Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.269
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(4): 666-676.e13, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32084339

RESUMEN

The mystery of general anesthesia is that it specifically suppresses consciousness by disrupting feedback signaling in the brain, even when feedforward signaling and basic neuronal function are left relatively unchanged. The mechanism for such selectiveness is unknown. Here we show that three different anesthetics have the same disruptive influence on signaling along apical dendrites in cortical layer 5 pyramidal neurons in mice. We found that optogenetic depolarization of the distal apical dendrites caused robust spiking at the cell body under awake conditions that was blocked by anesthesia. Moreover, we found that blocking metabotropic glutamate and cholinergic receptors had the same effect on apical dendrite decoupling as anesthesia or inactivation of the higher-order thalamus. If feedback signaling occurs predominantly through apical dendrites, the cellular mechanism we found would explain not only how anesthesia selectively blocks this signaling but also why conscious perception depends on both cortico-cortical and thalamo-cortical connectivity.


Asunto(s)
Anestésicos Generales/farmacología , Corteza Cerebral/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Animales , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Antagonistas Colinérgicos/farmacología , Estado de Conciencia , Dendritas/efectos de los fármacos , Dendritas/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Retroalimentación Fisiológica , Femenino , Masculino , Ratones , Células Piramidales/fisiología , Transmisión Sináptica , Tálamo/citología , Tálamo/efectos de los fármacos , Tálamo/fisiología
2.
Nature ; 633(8029): 398-406, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39198646

RESUMEN

The brain functions as a prediction machine, utilizing an internal model of the world to anticipate sensations and the outcomes of our actions. Discrepancies between expected and actual events, referred to as prediction errors, are leveraged to update the internal model and guide our attention towards unexpected events1-10. Despite the importance of prediction-error signals for various neural computations across the brain, surprisingly little is known about the neural circuit mechanisms responsible for their implementation. Here we describe a thalamocortical disinhibitory circuit that is required for generating sensory prediction-error signals in mouse primary visual cortex (V1). We show that violating animals' predictions by an unexpected visual stimulus preferentially boosts responses of the layer 2/3 V1 neurons that are most selective for that stimulus. Prediction errors specifically amplify the unexpected visual input, rather than representing non-specific surprise or difference signals about how the visual input deviates from the animal's predictions. This selective amplification is implemented by a cooperative mechanism requiring thalamic input from the pulvinar and cortical vasoactive-intestinal-peptide-expressing (VIP) inhibitory interneurons. In response to prediction errors, VIP neurons inhibit a specific subpopulation of somatostatin-expressing inhibitory interneurons that gate excitatory pulvinar input to V1, resulting in specific pulvinar-driven response amplification of the most stimulus-selective neurons in V1. Therefore, the brain prioritizes unpredicted sensory information by selectively increasing the salience of unpredicted sensory features through the synergistic interaction of thalamic input and neocortical disinhibitory circuits.


Asunto(s)
Corteza Visual Primaria , Tálamo , Vías Visuales , Animales , Femenino , Masculino , Ratones , Interneuronas/fisiología , Ratones Endogámicos C57BL , Modelos Neurológicos , Inhibición Neural/fisiología , Estimulación Luminosa , Corteza Visual Primaria/fisiología , Corteza Visual Primaria/citología , Pulvinar/fisiología , Pulvinar/citología , Somatostatina/metabolismo , Tálamo/fisiología , Tálamo/citología , Péptido Intestinal Vasoactivo/metabolismo , Vías Visuales/citología , Vías Visuales/fisiología , Neuronas/fisiología
3.
Nature ; 632(8026): 858-868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048816

RESUMEN

Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Astrocitos/clasificación , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/patología , Autopsia , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Colina/metabolismo , Cognición/fisiología , Redes Reguladoras de Genes , Interneuronas/clasificación , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Inhibición Neural , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Poliaminas/metabolismo , Proteína Reelina , Transducción de Señal , Tálamo/citología , Tálamo/metabolismo , Tálamo/patología , Transcriptoma
4.
Nature ; 618(7967): 1006-1016, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286598

RESUMEN

In many species, including mice, female animals show markedly different pup-directed behaviours based on their reproductive state1,2. Naive wild female mice often kill pups, while lactating female mice are dedicated to pup caring3,4. The neural mechanisms that mediate infanticide and its switch to maternal behaviours during motherhood remain unclear. Here, on the basis of the hypothesis that maternal and infanticidal behaviours are supported by distinct and competing neural circuits5,6, we use the medial preoptic area (MPOA), a key site for maternal behaviours7-11, as a starting point and identify three MPOA-connected brain regions that drive differential negative pup-directed behaviours. Functional manipulation and in vivo recording reveal that oestrogen receptor α (ESR1)-expressing cells in the principal nucleus of the bed nucleus of stria terminalis (BNSTprESR1) are necessary, sufficient and naturally activated during infanticide in female mice. MPOAESR1 and BNSTprESR1 neurons form reciprocal inhibition to control the balance between positive and negative infant-directed behaviours. During motherhood, MPOAESR1 and BNSTprESR1 cells change their excitability in opposite directions, supporting a marked switch of female behaviours towards the young.


Asunto(s)
Infanticidio , Conducta Materna , Área Preóptica , Animales , Femenino , Ratones , Lactancia , Conducta Materna/fisiología , Vías Nerviosas/fisiología , Área Preóptica/citología , Área Preóptica/fisiología , Tálamo/citología , Tálamo/fisiología
5.
Nature ; 615(7954): 892-899, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949190

RESUMEN

The head direction (HD) system functions as the brain's internal compass1,2, classically formalized as a one-dimensional ring attractor network3,4. In contrast to a globally consistent magnetic compass, the HD system does not have a universal reference frame. Instead, it anchors to local cues, maintaining a stable offset when cues rotate5-8 and drifting in the absence of referents5,8-10. However, questions about the mechanisms that underlie anchoring and drift remain unresolved and are best addressed at the population level. For example, the extent to which the one-dimensional description of population activity holds under conditions of reorientation and drift is unclear. Here we performed population recordings of thalamic HD cells using calcium imaging during controlled rotations of a visual landmark. Across experiments, population activity varied along a second dimension, which we refer to as network gain, especially under circumstances of cue conflict and ambiguity. Activity along this dimension predicted realignment and drift dynamics, including the speed of network realignment. In the dark, network gain maintained a 'memory trace' of the previously displayed landmark. Further experiments demonstrated that the HD network returned to its baseline orientation after brief, but not longer, exposures to a rotated cue. This experience dependence suggests that memory of previous associations between HD neurons and allocentric cues is maintained and influences the internal HD representation. Building on these results, we show that continuous rotation of a visual landmark induced rotation of the HD representation that persisted in darkness, demonstrating experience-dependent recalibration of the HD system. Finally, we propose a computational model to formalize how the neural compass flexibly adapts to changing environmental cues to maintain a reliable representation of HD. These results challenge classical one-dimensional interpretations of the HD system and provide insights into the interactions between this system and the cues to which it anchors.


Asunto(s)
Señales (Psicología) , Cabeza , Neuronas , Orientación , Tálamo , Señalización del Calcio , Cabeza/fisiología , Neuronas/citología , Neuronas/fisiología , Orientación/fisiología , Orientación Espacial/fisiología , Rotación , Tálamo/citología , Tálamo/fisiología
6.
Nature ; 621(7977): 138-145, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587337

RESUMEN

Maintaining body temperature is calorically expensive for endothermic animals1. Mammals eat more in the cold to compensate for energy expenditure2, but the neural mechanism underlying this coupling is not well understood. Through behavioural and metabolic analyses, we found that mice dynamically switch between energy-conservation and food-seeking states in the cold, the latter of which are primarily driven by energy expenditure rather than the sensation of cold. To identify the neural mechanisms underlying cold-induced food seeking, we used whole-brain c-Fos mapping and found that the xiphoid (Xi), a small nucleus in the midline thalamus, was selectively activated by prolonged cold associated with elevated energy expenditure but not with acute cold exposure. In vivo calcium imaging showed that Xi activity correlates with food-seeking episodes under cold conditions. Using activity-dependent viral strategies, we found that optogenetic and chemogenetic stimulation of cold-activated Xi neurons selectively recapitulated food seeking under cold conditions whereas their inhibition suppressed it. Mechanistically, Xi encodes a context-dependent valence switch that promotes food-seeking behaviours under cold but not warm conditions. Furthermore, these behaviours are mediated by a Xi-to-nucleus accumbens projection. Our results establish Xi as a key region in the control of cold-induced feeding, which is an important mechanism in the maintenance of energy homeostasis in endothermic animals.


Asunto(s)
Temperatura Corporal , Frío , Conducta Alimentaria , Tálamo , Animales , Ratones , Temperatura Corporal/fisiología , Mapeo Encefálico , Calcio/metabolismo , Conducta Alimentaria/fisiología , Metabolismo Energético/fisiología , Tálamo/anatomía & histología , Tálamo/citología , Tálamo/fisiología , Optogenética , Neuronas/metabolismo , Núcleo Accumbens/citología , Núcleo Accumbens/fisiología , Homeostasis/fisiología , Termogénesis/fisiología
7.
Nature ; 624(7991): 355-365, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092919

RESUMEN

Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.


Asunto(s)
Encéfalo , Epigenómica , Vías Nerviosas , Neuronas , Animales , Ratones , Amígdala del Cerebelo , Encéfalo/citología , Encéfalo/metabolismo , Secuencia de Consenso , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Hipotálamo/citología , Mesencéfalo/citología , Vías Nerviosas/citología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Rombencéfalo/citología , Análisis de la Célula Individual , Tálamo/citología , Factores de Transcripción/metabolismo
8.
Nature ; 616(7955): 132-136, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36949189

RESUMEN

While motor cortical circuits contain information related to specific movement parameters1, long-range inputs also have a critical role in action execution2,3. Thalamic projections can shape premotor activity2-6 and have been suggested7 to mediate the selection of short, stereotyped actions comprising more complex behaviours8. However, the mechanisms by which thalamus interacts with motor cortical circuits to execute such movement sequences remain unknown. Here we find that thalamic drive engages a specific subpopulation of premotor neurons within the zebra finch song nucleus HVC (proper name) and that these inputs are critical for the progression between vocal motor elements (that is, 'syllables'). In vivo two-photon imaging of thalamic axons in HVC showed robust song-related activity, and online perturbations of thalamic function caused song to be truncated at syllable boundaries. We used thalamic stimulation to identify a sparse set of thalamically driven neurons within HVC, representing ~15% of the premotor neurons within that network. Unexpectedly, this population of putative thalamorecipient neurons is robustly active immediately preceding syllable onset, leading to the possibility that thalamic input can initiate individual song components through selectively targeting these 'starter cells'. Our findings highlight the motor thalamus as a director of cortical dynamics in the context of an ethologically relevant behavioural sequence.


Asunto(s)
Cortejo , Pinzones , Tálamo , Vocalización Animal , Animales , Pinzones/fisiología , Neuronas/fisiología , Tálamo/citología , Tálamo/fisiología , Vocalización Animal/fisiología , Corteza Motora/citología , Corteza Motora/fisiología , Vías Nerviosas/fisiología , Encéfalo/citología , Encéfalo/fisiología , Masculino
9.
Nature ; 608(7921): 146-152, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35831500

RESUMEN

Social affiliation emerges from individual-level behavioural rules that are driven by conspecific signals1-5. Long-distance attraction and short-distance repulsion, for example, are rules that jointly set a preferred interanimal distance in swarms6-8. However, little is known about their perceptual mechanisms and executive neural circuits3. Here we trace the neuronal response to self-like biological motion9,10, a visual trigger for affiliation in developing zebrafish2,11. Unbiased activity mapping and targeted volumetric two-photon calcium imaging revealed 21 activity hotspots distributed throughout the brain as well as clustered biological-motion-tuned neurons in a multimodal, socially activated nucleus of the dorsal thalamus. Individual dorsal thalamus neurons encode local acceleration of visual stimuli mimicking typical fish kinetics but are insensitive to global or continuous motion. Electron microscopic reconstruction of dorsal thalamus neurons revealed synaptic input from the optic tectum and projections into hypothalamic areas with conserved social function12-14. Ablation of the optic tectum or dorsal thalamus selectively disrupted social attraction without affecting short-distance repulsion. This tectothalamic pathway thus serves visual recognition of conspecifics, and dissociates neuronal control of attraction from repulsion during social affiliation, revealing a circuit underpinning collective behaviour.


Asunto(s)
Aglomeración , Neuronas , Conducta Social , Colículos Superiores , Tálamo , Vías Visuales , Pez Cebra , Animales , Mapeo Encefálico , Calcio/análisis , Hipotálamo/citología , Hipotálamo/fisiología , Locomoción , Microscopía Electrónica , Neuronas/citología , Neuronas/fisiología , Neuronas/ultraestructura , Reconocimiento Visual de Modelos , Estimulación Luminosa , Colículos Superiores/citología , Colículos Superiores/fisiología , Tálamo/citología , Tálamo/fisiología , Vías Visuales/citología , Vías Visuales/fisiología , Vías Visuales/ultraestructura , Pez Cebra/fisiología
10.
Nature ; 607(7918): 321-329, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35676479

RESUMEN

Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.


Asunto(s)
Afecto , Destreza Motora , Vías Nerviosas , Enfermedad de Parkinson , Tálamo , Animales , Modelos Animales de Enfermedad , Aprendizaje , Locomoción , Potenciación a Largo Plazo , Ratones , Neuronas/fisiología , Núcleo Accumbens , Optogenética , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Enfermedad de Parkinson/terapia , Putamen , Receptores Nicotínicos , Núcleo Subtalámico , Sinapsis , Tálamo/citología , Tálamo/patología
11.
Nature ; 598(7879): 188-194, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616074

RESUMEN

The cortico-basal ganglia-thalamo-cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative1-4. Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex5. Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico-basal ganglia-thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico-basal ganglia-thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop.


Asunto(s)
Ganglios Basales/citología , Corteza Cerebral/citología , Vías Nerviosas , Neuronas/citología , Tálamo/citología , Animales , Ganglios Basales/anatomía & histología , Corteza Cerebral/anatomía & histología , Masculino , Ratones , Ratones Endogámicos C57BL , Tálamo/anatomía & histología
12.
Nature ; 592(7852): 86-92, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33473216

RESUMEN

The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset-part of the Allen Brain Observatory2-that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures-response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale-are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Visual/anatomía & histología , Corteza Visual/fisiología , Animales , Conjuntos de Datos como Asunto , Electrofisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa , Tálamo/anatomía & histología , Tálamo/citología , Tálamo/fisiología , Corteza Visual/citología
13.
Nature ; 600(7887): 100-104, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34614503

RESUMEN

Interactions between the mediodorsal thalamus and the prefrontal cortex are critical for cognition. Studies in humans indicate that these interactions may resolve uncertainty in decision-making1, but the precise mechanisms are unknown. Here we identify two distinct mediodorsal projections to the prefrontal cortex that have complementary mechanistic roles in decision-making under uncertainty. Specifically, we found that a dopamine receptor (D2)-expressing projection amplifies prefrontal signals when task inputs are sparse and a kainate receptor (GRIK4) expressing-projection suppresses prefrontal noise when task inputs are dense but conflicting. Collectively, our data suggest that there are distinct brain mechanisms for handling uncertainty due to low signals versus uncertainty due to high noise, and provide a mechanistic entry point for correcting decision-making abnormalities in disorders that have a prominent prefrontal component2-6.


Asunto(s)
Vías Nerviosas , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Tálamo/citología , Tálamo/fisiología , Animales , Toma de Decisiones , Femenino , Humanos , Interneuronas/fisiología , Masculino , Núcleo Talámico Mediodorsal/citología , Núcleo Talámico Mediodorsal/fisiología , Ratones , Receptores Dopaminérgicos/metabolismo , Receptores de Ácido Kaínico/metabolismo , Incertidumbre
14.
Nature ; 598(7881): 483-488, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34599305

RESUMEN

The prefrontal cortex (PFC) and its connections with the mediodorsal thalamus are crucial for cognitive flexibility and working memory1 and are thought to be altered in disorders such as autism2,3 and schizophrenia4,5. Although developmental mechanisms that govern the regional patterning of the cerebral cortex have been characterized in rodents6-9, the mechanisms that underlie the development of PFC-mediodorsal thalamus connectivity and the lateral expansion of the PFC with a distinct granular layer 4 in primates10,11 remain unknown. Here we report an anterior (frontal) to posterior (temporal), PFC-enriched gradient of retinoic acid, a signalling molecule that regulates neural development and function12-15, and we identify genes that are regulated by retinoic acid in the neocortex of humans and macaques at the early and middle stages of fetal development. We observed several potential sources of retinoic acid, including the expression and cortical expansion of retinoic-acid-synthesizing enzymes specifically in primates as compared to mice. Furthermore, retinoic acid signalling is largely confined to the prospective PFC by CYP26B1, a retinoic-acid-catabolizing enzyme, which is upregulated in the prospective motor cortex. Genetic deletions in mice revealed that retinoic acid signalling through the retinoic acid receptors RXRG and RARB, as well as CYP26B1-dependent catabolism, are involved in proper molecular patterning of prefrontal and motor areas, development of PFC-mediodorsal thalamus connectivity, intra-PFC dendritic spinogenesis and expression of the layer 4 marker RORB. Together, these findings show that retinoic acid signalling has a critical role in the development of the PFC and, potentially, in its evolutionary expansion.


Asunto(s)
Organogénesis , Corteza Prefrontal/embriología , Corteza Prefrontal/metabolismo , Tretinoina/metabolismo , Animales , Axones/metabolismo , Corteza Cerebral , Regulación hacia Abajo , Femenino , Humanos , Macaca mulatta , Masculino , Ratones , Pan troglodytes , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/citología , Receptores de Ácido Retinoico/deficiencia , Receptor gamma X Retinoide/deficiencia , Transducción de Señal , Sinapsis/metabolismo , Tálamo/anatomía & histología , Tálamo/citología , Tálamo/metabolismo
15.
Nat Rev Neurosci ; 22(7): 389-406, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33958775

RESUMEN

Functions of the neocortex depend on its bidirectional communication with the thalamus, via cortico-thalamo-cortical (CTC) loops. Recent work dissecting the synaptic connectivity in these loops is generating a clearer picture of their cellular organization. Here, we review findings across sensory, motor and cognitive areas, focusing on patterns of cell type-specific synaptic connections between the major types of cortical and thalamic neurons. We outline simple and complex CTC loops, and note features of these loops that appear to be general versus specialized. CTC loops are tightly interlinked with local cortical and corticocortical (CC) circuits, forming extended chains of loops that are probably critical for communication across hierarchically organized cerebral networks. Such CTC-CC loop chains appear to constitute a modular unit of organization, serving as scaffolding for area-specific structural and functional modifications. Inhibitory neurons and circuits are embedded throughout CTC loops, shaping the flow of excitation. We consider recent findings in the context of established CTC and CC circuit models, and highlight current efforts to pinpoint cell type-specific mechanisms in CTC loops involved in consciousness and perception. As pieces of the connectivity puzzle fall increasingly into place, this knowledge can guide further efforts to understand structure-function relationships in CTC loops.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma , Vías Nerviosas/fisiología , Tálamo/fisiología , Animales , Axones/ultraestructura , Corteza Cerebral/citología , Estado de Conciencia/fisiología , Dendritas/ultraestructura , Humanos , Ratones , Neuronas/clasificación , Neuronas/fisiología , Neuronas/ultraestructura , Percepción/fisiología , Especificidad de la Especie , Sinapsis/fisiología , Tálamo/citología
16.
Nature ; 586(7828): 281-286, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32968276

RESUMEN

'Dysbiosis' of the maternal gut microbiome, in response to challenges such as infection1, altered diet2 and stress3 during pregnancy, has been increasingly associated with abnormalities in brain function and behaviour of the offspring4. However, it is unclear whether the maternal gut microbiome influences neurodevelopment during critical prenatal periods and in the absence of environmental challenges. Here we investigate how depletion and selective reconstitution of the maternal gut microbiome influences fetal neurodevelopment in mice. Embryos from antibiotic-treated and germ-free dams exhibited reduced brain expression of genes related to axonogenesis, deficient thalamocortical axons and impaired outgrowth of thalamic axons in response to cell-extrinsic factors. Gnotobiotic colonization of microbiome-depleted dams with a limited consortium of bacteria prevented abnormalities in fetal brain gene expression and thalamocortical axonogenesis. Metabolomic profiling revealed that the maternal microbiome regulates numerous small molecules in the maternal serum and the brains of fetal offspring. Select microbiota-dependent metabolites promoted axon outgrowth from fetal thalamic explants. Moreover, maternal supplementation with these metabolites abrogated deficiencies in fetal thalamocortical axons. Manipulation of the maternal microbiome and microbial metabolites during pregnancy yielded adult offspring with altered tactile sensitivity in two aversive somatosensory behavioural tasks, but no overt differences in many other sensorimotor behaviours. Together, our findings show that the maternal gut microbiome promotes fetal thalamocortical axonogenesis, probably through signalling by microbially modulated metabolites to neurons in the developing brain.


Asunto(s)
Encéfalo/embriología , Encéfalo/metabolismo , Disbiosis/microbiología , Feto/embriología , Feto/metabolismo , Microbioma Gastrointestinal/fisiología , Madres , Animales , Axones/metabolismo , Encéfalo/citología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Simulación por Computador , Disbiosis/sangre , Disbiosis/patología , Femenino , Feto/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Complicaciones del Embarazo/sangre , Complicaciones del Embarazo/microbiología , Complicaciones del Embarazo/patología , Análisis de Componente Principal , Tálamo/citología , Tálamo/embriología , Tálamo/metabolismo
17.
Nature ; 586(7827): 87-94, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32939091

RESUMEN

Advanced imaging methods now allow cell-type-specific recording of neural activity across the mammalian brain, potentially enabling the exploration of how brain-wide dynamical patterns give rise to complex behavioural states1-12. Dissociation is an altered behavioural state in which the integrity of experience is disrupted, resulting in reproducible cognitive phenomena including the dissociation of stimulus detection from stimulus-related affective responses. Dissociation can occur as a result of trauma, epilepsy or dissociative drug use13,14, but despite its substantial basic and clinical importance, the underlying neurophysiology of this state is unknown. Here we establish such a dissociation-like state in mice, induced by precisely-dosed administration of ketamine or phencyclidine. Large-scale imaging of neural activity revealed that these dissociative agents elicited a 1-3-Hz rhythm in layer 5 neurons of the retrosplenial cortex. Electrophysiological recording with four simultaneously deployed high-density probes revealed rhythmic coupling of the retrosplenial cortex with anatomically connected components of thalamus circuitry, but uncoupling from most other brain regions was observed-including a notable inverse correlation with frontally projecting thalamic nuclei. In testing for causal significance, we found that rhythmic optogenetic activation of retrosplenial cortex layer 5 neurons recapitulated dissociation-like behavioural effects. Local retrosplenial hyperpolarization-activated cyclic-nucleotide-gated potassium channel 1 (HCN1) pacemakers were required for systemic ketamine to induce this rhythm and to elicit dissociation-like behavioural effects. In a patient with focal epilepsy, simultaneous intracranial stereoencephalography recordings from across the brain revealed a similarly localized rhythm in the homologous deep posteromedial cortex that was temporally correlated with pre-seizure self-reported dissociation, and local brief electrical stimulation of this region elicited dissociative experiences. These results identify the molecular, cellular and physiological properties of a conserved deep posteromedial cortical rhythm that underlies states of dissociation.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Trastornos Disociativos/fisiopatología , Potenciales de Acción/efectos de los fármacos , Animales , Conducta/efectos de los fármacos , Ondas Encefálicas/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/efectos de los fármacos , Trastornos Disociativos/diagnóstico por imagen , Electrofisiología , Femenino , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ketamina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Optogenética , Autoinforme , Tálamo/citología , Tálamo/diagnóstico por imagen , Tálamo/efectos de los fármacos , Tálamo/fisiología
18.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38561224

RESUMEN

Coordinated neuronal activity has been identified to play an important role in information processing and transmission in the brain. However, current research predominantly focuses on understanding the properties and functions of neuronal coordination in hippocampal and cortical areas, leaving subcortical regions relatively unexplored. In this study, we use single-unit recordings in female Sprague Dawley rats to investigate the properties and functions of groups of neurons exhibiting coordinated activity in the auditory thalamus-the medial geniculate body (MGB). We reliably identify coordinated neuronal ensembles (cNEs), which are groups of neurons that fire synchronously, in the MGB. cNEs are shown not to be the result of false-positive detections or by-products of slow-state oscillations in anesthetized animals. We demonstrate that cNEs in the MGB have enhanced information-encoding properties over individual neurons. Their neuronal composition is stable between spontaneous and evoked activity, suggesting limited stimulus-induced ensemble dynamics. These MGB cNE properties are similar to what is observed in cNEs in the primary auditory cortex (A1), suggesting that ensembles serve as a ubiquitous mechanism for organizing local networks and play a fundamental role in sensory processing within the brain.


Asunto(s)
Estimulación Acústica , Cuerpos Geniculados , Neuronas , Ratas Sprague-Dawley , Animales , Femenino , Ratas , Neuronas/fisiología , Cuerpos Geniculados/fisiología , Estimulación Acústica/métodos , Vías Auditivas/fisiología , Potenciales de Acción/fisiología , Corteza Auditiva/fisiología , Corteza Auditiva/citología , Tálamo/fisiología , Tálamo/citología , Potenciales Evocados Auditivos/fisiología
19.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38485258

RESUMEN

The superior colliculus receives powerful synaptic inputs from corticotectal neurons in the visual cortex. The function of these corticotectal neurons remains largely unknown due to a limited understanding of their response properties and connectivity. Here, we use antidromic methods to identify corticotectal neurons in awake male and female rabbits, and measure their axonal conduction times, thalamic inputs and receptive field properties. All corticotectal neurons responded to sinusoidal drifting gratings with a nonlinear (nonsinusoidal) increase in mean firing rate but showed pronounced differences in their ON-OFF receptive field structures that we classified into three groups, Cx, S2, and S1. Cx receptive fields had highly overlapping ON and OFF subfields as classical complex cells, S2 had largely separated ON and OFF subfields as classical simple cells, and S1 had a single ON or OFF subfield. Thus, all corticotectal neurons are homogeneous in their nonlinear spatial summation but very heterogeneous in their spatial integration of ON and OFF inputs. The Cx type had the fastest conducting axons, the highest spontaneous activity, and the strongest and fastest visual responses. The S2 type had the highest orientation selectivity, and the S1 type had the slowest conducting axons. Moreover, our cross-correlation analyses found that a subpopulation of corticotectal neurons with very fast conducting axons and high spontaneous firing rates (largely "Cx" type) receives monosynaptic input from retinotopically aligned thalamic neurons. This previously unrecognized fast-conducting thalamic-mediated corticotectal pathway may provide specialized information to superior colliculus and prime recipient neurons for subsequent corticotectal or retinal synaptic input.


Asunto(s)
Neuronas , Sinapsis , Tálamo , Corteza Visual , Vías Visuales , Vigilia , Animales , Conejos , Masculino , Femenino , Vías Visuales/fisiología , Vigilia/fisiología , Corteza Visual/fisiología , Corteza Visual/citología , Sinapsis/fisiología , Neuronas/fisiología , Tálamo/fisiología , Tálamo/citología , Estimulación Luminosa/métodos , Campos Visuales/fisiología , Potenciales de Acción/fisiología , Colículos Superiores/fisiología , Colículos Superiores/citología
20.
J Neurosci ; 44(43)2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39197940

RESUMEN

Thalamocortical pathways from the rodent ventral posterior (VP) thalamic complex to the somatosensory cerebral cortex areas are a key model in modern neuroscience. However, beyond the intensively studied projection from medial VP (VPM) to the primary somatosensory area (S1), the wiring of these pathways remains poorly characterized. We combined micropopulation tract-tracing and single-cell transfection experiments to map the pathways arising from different portions of the VP complex in male mice. We found that pathways originating from different VP regions show differences in area/lamina arborization pattern and axonal varicosity size. Neurons from the rostral VPM subnucleus innervate trigeminal S1 in point-to-point fashion. In contrast, a caudal VPM subnucleus innervates heavily and topographically second somatosensory area (S2), but not S1. Neurons in a third, intermediate VPM subnucleus innervate through branched axons both S1 and S2, with markedly different laminar patterns in each area. A small anterodorsal subnucleus selectively innervates dysgranular S1. The parvicellular VPM subnucleus selectively targets the insular cortex and adjacent portions of S1 and S2. Neurons in the rostral part of the lateral VP nucleus (VPL) innervate spinal S1, while caudal VPL neurons simultaneously target S1 and S2. Rostral and caudal VP nuclei show complementary patterns of calcium-binding protein expression. In addition to the cortex, neurons in caudal VP subnuclei target the sensorimotor striatum. Our finding of a massive projection from VP to S2 separate from the VP projections to S1 adds critical anatomical evidence to the notion that different somatosensory submodalities are processed in parallel in S1 and S2.


Asunto(s)
Vías Nerviosas , Corteza Somatosensorial , Animales , Ratones , Masculino , Corteza Somatosensorial/fisiología , Corteza Somatosensorial/citología , Vías Nerviosas/fisiología , Ratones Endogámicos C57BL , Núcleos Talámicos Ventrales/fisiología , Tálamo/fisiología , Tálamo/citología , Neuronas/fisiología , Axones/fisiología , Vibrisas/inervación , Vibrisas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA