Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(42): e2412016121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39388275

RESUMEN

In this study, we show that the potato (Solanum tuberosum) pattern recognition receptor (PRR) NEMATODE-INDUCED LEUCINE-RICH REPEAT (LRR)-RLK1 (StNILR1) functions as a dual receptor, recognizing both nematode-associated molecular pattern ascaroside #18 (Ascr18) and plant hormone brassinosteroid (BR) to activate two different physiological outputs: pattern-triggered immunity (PTI) and BR response. Ascr18/BR-StNILR1 signaling requires the coreceptor potato BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (StBAK1) and perception of either ligand strengthens StNILR1 interaction with StBAK1 in plant cells. Significantly, the parasitically successful potato cyst nematode (Globodera pallida) utilizes the effector RHA1B, which is a functional ubiquitin ligase, to target StNILR1 for ubiquitination-mediated proteasome-dependent degradation, thereby countering Ascr18/BR-StNILR1-mediated PTI in potato and facilitating nematode parasitism. These findings broaden our understanding of PRR specificity and reveal a nematode parasitic mechanism that targets a PTI signaling pathway.


Asunto(s)
Enfermedades de las Plantas , Inmunidad de la Planta , Solanum tuberosum , Animales , Solanum tuberosum/parasitología , Solanum tuberosum/inmunología , Solanum tuberosum/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Brasinoesteroides/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ligandos , Transducción de Señal , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Tylenchoidea/fisiología , Nematodos/metabolismo , Nematodos/inmunología
2.
Proc Natl Acad Sci U S A ; 119(35): e2114064119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994659

RESUMEN

Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.


Asunto(s)
Arabidopsis , Resistencia a la Enfermedad , Especificidad del Huésped , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/parasitología , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitología , Nicotiana/metabolismo , Nicotiana/parasitología , Técnicas del Sistema de Dos Híbridos
3.
BMC Plant Biol ; 24(1): 677, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39014327

RESUMEN

Climate change is predicted to increase the occurrence of extreme weather events such as heatwaves, which may thereby impact the outcome of plant-herbivore interactions. While elevated temperature is known to directly affect herbivore growth, it remains largely unclear if it indirectly influences herbivore performance by affecting the host plant they feed on. In this study, we investigated how transient exposure to high temperature influences plant herbivory-induced defenses at the transcript and metabolic level. To this end, we studied the interaction between potato (Solanum tuberosum) plants and the larvae of the potato tuber moth (Phthorimaea operculella) under different temperature regimes. We found that P. operculella larvae grew heavier on leaves co-stressed by high temperature and insect herbivory than on leaves pre-stressed by herbivory alone. We also observed that high temperature treatments altered phylotranscriptomic patterns upon herbivory, which changed from an evolutionary hourglass pattern, in which transcriptomic responses at early and late time points after elicitation are more variable than the ones in the middle, to a vase pattern. Specifically, transcripts of many herbivory-induced genes in the early and late defense stage were suppressed by HT treatment, whereas those in the intermediate stage peaked earlier. Additionally, we observed that high temperature impaired the induction of jasmonates and defense compounds upon herbivory. Moreover, using jasmonate-reduced (JA-reduced, irAOC) and -elevated (JA-Ile-elevated, irCYP94B3s) potato plants, we showed that high temperature suppresses JA signaling mediated plant-induced defense to herbivore attack. Thus, our study provides evidences on how temperature reprograms plant-induced defense to herbivores.


Asunto(s)
Respuesta al Choque Térmico , Herbivoria , Larva , Mariposas Nocturnas , Solanum tuberosum , Solanum tuberosum/fisiología , Solanum tuberosum/parasitología , Solanum tuberosum/genética , Solanum tuberosum/inmunología , Animales , Mariposas Nocturnas/fisiología , Larva/fisiología , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/fisiología , Hojas de la Planta/parasitología , Calor , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Defensa de la Planta contra la Herbivoria , Transcriptoma , Cambio Climático
4.
Plant Biotechnol J ; 22(9): 2518-2529, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38733093

RESUMEN

Protein complexes from edible oyster mushrooms (Pleurotus sp.) composed of pleurotolysin A2 (PlyA2) and pleurotolysin B (PlyB) exert toxicity in feeding tests against Colorado potato beetle (CPB) larvae, acting through the interaction with insect-specific membrane sphingolipid. Here we present a new strategy for crop protection, based on in planta production of PlyA2/PlyB protein complexes, and we exemplify this strategy in construction of transgenic potato plants of cv Désirée. The transgenics in which PlyA2 was directed to the vacuole and PlyB to the endoplasmic reticulum are effectively protected from infestation by CPB larvae without impacting plant performance. These transgenic plants showed a pronounced effect on larval feeding rate, the larvae feeding on transgenic plants being on average five to six folds lighter than larvae feeding on controls. Further, only a fraction (11%-37%) of the larvae that fed on transgenic potato plants completed their life cycle and developed into adult beetles. Moreover, gene expression analysis of CPB larvae exposed to PlyA2/PlyB complexes revealed the response indicative of a general stress status of larvae and no evidence of possibility of developing resistance due to the functional inactivation of PlyA2/PlyB sphingolipid receptors.


Asunto(s)
Escarabajos , Larva , Plantas Modificadas Genéticamente , Solanum tuberosum , Animales , Solanum tuberosum/genética , Solanum tuberosum/parasitología , Solanum tuberosum/metabolismo , Escarabajos/fisiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Agaricales/metabolismo , Control Biológico de Vectores/métodos
5.
J Chem Ecol ; 50(9-10): 549-561, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39186175

RESUMEN

Plants defend themselves chemically against herbivory through secondary metabolites and phytohormones. Few studies have investigated how constitutive variation in secondary metabolites contributes to systemic herbivory response. We hypothesized that plants with lower constitutive defenses would induce a stronger phytohormone response to spatially separated herbivory than plants with high constitutive defense. We used growth chamber bioassays to investigate how aboveground herbivory by Colorado potato beetle (Leptinotarsa decemlineata, CPB) and belowground herbivory by northern root-knot nematode (Meloidogyne hapla, RKN) altered phytohormones and glycoalkaloids in roots and shoots of two lines of wild potato (Solanum chacoense). These lines had different constitutive levels of chemical defense, particularly leptine glycoalkaloids, which are only present in aboveground tissues. We also determined how these differences influenced the preference and performance of CPB. The susceptible wild potato line responded to aboveground damage by CPB through induction of jasmonic acid (JA) and OPDA. However, when challenged by both RKN and CPB, the susceptible line retained high levels of JA, but not OPDA. Beetles gained more mass after feeding on the susceptible line compared to the resistant line, but were not affected by nematode presence. Belowground, JA, JA-Isoleucine, and OPDA were higher in the resistant line compared to the susceptible line, and some compounds demonstrated response to local herbivory. In contrast, the susceptible line did not induce phytohormone defenses belowground. These findings allow us to predict that constitutive level of defense may influence the threshold of herbivory that may lead to plant-mediated effects on spatially separated herbivores.


Asunto(s)
Escarabajos , Herbivoria , Reguladores del Crecimiento de las Plantas , Raíces de Plantas , Animales , Escarabajos/fisiología , Escarabajos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Tylenchoidea/fisiología , Solanum tuberosum/metabolismo , Solanum tuberosum/parasitología , Solanum tuberosum/química , Metabolismo Secundario , Alcaloides/metabolismo , Alcaloides/análisis , Brotes de la Planta/metabolismo , Brotes de la Planta/química
6.
Plant Cell Rep ; 43(7): 175, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884679

RESUMEN

KEY MESSAGE: A group of genes that were upregulated in a resistant cultivar while downregulated in a susceptible cultivar in a transcriptomics analysis of potato challenged by Spongospora subterranea infection, did not show the same expression pattern at the protein level.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Solanum tuberosum , Perfilación de la Expresión Génica , Transcriptoma , Enfermedades de las Plantas/parasitología , Patología de Plantas , Genes de Plantas , Solanum tuberosum/genética , Solanum tuberosum/parasitología , Regulación de la Expresión Génica de las Plantas/fisiología , Infecciones por Protozoos , Plasmodiophorida , Resistencia a la Enfermedad/genética
7.
Sensors (Basel) ; 24(20)2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39460047

RESUMEN

Early blight and ladybug beetle infestation are important factors threatening potato yields. The current research on disease classification using the spectral differences between the healthy and disease-stressed leaves of plants has achieved good progress in a variety of crops, but less research has been conducted on early blight in potato. This paper proposes a CARS-SPA-GA feature selection method. First, the raw spectral data of potato leaves in the visible/near-infrared light region were preprocessed. Then, the feature wavelengths were selected via competitive adaptive reweighted sampling (CARS) and the successive projection algorithm (SPA), respectively. Then, the two sets of wavelengths were reorganized and duplicates were removed, and secondary feature selection was conducted with genetic algorithm (GA). Finally, the feature wavelengths were fed into different classifiers and the parameters were optimized using a real-coded genetic algorithm (RCGA). The experimental results show that the feature wavelengths selected by the CARS-SPA-GA method accounted only for 9% of the full band, and the classification accuracy of the RCGA-optimized support vector machine (SVM) classification model reached 98.366%. These results show that it is feasible to classify early blight and ladybug beetle infestation in potato using visible/near-infrared spectral data, and the CARS-SPA-GA method can substantially improve the accuracy and detection efficiency of potato pest and disease classification.


Asunto(s)
Algoritmos , Imágenes Hiperespectrales , Enfermedades de las Plantas , Hojas de la Planta , Solanum tuberosum , Máquina de Vectores de Soporte , Solanum tuberosum/parasitología , Enfermedades de las Plantas/parasitología , Imágenes Hiperespectrales/métodos , Escarabajos , Animales
8.
PLoS Pathog ; 17(4): e1009477, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33857257

RESUMEN

The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), which critically contribute to the virulence and spread of the disease. NLPs are cytotoxic to eudicot plants, as they disturb the plant plasma membrane by binding to specific plant membrane sphingolipid receptors. Their pivotal role in plant infection and broad taxonomic distribution makes NLPs a promising target for the development of novel phytopharmaceutical compounds. To identify compounds that bind to NLPs from the oomycetes Pythium aphanidermatum and Phytophthora parasitica, a library of 587 small molecules, most of which are commercially unavailable, was screened by surface plasmon resonance. Importantly, compounds that exhibited the highest affinity to NLPs were also found to inhibit NLP-mediated necrosis in tobacco leaves and Phytophthora infestans growth on potato leaves. Saturation transfer difference-nuclear magnetic resonance and molecular modelling of the most promising compound, anthranilic acid derivative, confirmed stable binding to the NLP protein, which resulted in decreased necrotic activity and reduced ion leakage from tobacco leaves. We, therefore, confirmed that NLPs are an appealing target for the development of novel phytopharmaceutical agents and strategies, which aim to directly interfere with the function of these major microbial virulence factors. The compounds identified in this study represent lead structures for further optimization and antimicrobial product development.


Asunto(s)
Phytophthora/patogenicidad , Enfermedades de las Plantas/prevención & control , Pythium/patogenicidad , Solanum tuberosum/genética , Simulación de Dinámica Molecular , Necrosis , Phytophthora/genética , Enfermedades de las Plantas/parasitología , Hojas de la Planta/genética , Hojas de la Planta/parasitología , Pythium/genética , Solanum tuberosum/parasitología , Resonancia por Plasmón de Superficie , Nicotiana/genética , Nicotiana/parasitología
9.
PLoS Pathog ; 16(10): e1008884, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33007049

RESUMEN

Plant parasitic nematodes are microscopic pathogens that invade plant roots and cause extensive damage to crops. We have used a chemical biology approach to define mechanisms underpinning their parasitic behaviour: We discovered that reserpine, a plant alkaloid that inhibits the vesicular monoamine transporter (VMAT), potently impairs the ability of the potato cyst nematode Globodera pallida to enter the host plant root. We show this is due to an inhibition of serotonergic signalling that is essential for activation of the stylet which is used to access the host root. Prompted by this we identified core molecular components of G. pallida serotonin signalling encompassing the target of reserpine, VMAT; the synthetic enzyme for serotonin, tryptophan hydroxylase; the G protein coupled receptor SER-7 and the serotonin-gated chloride channel MOD-1. We cloned each of these molecular components and confirmed their functional identity by complementation of the corresponding C. elegans mutant thus mapping out serotonergic signalling in G. pallida. Complementary approaches testing the effect of chemical inhibitors of each of these signalling elements on discrete sub-behaviours required for parasitism and root invasion reinforce the critical role of serotonin. Thus, targeting the serotonin signalling pathway presents a promising new route to control plant parasitic nematodes.


Asunto(s)
Protección de Cultivos/métodos , Interacciones Huésped-Patógeno , Nematodos/fisiología , Enfermedades de las Plantas/parasitología , Serotonina/metabolismo , Transducción de Señal , Solanum tuberosum/metabolismo , Animales , Solanum tuberosum/parasitología
10.
Plant Dis ; 106(4): 1096-1104, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34689584

RESUMEN

Globodera rostochiensis and G. pallida are some of the most successful and highly specialized plant parasitic nematodes and among the most regulated quarantine pests globally. In Switzerland, they have been monitored by annual surveys since their first detection in Swiss soil in 1958. The dataset created was reviewed to produce an overview of the development and actual status of potato cyst nematodes (PCNs) in Switzerland. Positive fields represent 0.2% of all the samples analyzed, and their distribution is limited to central-west and western Switzerland, suggesting that new introduction of PCNs and the spread of the initial introduced PCN populations did not occur. In this way, the integrated management used in Switzerland appears to be effective. However, the increasing availability of potato varieties with resistance to G. rostochiensis and the limited availability of varieties with resistance to G. pallida, together with other biotic and abiotic factors, have promoted changes in the dominance of either species. Consequently, an extended monitoring program is of interest to Swiss farmers, to avoid favoring virulent traits that could be present in Swiss Globodera populations.


Asunto(s)
Solanum tuberosum , Tylenchoidea , Animales , Suelo , Solanum tuberosum/parasitología , Suiza
11.
PLoS Pathog ; 15(4): e1007720, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30978251

RESUMEN

Plant pathogens, such as bacteria, fungi, oomycetes and nematodes, rely on wide range of virulent effectors delivered into host cells to suppress plant immunity. Although phytobacterial effectors have been intensively investigated, little is known about the function of effectors of plant-parasitic nematodes, such as Globodera pallida, a cyst nematode responsible for vast losses in the potato and tomato industries. Here, we demonstrate using in vivo and in vitro ubiquitination assays the potato cyst nematode (Globodera pallida) effector RHA1B is an E3 ubiquitin ligase that employs multiple host plant E2 ubiquitin conjugation enzymes to catalyze ubiquitination. RHA1B was able to suppress effector-triggered immunity (ETI), as manifested by suppression of hypersensitive response (HR) mediated by a broad range of nucleotide-binding leucine-rich repeat (NB-LRR) immune receptors, presumably via E3-dependent degradation of the NB-LRR receptors. RHA1B also blocked the flg22-triggered expression of Acre31 and WRKY22, marker genes of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), but this did not require the E3 activity of RHA1B. Moreover, transgenic potato overexpressing the RHA1B transgene exhibited enhanced susceptibility to G. pallida. Thus, our data suggest RHA1B facilitates nematode parasitism not only by triggering degradation of NB-LRR immune receptors to block ETI signaling but also by suppressing PTI signaling via an as yet unknown E3-independent mechanism.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Proteínas de Plantas/metabolismo , Infecciones por Secernentea/inmunología , Solanum tuberosum/inmunología , Tylenchoidea/patogenicidad , Animales , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/inmunología , Infecciones por Secernentea/metabolismo , Infecciones por Secernentea/parasitología , Transducción de Señal , Solanum tuberosum/parasitología , Ubiquitina , Ubiquitina-Proteína Ligasas , Ubiquitinación
12.
PLoS Pathog ; 15(4): e1007729, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31002734

RESUMEN

The use of host nutrients to support pathogen growth is central to disease. We addressed the relationship between metabolism and trophic behavior by comparing metabolic gene expression during potato tuber colonization by two oomycetes, the hemibiotroph Phytophthora infestans and the necrotroph Pythium ultimum. Genes for several pathways including amino acid, nucleotide, and cofactor biosynthesis were expressed more by Ph. infestans during its biotrophic stage compared to Py. ultimum. In contrast, Py. ultimum had higher expression of genes for metabolizing compounds that are normally sequestered within plant cells but released to the pathogen upon plant cell lysis, such as starch and triacylglycerides. The transcription pattern of metabolic genes in Ph. infestans during late infection became more like that of Py. ultimum, consistent with the former's transition to necrotrophy. Interspecific variation in metabolic gene content was limited but included the presence of γ-amylase only in Py. ultimum. The pathogens were also found to employ strikingly distinct strategies for using nitrate. Measurements of mRNA, 15N labeling studies, enzyme assays, and immunoblotting indicated that the assimilation pathway in Ph. infestans was nitrate-insensitive but induced during amino acid and ammonium starvation. In contrast, the pathway was nitrate-induced but not amino acid-repressed in Py. ultimum. The lack of amino acid repression in Py. ultimum appears due to the absence of a transcription factor common to fungi and Phytophthora that acts as a nitrogen metabolite repressor. Evidence for functional diversification in nitrate reductase protein was also observed. Its temperature optimum was adapted to each organism's growth range, and its Km was much lower in Py. ultimum. In summary, we observed divergence in patterns of gene expression, gene content, and enzyme function which contribute to the fitness of each species in its niche.


Asunto(s)
Proteínas Fúngicas/genética , Glucano 1,4-alfa-Glucosidasa/metabolismo , Nutrientes/metabolismo , Phytophthora/genética , Enfermedades de las Plantas/parasitología , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Adaptación Fisiológica , Evolución Molecular , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Interacciones Huésped-Parásitos/genética , Phytophthora/clasificación , Phytophthora/fisiología , Enfermedades de las Plantas/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/parasitología , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/parasitología
13.
BMC Microbiol ; 21(1): 323, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809566

RESUMEN

BACKGROUND: Plant parasitic nematodes (PPNs) are responsible for causing many plant diseases and are extremely difficult to control at present. Currently, due to the negative effects of chemical agents on the environment and human health, the development of new biological pesticides has become an important part of plant nematode control. Nematophagous fungi refers to a class of fungi that kill plant nematodes. Notably, a large number of nematophagous fungi resources remain to be studied. The objective of our study was to use in vitro screening to identify nematophagous fungi and select strains that were highly active against nematodes, providing a primary research for the development and utilization of new nematophagous fungi. RESULTS: A new nematophagous fungal strain (GUCC2219) was isolated from cysts of possibly Globodera spp. and Heterodera spp., identified as Volutella citrinella. The hyphae of V. citrinella produced ring structures of variable size and exhibited predatory and nematicidal activity. The hyphal predation rates (in vitro) against three species of nematodes, Aphelenchoides besseyi, Bursaphelenchus xylophilus, and Ditylenchus destructor, averaged 59.45, 33.35, and 50.95%, respectively, while the fermentation broth produced by the fungus exhibited mortality rates of 100, 100, and 55.63%, respectively, after 72 h. CONCLUSION: V. citrinella is a new strain with nematophagous properties, which are a novel discovery. At the same time, this is the first report of nematicidal and nematode predation activity in the genus Volutella.


Asunto(s)
Hypocreales/fisiología , Nematodos/microbiología , Enfermedades de las Plantas/parasitología , Solanum tuberosum/parasitología , Animales , China , Nematodos/crecimiento & desarrollo , Control Biológico de Vectores
14.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681661

RESUMEN

Three Solanaceae hosts (TSHs), S. tuberosum, N. benthamiana and S. lycopersicum, represent the three major phylogenetic clades of Solanaceae plants infected by Phytophthora infestans, which causes late blight, one of the most devastating diseases seriously affecting crop production. However, details regarding how different Solanaceae hosts respond to P. infestans are lacking. Here, we conducted RNA-seq to analyze the transcriptomic data from the TSHs at 12 and 24 h post P. infestans inoculation to capture early expression effects. Macroscopic and microscopic observations showed faster infection processes in S. tuberosum than in N. benthamiana and S. lycopersicum under the same conditions. Analysis of the number of genes and their level of expression indicated that distinct response models were adopted by the TSHs in response to P. infestans. The host-specific infection process led to overlapping but distinct in GO terms and KEGG pathways enriched for differentially expressed genes; many were tightly linked to the immune response in the TSHs. S. tuberosum showed the fastest response and strongest accumulation of reactive oxygen species compared with N. benthamiana and S. lycopersicum, which also had similarities and differences in hormone regulation. Collectively, our study provides an important reference for a better understanding of late blight response mechanisms of different Solanaceae host interactions.


Asunto(s)
Phytophthora infestans/fisiología , Solanum tuberosum/metabolismo , Transcriptoma , Análisis por Conglomerados , Interacciones Huésped-Patógeno , Inmunidad/genética , Fenotipo , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Análisis de Componente Principal , RNA-Seq , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Solanum tuberosum/genética , Solanum tuberosum/parasitología , Especificidad de la Especie
15.
Molecules ; 26(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069787

RESUMEN

We evaluated photosystem II (PSII) functionality in potato plants (Solanum tuberosum L.) before and after a 15 min feeding by the leaf miner Tuta absoluta using chlorophyll a fluorescence imaging analysis combined with reactive oxygen species (ROS) detection. Fifteen minutes after feeding, we observed at the feeding zone and at the whole leaf a decrease in the effective quantum yield of photosystem II (PSII) photochemistry (ΦPSII). While at the feeding zone the quantum yield of regulated non-photochemical energy loss in PSII (ΦNPQ) did not change, at the whole leaf level there was a significant increase. As a result, at the feeding zone a significant increase in the quantum yield of non-regulated energy loss in PSII (ΦNO) occurred, but there was no change at the whole leaf level compared to that before feeding, indicating no change in singlet oxygen (1O2) formation. The decreased ΦPSII after feeding was due to a decreased fraction of open reaction centers (qp), since the efficiency of open PSII reaction centers to utilize the light energy (Fv'/Fm') did not differ before and after feeding. The decreased fraction of open reaction centers resulted in increased excess excitation energy (EXC) at the feeding zone and at the whole leaf level, while hydrogen peroxide (H2O2) production was detected only at the feeding zone. Although the whole leaf PSII efficiency decreased compared to that before feeding, the maximum efficiency of PSII photochemistry (Fv/Fm), and the efficiency of the water-splitting complex on the donor side of PSII (Fv/Fo), did not differ to that before feeding, thus they cannot be considered as sensitive parameters to monitor biotic stress effects. Chlorophyll fluorescence imaging analysis proved to be a good indicator to monitor even short-term impacts of insect herbivory on photosynthetic function, and among the studied parameters, the reduction status of the plastoquinone pool (qp) was the most sensitive and suitable indicator to probe photosynthetic function under biotic stress.


Asunto(s)
Enterobius/fisiología , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/parasitología , Hojas de la Planta/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Solanum tuberosum/parasitología , Solanum tuberosum/efectos de la radiación , Animales , Transporte de Electrón , Conducta Alimentaria , Peróxido de Hidrógeno/metabolismo , Teoría Cuántica
16.
Planta ; 252(4): 57, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32955625

RESUMEN

MAIN CONCLUSION: Specific and common genes including transcription factors, resistance genes and pathways were significantly induced in potato by Phytophthora infestans, Ralstonia solanacearum, and Potato virus Y infection. The three major pathogens, namely, Phytophthora infestans, Ralstonia solanacearum, and Potato virus Y, can cause late blight, bacterial wilt, and necrotic ringspot, respectively, and thus severely reduce the yield and quality of potatoes (Solanum tuberosum L.). This study was the first to systematically analyze the relationship between transcriptome alterations in potato infected by these pathogens at the early stages. A total of 75,500 unigenes were identified, and 44,008 were annotated into 5 databases, namely, non-redundant (NR), Swiss-Prot protein, clusters of orthologous groups for eukaryotic complete genomes (KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A total of 6945 resistance genes and 11,878 transcription factors (TFs) were identified from all transcriptome data. Differential expression analysis revealed that 13,032 (9490 specifics), 9877 (6423 specifics), and 6661 (4144 specifics) differentially expressed genes (DEGs) were generated from comparisons of the P. infestans/control (Pi vs. Pi-CK), R. solanacearum/control (Rs vs. Rs-CK), and PVY/control (PVY vs. PVY-CK) treatments, respectively. The specific DEGs from the 3 comparisons were assigned to 13 common pathways, such as biosynthesis of amino acids, plant hormone signal transduction, carbon metabolism, and starch and sucrose metabolism. Weighted Gene Co-Expression Network Analysis (WGCNA) identified many hub unigenes, of which several unigenes were reported to regulate plant immune responses, such as FLAGELLIN-SENSITIVE 2 and chitinases. The present study provide crucial systems-level insights into the relationship between transcriptome changes in potato infected with the three pathogens. Moreover, this study presents a theoretical basis for breeding broad-spectrum and specific pathogen-resistant cultivars.


Asunto(s)
Interacciones Huésped-Patógeno , Phytophthora infestans , Potyvirus , Ralstonia solanacearum , Solanum tuberosum , Transcriptoma , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Phytophthora infestans/fisiología , Fitomejoramiento , Potyvirus/fisiología , Ralstonia solanacearum/fisiología , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Solanum tuberosum/parasitología , Solanum tuberosum/virología
17.
BMC Microbiol ; 20(1): 58, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32160875

RESUMEN

BACKGROUND: The potato tuber moth (PTM), Phthorimaea operculella (Zeller), is a worldwide pest that feeds on both the leaves and tubers of potato plants. PTM larvae can digest leaves, or tubers, resulting in serious damage to potato plants in the field and potato tubers in storage. To understand how midgut bacterial diversity is influenced by the consumption of these two tissue types, the symbiotic bacteria in the potato-feeding PTM midgut and the endophytic bacteria of potato tissues were analyzed. RESULTS: At the genus level, the bacterial community composition in the PTM midgut was influenced by the tissues consumed, owing to their different nutrient contents. Escherichia_Shigella and Enterobacter were the most dominant genera in the midgut of leaf-feeding and tuber-feeding PTMs, respectively. Interestingly, even though only present in low abundance in leaves and tubers, Escherichia_Shigella were dominantly distributed only in the midgut of leaf-feeding PTMs, indicating that specific accumulation of these genera have occurred by feeding on leaves. Moreover, Enterobacter, the most dominant genus in the midgut of tuber-feeding PTMs, was undetectable in all potato tissues, indicating it is gut-specific origin and tuber feeding-specific accumulation. Both Escherichia_Shigella and Enterobacter abundances were positively correlated with the dominant contents of potato leaves and tubers, respectively. CONCLUSIONS: Enrichment of specific PTM midgut bacterial communities was related to different nutrient levels in different tissues consumed by the insect, which in turn influenced host utilization. We provide evidence that a portion of the intestinal microbes of PTMs may be derived from potato endophytic bacteria and improve the understanding of the relationship between potato endophytic bacteria and the gut microbiota of PTMs, which may offer support for integrated management of this worldwide pest.


Asunto(s)
Bacterias/clasificación , Mariposas Nocturnas/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Solanum tuberosum/microbiología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Sistema Digestivo/microbiología , Herbivoria , Mariposas Nocturnas/fisiología , Especificidad de Órganos , Filogenia , Hojas de la Planta/microbiología , Hojas de la Planta/parasitología , Tubérculos de la Planta/microbiología , Tubérculos de la Planta/parasitología , Solanum tuberosum/parasitología
18.
J Appl Microbiol ; 128(6): 1754-1763, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31995843

RESUMEN

AIMS: The objective of this study was to determine the effects of sophorolipids on several fungal and oomycete plant pathogens and the relationship between sophorolipids at different pH and antimicrobial activities. METHODS AND RESULTS: Sophorolipids had different solubility at different pH with a dramatic increase in solubility when pH was 6 or higher. Inhibition of mycelial growth of Phytophthora infestans by sophorolipids was affected by pH values, showing that when the pH value was higher, the inhibition rate was lower. Sophorolipids inhibited spore germination and mycelial growth of several fungal and oomycete pathogens in vitro including Fusarium sp., F. oxysporum, F. concentricum, Pythium ultimum, Pyricularia oryzae, Rhizoctorzia solani, Alternaria kikuchiana, Gaeumannomyces graminis var. tritici and P. infestans and caused morphological changes in hyphae by microscope observation. Sophorolipids reduced ß-1,3-glucanase activity in mycelia of P. infestans. In greenhouse studies, foliar application of sophorolipids at 3 mg ml-1 reduced severity of late blight of potato caused by P. infestans significantly. CONCLUSION: Sophorolipids influenced spore germination and hyphal tip growth of several plant pathogens and pH solubility of sophorolipids had an effect on their efficacy. Application of sophorolipids reduced late blight disease on potato under greenhouse conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings indicated that sophorolipids have the potential to be developed as a convenient and easy-to-use formulation for managing plant diseases.


Asunto(s)
Hongos/efectos de los fármacos , Ácidos Oléicos/química , Ácidos Oléicos/farmacología , Oomicetos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Oomicetos/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Solanum tuberosum/microbiología , Solanum tuberosum/parasitología , Solubilidad , Esporas/efectos de los fármacos , Esporas/crecimiento & desarrollo
19.
Int J Mol Sci ; 21(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471154

RESUMEN

Plants defend themselves from pathogens by producing bioactive defense chemicals. The biochemical mechanisms relating to quantitative resistance of potato to root infection by Spongospora subterranea f. sp. subterranea (Sss) are, however, not understood, and are not efficiently utilized in potato breeding programs. Untargeted metabolomics using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was used to elucidate the biochemical mechanisms of susceptibility to Sss root infection. Potato roots and root exudate metabolic profiles of five tolerant cultivars were compared with those of five susceptible cultivars, following Sss inoculation, to identify tolerance-related metabolites. Comparison of the relative metabolite abundance of tolerant versus susceptible cultivars revealed contrasting responses to Sss infection. Metabolites belonging to amino acids, organic acids, fatty acids, phenolics, and sugars, as well as well-known cell wall thickening compounds were putatively identified and were especially abundant in the tolerant cultivars relative to the susceptible cultivars. Metabolites known to activate plant secondary defense metabolism were significantly increased in the tolerant cultivars compared to susceptible cultivars following Sss inoculation. Root-exuded compounds belonging to the chemical class of phenolics were also found in abundance in the tolerant cultivars compared to susceptible cultivars. This study illustrated that Sss infection of potato roots leads to differential expression of metabolites in tolerant and susceptible potato cultivars.


Asunto(s)
Metabolómica , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Plasmodiophorida/fisiología , Solanum tuberosum/metabolismo , Solanum tuberosum/parasitología , Biomarcadores/metabolismo , Análisis por Conglomerados , Análisis Discriminante , Análisis de los Mínimos Cuadrados , Metaboloma , Análisis de Componente Principal
20.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126590

RESUMEN

Citral is well known for its antimicrobial, antifungal, and insecticidal activities. Natural sesquiterpene α-methylenelactones also exhibit a broad spectrum of biological activities. The aim of the study was to explore the effect of structural changes to citral molecules on citral behavior-modifying activity towards Myzus persicae. Specifically, the effects of the introduction of a γ-lactone moiety and methylene groups in α and γ positions of the lactone ring were investigated. The lactones were obtained in five-step (saturated lactone and γ-methylenelactone) or six-step (α-methylenelactone and α,γ-dimethylenelactone) syntheses from citral. The synthetic procedures and physical and spectral data of the lactones are presented. The settling behavior of freely moving aphids in choice and no-choice situations was monitored. The probing behavior of tethered M. persicae using the Electrical Penetration Graph (EPG) technique was also analyzed. Citral appeared a strong repellent and pre-ingestive and ingestive probing deterrent to M. persicae. The incorporation of a lactone moiety caused the loss of the repellent activity. α-Methylenelactone inhibited aphid settling and probing activities at pre-ingestive and ingestive phases. The saturated γ-lactone and α,γ-dimethylenelactone were the settling post-ingestive deterrents to M. persicae, which did not affect aphid probing activity. γ-Methylenelactone did not affect aphid behavior.


Asunto(s)
Monoterpenos Acíclicos/química , Áfidos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Insecticidas/farmacología , Lactonas/farmacología , Solanum tuberosum/crecimiento & desarrollo , Animales , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA