical region and a carboxy-terminal caspase-like catalytic domain. Although crystal structures of the C-terminal two domains of separase and low-resolution electron microscopy reconstructions of the separase-securin complex have been reported, the atomic structures of full-length separase and especially the complex with securin are unknown. Here we report crystal structures at up to 2.6 Å resolution of the yeast Saccharomyces cerevisiae separase-securin complex. The α-helical region of separase (also known as Esp1) contains four domains (I-IV), and a substrate-binding domain immediately precedes the catalytic domain and has tight associations with it. The separase-securin complex assumes a highly elongated structure. Residues 258-373 of securin (Pds1), named the separase interaction segment, are primarily in an extended conformation and traverse the entire length of separase, interacting with all of its domains. Most importantly, residues 258-269 of securin are located in the separase active site, illuminating the mechanism of inhibition. Biochemical studies confirm the structural observations and indicate that contacts outside the separase active site are crucial for stabilizing the complex, thereby defining an important function for the helical region of separase.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Securina/química , Securina/metabolismo , Separasa/antagonistas & inhibidores , Separasa/química , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Separasa/metabolismo
9.
Mol Cell ; 58(3): 495-506, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25921067

RESUMEN

Ring-shaped cohesin keeps sister chromatids paired until cleavage of its Scc1/Rad21 subunit by separase triggers chromosome segregation in anaphase. Vertebrate separase is held inactive by mutually exclusive binding to securin or Cdk1-cyclin B1 and becomes unleashed only upon ubiquitin-dependent degradation of these regulators. Although most separase is usually found in association with securin, this anaphase inhibitor is dispensable for murine life while Cdk1-cyclin B1-dependent control of separase is essential. Here, we show that securin-independent inhibition of separase by Cdk1-cyclin B1 in early mitosis requires the phosphorylation-specific peptidyl-prolyl cis/trans isomerase Pin1. Furthermore, isomerization of previously securin-bound separase at the metaphase-to-anaphase transition renders it resistant to re-inhibition by residual securin. At the same time, isomerization also limits the half-life of separase's proteolytic activity, explaining how cohesin can be reloaded onto telophase chromatin in the absence of securin and cyclin B1 without being cleaved.


Asunto(s)
Segregación Cromosómica/genética , Regulación Enzimológica de la Expresión Génica , Isomerasa de Peptidilprolil/genética , Separasa/genética , Anafase/genética , Proteína Quinasa CDC2 , Cromátides/genética , Ciclina B1/química , Ciclina B1/genética , Ciclina B1/metabolismo , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Células HEK293 , Humanos , Immunoblotting , Metafase/genética , Microscopía Fluorescente , Mitosis/genética , Modelos Genéticos , Modelos Moleculares , Mutación , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil/metabolismo , Unión Proteica , Conformación Proteica , Interferencia de ARN , Securina/genética , Securina/metabolismo , Separasa/química , Separasa/metabolismo
10.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069214

RESUMEN

Seminoma is the most common testicular cancer. Pituitary tumor-transforming gene 1 (PTTG1) is a securin showing oncogenic activity in several tumors. We previously demonstrated that nuclear PTTG1 promotes seminoma tumor invasion through its transcriptional activity on matrix metalloproteinase 2 (MMP-2) and E-cadherin (CDH1). We wondered if specific interactors could affect its subcellular distribution. To this aim, we investigated the PTTG1 interactome in seminoma cell lines showing different PTTG1 nuclear levels correlated with invasive properties. A proteomic approach upon PTTG1 immunoprecipitation uncovered new specific securin interactors. Western blot, confocal microscopy, cytoplasmic/nuclear fractionation, sphere-forming assay, and Atlas database interrogation were performed to validate the proteomic results and to investigate the interplay between PTTG1 and newly uncovered partners. We observed that spectrin beta-chain (SPTBN1) and PTTG1 were cofactors, with SPTBN1 anchoring the securin in the cytoplasm. SPTBN1 downregulation determined PTTG1 nuclear translocation, promoting its invasive capability. Moreover, a PTTG1 deletion mutant lacking SPTBN1 binding was strongly localized in the nucleus. The Atlas database revealed that seminomas that contained higher nuclear PTTG1 levels showed significantly lower SPTBN1 levels in comparison to non-seminomas. In human seminoma specimens, we found a strong PTTG1/SPTBN1 colocalization that decreases in areas with nuclear PTTG1 distribution. Overall, these results suggest that SPTBN1, along with PTTG1, is a potential prognostic factor useful in the clinical management of seminoma.


Asunto(s)
Seminoma , Neoplasias Testiculares , Humanos , Masculino , Línea Celular Tumoral , Citoplasma/metabolismo , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 2 de la Matriz/metabolismo , Proteómica , Securina/genética , Securina/metabolismo , Seminoma/genética , Espectrina/genética , Neoplasias Testiculares/genética
11.
Biochem Biophys Res Commun ; 620: 173-179, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-35803173

RESUMEN

Separase is a giant cysteine protease and has multiple crucial functions. The most well-known substrate of separase is the kleisin subunit of cohesin, the cleavage of which triggers chromosome segregation during cell division (Uhlmann et al., 1999; Kamenz and Hauf, 2016) [1,2]. Recently, separase has also been found to cleave MCL-1 or BCL-XL proteins to trigger apoptosis (Hellmuth and Stemmann, 2020) [3]. Although substrate recognition through a short sequence right upstream of the cleavage site is well established, recent studies suggested that sequence elements outside this minimum cleavage site are required for optimal cleavage activity and specificity (Rosen et al., 2019; Uhlmann et al., 2000) [4,5]. However, the sequences and their underlying mechanism are largely unknown. To further explore the substrate determinants and recognition mechanism, we carried out sequence alignments and found a conserved motif downstream of the cleavage site in budding yeast. Using Alphafold2 and molecular dynamics simulations, we found this motif is recognized by separase in a conserved cleft near the binding groove of its inhibitor securin. Their binding is mutually exclusive and requires conformation changes of separase. These findings provide deeper insights into substrate recognition and activation of separase, and paved the way for discovering more substrates of separase.


Asunto(s)
Saccharomyces cerevisiae , Saccharomycetales , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Endopeptidasas/metabolismo , Simulación de Dinámica Molecular , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Securina/química , Securina/genética , Securina/metabolismo , Separasa/genética
12.
Mutagenesis ; 37(3-4): 182-190, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36112508

RESUMEN

Research over the years revealed that precocious anaphase, securin overexpression, and genome instability in both target and nontarget cells are significantly associated with the increased risk of areca nut (AN) and lime-induced oral, esophageal, and gastric cancers. Further, hyperphosphorylation of Rb and histone H3 epigenetic modifications both globally and in the promoter region of the securin gene were demonstrated after AN + lime exposure. This study aims whether the extract of raw AN + lime relaxes chromatin structure which further facilitates the histone H3 epigenetic modifications during the initial phase of carcinogenesis. Three groups of mice (10 in each group) were used. The treated group consumed 1 mg/day/mice of AN extract with lime ad libitum in the drinking water for 60 days. The dose was increased by 1 mg every 60 days. Isolated nuclei were digested with DNaseI and 2 kb and below DNA was eluted from the agarose gel, purified and PCR amplified by using securin and GAPDH primers. Securin and E2F1 expression, pRb phosphorylation, and histone epigenetic modifications were analyzed by immunohistochemistry. The number of DNA fragments within 2 kb in size after DNaseI treatment was higher significantly in AN + lime exposed tissue samples than in the untreated one. The PCR result showed that the number of fragments bearing securin gene promoter and GAPDH gene was significantly higher in AN + lime exposed DNaseI-treated samples. Immunohistochemistry data revealed increased Rb hyperphosphorylation, upregulation of E2F1, and securin in the AN + lime-treated samples. Increased trimethylation of histone H3 lysine 4 and acetylation of H3 lysine 9 and 18 were observed globally in the treated samples. Therefore, the results of this study have led to the hypothesis that AN + lime exposure relaxes the chromatin, changes the epigenetic landscape, and deregulates the Rb-E2F1 circuit which might be involved in the upregulation of securin and some other proto-oncogenes that might play an important role in the initial phases of AN + lime mediated carcinogenesis.


Asunto(s)
Cromatina , Nueces , Extractos Vegetales , Animales , Ratones , Acetilación , Areca/química , Carcinogénesis , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Lisina/genética , Nueces/química , Extractos Vegetales/farmacología , Securina/genética , Securina/metabolismo
13.
Liver Int ; 42(3): 651-662, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35050550

RESUMEN

BACKGROUND AND AIMS: PTTG1 is almost undetectable in adult livers but is highly expressed in hepatocarcinoma. While little is known about its involvement in liver fibrosis, PTTG1 expression is associated with DLK1. We assessed the role of the PTTG1/DLK1 pathway in fibrosis progression and the potential therapeutic effect of PTTG1 silencing in fibrosis. METHODS: Pttg1 and Dlk1 were studied in liver and isolated cell populations of control and fibrotic rats and in human liver biopsies. The fibrotic molecular signature was analysed in Pttg1-/- and Pttg1+/+ fibrotic mice. Finally, Pttg1 silencing was evaluated in rats as a novel antifibrotic therapy. RESULTS: Pttg1 and Dlk1 mRNA selectively increased in fibrotic rats paralleling fibrosis progression. Serum DLK1 concentrations correlated with hepatic collagen content and systemic and portal haemodynamics. Human cirrhotic livers showed greater PTTG1 and DLK1 transcript abundance than non-cirrhotic, and reduced collagen was observed in Pttg1 Pttg1-/- mice. The liver fibrotic molecular signature revealed lower expression of genes related to extracellular matrix remodelling including Mmp8 and 9 and Timp4 and greater eotaxin and Mmp13 than fibrotic Pttg1+/+ mice. Finally, interfering Pttg1 resulted in reduced liver fibrotic area, lower α-Sma and decreased portal pressure than fibrotic animals. Furthermore, Pttg1 silencing decreased the transcription of Dlk1, collagens I and III, Pdgfrß, Tgfrß, Timp1, Timp2 and Mmp2. CONCLUSIONS: Pttg1/Dlk1 are selectively overexpressed in the cirrhotic liver and participate in ECM turnover regulation. Pttg1 disruption decreases Dlk1 transcription and attenuates collagen deposition. PTTG1/DLK1 signalling is a novel pathway for targeting the progression of liver fibrosis.


Asunto(s)
Proteínas de Unión al Calcio , Péptidos y Proteínas de Señalización Intercelular , Proteínas de la Membrana , Neoplasias Hipofisarias , Securina , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Fibrosis , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Oncogenes , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Ratas , Securina/genética , Securina/metabolismo
14.
Exp Cell Res ; 405(2): 112657, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34081985

RESUMEN

Checkpoint kinases (Chk) 1/2 are known for DNA damage checkpoint and cell cycle control in somatic cells. According to recent findings, the involvement of Chk1 in oocyte meiotic resumption and Chk2 is regarded as an essential regulator for progression at the post metaphase I stage (MI). In this study, AZD7762 (Chk1/2 inhibitor) and SB218078 (Chk1 inhibitor) were used to uncover the joint roles of Chk1/2 and differentiate the importance of Chk1 and Chk2 during oocyte meiotic maturation. Inhibition of Chk1/2 or Chk1 alone had no significant effect on germinal vesicle breakdown (GVBD) but significantly inhibited the first polar body (PB1). Interestingly, inhibition of Chk1 alone could not increase or completely block the extrusion of PB1 like Chk1/2 inhibition. Also, Chk1/2 inhibition resulted in defective meiotic spindle organization and chromosome condensation both in MI and metaphase II (MII) stages of oocytes. The location of γ-tubulin and Securin were abnormal or missing, while P38 MAPK was activated by Chk1/2 inhibition. Meanwhile, Chk1/2 inhibition reduced the percentage of the second polar body extrusion and pronuclear formation. In conclusion, our results further understand the functions and regulatory mechanism of Chk1/2 during oocyte meiotic maturation.


Asunto(s)
Cromosomas/metabolismo , Meiosis/fisiología , Metafase/fisiología , Oocitos/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Femenino , Ratones , Securina/metabolismo , Tubulina (Proteína)/metabolismo
15.
Nature ; 532(7597): 131-4, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27027290

RESUMEN

Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin, and by phosphorylation of both the enzyme and substrates. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here we report crystal structures of the separase protease domain from the thermophilic fungus Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study, mutating two securin residues in a conserved motif that partly matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaetomium/enzimología , Proteínas Cromosómicas no Histona/metabolismo , Separasa/química , Separasa/metabolismo , Secuencia de Aminoácidos , Unión Competitiva/efectos de los fármacos , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Segregación Cromosómica , Cristalografía por Rayos X , Modelos Moleculares , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Securina/química , Securina/genética , Securina/metabolismo , Securina/farmacología , Separasa/antagonistas & inhibidores , Relación Estructura-Actividad , Especificidad por Sustrato/genética , Cohesinas , Quinasa Tipo Polo 1
16.
Nucleic Acids Res ; 48(11): 6092-6107, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32402080

RESUMEN

The DNA damage checkpoint halts cell cycle progression in G2 in response to genotoxic insults. Central to the execution of cell cycle arrest is the checkpoint-induced stabilization of securin-separase complex (yeast Pds1-Esp1). The checkpoint kinases Chk1 and Chk2 (yeast Chk1 and Rad53) are thought to critically contribute to the stability of securin-separase complex by phosphorylation of securin, rendering it resistant to proteolytic destruction by the anaphase promoting complex (APC). Dun1, a Rad53 paralog related to Chk2, is also essential for checkpoint-imposed arrest. Dun1 is required for the DNA damage-induced transcription of DNA repair genes; however, its role in the execution of cell cycle arrest remains unknown. Here, we show that Dun1's role in checkpoint arrest is independent of its involvement in the transcription of repair genes. Instead, Dun1 is necessary to prevent Pds1 destruction during DNA damage in that the Dun1-deficient cells degrade Pds1, escape G2 arrest and undergo mitosis despite the presence of checkpoint-active Chk1 and Rad53. Interestingly, proteolytic degradation of Pds1 in the absence of Dun1 is mediated not by APC but by the HECT domain-containing E3 ligase Rsp5. Our results suggest a regulatory scheme in which Dun1 prevents chromosome segregation during DNA damage by inhibiting Rsp5-mediated proteolytic degradation of securin Pds1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/metabolismo , Daño del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Securina/metabolismo , Separasa/metabolismo , Transducción de Señal , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/deficiencia , Segregación Cromosómica , Reparación del ADN/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fase G2 , Eliminación de Gen , Mitosis , Proteínas Serina-Treonina Quinasas/deficiencia , Proteolisis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
17.
Subcell Biochem ; 96: 217-232, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33252730

RESUMEN

Separase is a large cysteine protease in eukaryotes and has crucial roles in many cellular processes, especially chromosome segregation during mitosis and meiosis, apoptosis, DNA damage repair, centrosome disengagement and duplication, spindle stabilization and elongation. It dissolves the cohesion between sister chromatids by cleaving one of the subunits of the cohesin ring for chromosome segregation. The activity of separase is tightly controlled at many levels, through direct binding of inhibitory proteins as well as posttranslational modification. Dysregulation of separase activity is linked to cancer and genome instability, making it a target for drug discovery. One of the best-known inhibitors of separase is securin, which has been identified in yeast, plants, and animals. Securin forms a tight complex with separase and potently inhibits its catalytic activity. Recent structures of the separase-securin complex have revealed the molecular mechanism for the inhibitory activity of securin. A segment of securin is bound in the active site of separase, thereby blocking substrate binding. Securin itself is not cleaved by separase as its binding mode is not compatible with catalysis. Securin also has extensive interactions with separase outside the active site, consistent with its function as a chaperone to stabilize this enzyme.


Asunto(s)
Securina/química , Securina/metabolismo , Separasa/química , Separasa/metabolismo , Animales , Segregación Cromosómica , Humanos , Separasa/antagonistas & inhibidores
18.
Proc Natl Acad Sci U S A ; 116(32): 16018-16027, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31324745

RESUMEN

Chromosome distribution at anaphase of mitosis and meiosis is triggered by separase, an evolutionarily conserved protease. Separase must be tightly regulated to prevent the untimely release of chromatid cohesion and disastrous chromosome distribution defects. Securin is the key inhibitor of separase in animals and fungi, but has not been identified in other eukaryotic lineages. Here, we identified PATRONUS1 and PATRONUS2 (PANS1 and PANS2) as the Arabidopsis homologs of securin. Disruption of PANS1 is known to lead to the premature separation of chromosomes at meiosis, and the simultaneous disruption of PANS1 and PANS2 is lethal. Here, we show that PANS1 targeting by the anaphase-promoting complex is required to trigger chromosome separation, mirroring the regulation of securin. We showed that PANS1 acts independently from Shugosins. In a genetic screen for pans1 suppressors, we identified SEPARASE mutants, showing that PANS1 and SEPARASE have antagonistic functions in vivo. Finally, we showed that the PANS1 and PANS2 proteins interact directly with SEPARASE. Altogether, our results show that PANS1 and PANS2 act as a plant securin. Remote sequence similarity was identified between the plant patronus family and animal securins, suggesting that they indeed derive from a common ancestor. Identification of patronus as the elusive plant securin illustrates the extreme sequence divergence of this central regulator of mitosis and meiosis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Cromosomas de las Plantas/metabolismo , Securina/metabolismo , Separasa/metabolismo , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Cromosomas de las Plantas/genética , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Meiosis , Mutación/genética , Unión Proteica , Factores de Tiempo
19.
Arch Biochem Biophys ; 711: 109007, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34400144

RESUMEN

Pituitary tumor-transforming gene 1 (PTTG1) has been found to be associated with the process of cell proliferation and invasion, and is highly expressed in aortic dissection (AD). However, its potential role and underlying mechanism in AD remain uncertain. This study aims at elucidating the roles of specificity protein 1 (SP1) and PTTG1 in the migration and phenotypic switching of aortic vascular smooth muscle cells (VSMCs) in AD. Aortic samples were collected from 35 patients with AD for examination of PTTG1 expression in the tissues by qPCR, western blot and immunofluorescence. Human aortic vascular smooth muscle cells (HAVSMCs) were stimulated with platelet-derived growth factor-BB (PDGF-BB) to establish the cellular model of AD. PTTG1 expression in VSMCs was also examined by qPCR and western blot. Cell viability was detected by CCK-8, cell proliferation by EdU staining and cell migration by wound healing and transwell. Western blot was then performed to assay migration-related proteins. After interference with PTTG1, the levels of smooth muscle pthenotypic switch markers smooth muscle protein 22 alpha (SM22-α) and osteopontin (OPN) were detected by qPCR, western blot and immunofluorescence. The binding of SP1 and PTTG1 was verified with dual-luciferase reporter assay and chromatin immunoprecipitation assay (ChIP). PTTG1 overexpression was found in AD patients. Interference with PTTG1 attenuated the proliferation and migration of PDGF-BB-stimulated HAVSMCs, in addition to their switching from contractile phenotype to synthetic phenotype. Transcription factor SP1 was up-regulated in PDGF-BB-stimulated HAVSMCs, combined with PTTG1 promoter sequence and regulated PTTG1 expression, whose overexpression reversed the effects of PTTG1 interference on cell proliferation, migration and phenotypic switching. SP1 transcriptional activation of PTTG1 activated MAPK/ERK signaling pathway. In conclusion, SP1 transcriptional activation of PTTG1 regulates the migration and phenotypic transformation of HAVSMCs in AD by MAPK Signaling.


Asunto(s)
Disección Aórtica/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Securina/metabolismo , Factor de Transcripción Sp1/metabolismo , Aorta/metabolismo , Becaplermina/farmacología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Persona de Mediana Edad , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Securina/genética , Activación Transcripcional/fisiología , Regulación hacia Arriba/efectos de los fármacos
20.
Exp Cell Res ; 392(1): 112002, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32277958

RESUMEN

AarF domain containing kinase 5 (ADCK5) is a member of an atypical kinase family and overexpressed in many carcinomas including lung cancer, while the function of this protein has not been elucidated. Here we investigated the mechanism of ADCK5 involved in regulating invasion and migration of lung cancer cells, and showed that ADCK5 might regulate the expression of tumor oncogene human pituitary tumor transforming gene-1 (PTTG1) by phosphorylating transcription factor SOX9, therefore enhancing the migration and invasion capabilities of lung cancer cells. Mutagenesis of potential serine phosphorylation sites on SOX9 indicated that serine 181 might be required to maintain transcription activation of SOX9 as well as increase PTTG1 levels. The serine 181 site of SOX9 is in a motif that is targeted by ADCK5. The ADCK5-SOX9-PTTG1 pathway might be a potential therapeutic target for lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular/genética , Neoplasias Pulmonares/patología , Proteínas Serina-Treonina Quinasas/fisiología , Factor de Transcripción SOX9/genética , Securina/genética , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/genética , Adhesión Celular/genética , Proliferación Celular/genética , Células Cultivadas , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Invasividad Neoplásica/genética , Metástasis de la Neoplasia , Proteínas Serina-Treonina Quinasas/genética , Factor de Transcripción SOX9/metabolismo , Securina/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA