Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.775
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Rev ; 103(4): 2767-2845, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326298

RESUMEN

Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.


Asunto(s)
Calcio , Corazón , Humanos , Calcio/metabolismo , Tampones (Química) , Citoplasma/metabolismo , Transmisión Sináptica , Señalización del Calcio/fisiología
2.
Nature ; 572(7770): 507-510, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31435058

RESUMEN

The ability to manipulate droplets on a substrate using electric signals1-known as digital microfluidics-is used in optical2,3, biomedical4,5, thermal6 and electronic7 applications and has led to commercially available liquid lenses8 and diagnostics kits9,10. Such electrical actuation is mainly achieved by electrowetting, with droplets attracted towards and spreading on a conductive substrate in response to an applied voltage. To ensure strong and practical actuation, the substrate is covered with a dielectric layer and a hydrophobic topcoat for electrowetting-on-dielectric (EWOD)11-13; this increases the actuation voltage (to about 100 volts) and can compromise reliability owing to dielectric breakdown14, electric charging15 and biofouling16. Here we demonstrate droplet manipulation that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive substrate without the need for added layers. In this electrodewetting mechanism, which is phenomenologically opposite to electrowetting, the liquid-substrate interaction is not controlled directly by electric field but instead by field-induced attachment and detachment of ionic surfactants to the substrate. We show that this actuation mechanism can perform all the basic fluidic operations of digital microfluidics using water on doped silicon wafers in air, with only ±2.5 volts of driving voltage, a few microamperes of current and about 0.015 times the critical micelle concentration of an ionic surfactant. The system can also handle common buffers and organic solvents, promising a simple and reliable microfluidic platform for a broad range of applications.


Asunto(s)
Electrohumectación/métodos , Microfluídica/métodos , Tensoactivos/química , Acetonitrilos/química , Tampones (Química) , Dimetilsulfóxido/química , Glicol de Etileno/química , Interacciones Hidrofóbicas e Hidrofílicas , Iones/química , Microfluídica/instrumentación , Silicio/química
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35058361

RESUMEN

Bioelectrochemistry employs an array of high-surface-area meso- and macroporous electrode architectures to increase protein loading and the electrochemical current response. While the local chemical environment has been studied in small-molecule and heterogenous electrocatalysis, conditions in enzyme electrochemistry are still commonly established based on bulk solution assays, without appropriate consideration of the nonequilibrium conditions of the confined electrode space. Here, we apply electrochemical and computational techniques to explore the local environment of fuel-producing oxidoreductases within porous electrode architectures. This improved understanding of the local environment enabled simple manipulation of the electrolyte solution by adjusting the bulk pH and buffer pKa to achieve an optimum local pH for maximal activity of the immobilized enzyme. When applied to macroporous inverse opal electrodes, the benefits of higher loading and increased mass transport were employed, and, consequently, the electrolyte adjusted to reach -8.0 mA ⋅ cm-2 for the H2 evolution reaction and -3.6 mA ⋅ cm-2 for the CO2 reduction reaction (CO2RR), demonstrating an 18-fold improvement on previously reported enzymatic CO2RR systems. This research emphasizes the critical importance of understanding the confined enzymatic chemical environment, thus expanding the known capabilities of enzyme bioelectrocatalysis. These considerations and insights can be directly applied to both bio(photo)electrochemical fuel and chemical synthesis, as well as enzymatic fuel cells, to significantly improve the fundamental understanding of the enzyme-electrode interface as well as device performance.


Asunto(s)
Técnicas Electroquímicas , Electroquímica , Enzimas/química , Algoritmos , Tampones (Química) , Electrodos , Electrólitos/química , Microelectrodos , Estructura Molecular , Porosidad , Relación Estructura-Actividad
4.
Biochemistry ; 63(14): 1709-1717, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38975737

RESUMEN

I present the perspective that the divalent metalome and the metabolome can be modeled as a network of chelating interactions instead of separate entities. I review progress in understanding the complex cellular environment, in particular recent contributions to modeling metabolite-Mg2+ interactions. I then demonstrate a simple extension of these strategies based approximately on intracellular Escherichia coli concentrations. This model is composed of four divalent metal cations with a range of cellular concentrations and physical properties (Mg2+, Ca2+, Mn2+, and Zn2+), eight representative metabolites, and interaction constants. I applied this model to predict the speciation of divalent metal cations between free and metabolite-chelated species. This approach reveals potentially beneficial properties, including maintenance of free divalent metal cations at biologically relevant concentrations, buffering of free divalent metal cations, and enrichment of functional metabolite-chelated species. While currently limited by available interaction coefficients, this modeling strategy can be generalized to more complex systems. In summary, biochemists should consider the potential of cellular metabolites to form chelating interactions with divalent metal cations.


Asunto(s)
Cationes Bivalentes , Escherichia coli , Cationes Bivalentes/metabolismo , Cationes Bivalentes/química , Escherichia coli/metabolismo , Escherichia coli/genética , Quelantes/química , Quelantes/metabolismo , Modelos Biológicos , Metaboloma , Magnesio/metabolismo , Magnesio/química , Tampones (Química) , Zinc/metabolismo , Zinc/química
5.
J Am Chem Soc ; 146(17): 11634-11647, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38628144

RESUMEN

Supported membrane electrophoresis is a promising technique for collecting membrane proteins in native bilayer environments. However, the slow mobility of typical transmembrane proteins has impeded the technique's advancement. Here, we successfully applied cell membrane electrophoresis to rapidly enrich a 12-transmembrane helix protein, glucose transporter 1 with antibodies (GLUT1 complex), by tuning the buffer pH and ionic strength. The identified conditions allowed the separation of the GLUT1 complex and a lipid probe, Fast-DiO, within a native-like environment in a few minutes. A force model was developed to account for distinct electric and drag forces acting on the transmembrane and aqueous-exposed portion of a transmembrane protein as well as the electroosmotic force. This model not only elucidates the impact of size and charge properties of transmembrane proteins but also highlights the influence of pH and ionic strength on the driving forces and, consequently, electrophoretic mobility. Model predictions align well with experimentally measured electrophoretic mobilities of the GLUT1 complex and Fast-DiO at various pH and ionic strengths as well as with several lipid probes, lipid-anchored proteins, and reconstituted membrane proteins from previous studies. Force analyses revealed the substantial membrane drag of the GLUT1 complex, significantly slowing down electrophoretic mobility. Besides, the counterbalance of similar magnitudes of electroosmotic and electric forces results in a small net driving force and, consequently, reduced mobility under typical neutral pH conditions. Our results further highlight how the size and charge properties of transmembrane proteins influence the suitable range of operating conditions for effective movement, providing potential applications for concentrating and isolating membrane proteins within this platform.


Asunto(s)
Membrana Celular , Electroforesis , Concentración de Iones de Hidrógeno , Concentración Osmolar , Membrana Celular/química , Proteínas de la Membrana/química , Tampones (Química) , Transportador de Glucosa de Tipo 1/química , Transportador de Glucosa de Tipo 1/metabolismo
6.
Anal Chem ; 96(39): 15648-15656, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39298273

RESUMEN

The current limitations of single-molecule localization microscopy (SMLM) in deep tissue imaging, primarily due to depth-dependent aberrations caused by refractive index (RI) mismatch, present a significant challenge in achieving high-resolution images at greater depths. To extend the imaging depth, we optimized the imaging buffer of SMLM with the RI matched to that of the objective immersion medium and systematically evaluated five different RI-matched buffers, focusing on their impact on the blinking behavior of red-absorbing dyes and the quality of reconstructed super-resolution images. Particularly, we found that clear unobstructed brain imaging cocktails-based imaging buffer could match the RI of oil and was able to clear the tissue samples. With the help of the RI-matched imaging buffers, we showed high-quality dual-color 3D SMLM images with imaging depths ranging from a few micrometers to tens of micrometers in both cultured cells and sectioned tissue samples. This advancement offers a practical and accessible method for high-resolution imaging at greater depths without the need for specialized optical equipment or expertise.


Asunto(s)
Encéfalo , Refractometría , Animales , Encéfalo/diagnóstico por imagen , Imagen Individual de Molécula/métodos , Imagenología Tridimensional , Humanos , Color , Ratones , Tampones (Química) , Colorantes Fluorescentes/química
7.
Mol Pharm ; 21(3): 1285-1299, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38345400

RESUMEN

Understanding and predicting protein aggregation represents one of the major challenges in accelerating the pharmaceutical development of protein therapeutics. In addition to maintaining the solution pH, buffers influence both monoclonal antibody (mAb) aggregation in solution and the aggregation mechanisms since the latter depend on the protein charge. Molecular-level insight is necessary to understand the relationship between the buffer-mAb interaction and mAb aggregation. Here, we use all-atom molecular dynamics simulations to investigate the interaction of phosphate (Phos) and citrate (Cit) buffer ions with the Fab and Fc domains of mAb COE3. We demonstrate that Phos and Cit ions feature binding mechanisms, with the protein that are very different from those reported previously for histidine (His). These differences are reflected in distinctive ion-protein binding modes and adsorption/desorption kinetics of the buffer molecules from the mAb surface and result in dissimilar effects of these buffer species on mAb aggregation. While His shows significant affinity toward hydrophobic amino acids on the protein surface, Phos and Cit ions preferentially bind to charged amino acids. We also show that Phos and Cit anions provide bridging contacts between basic amino acids in neighboring proteins. The implications of such contacts and their connection to mAb aggregation in therapeutic formulations are discussed.


Asunto(s)
Anticuerpos Monoclonales , Agregado de Proteínas , Anticuerpos Monoclonales/química , Tampones (Química) , Concentración de Iones de Hidrógeno , Iones , Aminoácidos
8.
Mol Pharm ; 21(6): 2854-2864, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38718215

RESUMEN

The purpose of the present study was to clarify whether the precipitation profile of a drug in bicarbonate buffer (BCB) may differ from that in phosphate buffer (PPB) by a well-controlled comparative study. The precipitation profiles of structurally diverse poorly soluble drugs in BCB and PPB were evaluated by a pH-shift precipitation test or a solvent-shift precipitation test (seven weak acid drugs (pKa: 4.2 to 7.5), six weak base drugs (pKa: 4.8 to 8.4), one unionizable drug, and one zwitterionic drug). To focus on crystal precipitation processes, each ionizable drug was first completely dissolved in an HCl (pH 3.0) or NaOH (pH 11.0) aqueous solution (450 mL, 50 rpm, 37 °C). A 10-fold concentrated buffer solution (50 mL) was then added to shift the pH value to 6.5 to initiate precipitation (final volume: 500 mL, buffer capacity (ß): 4.4 mM/ΔpH (BCB: 10 mM or PPB: 8 mM), ionic strength (I): 0.14 M (adjusted by NaCl)). The pH, ß, and I values were set to be relevant to the physiology of the small intestine. For an unionizable drug, a solvent-shift method was used (1/100 dilution). To maintain the pH value of BCB, a floating lid was used to avoid the loss of CO2. The floating lid was applied also to PPB to precisely align the experimental conditions between BCB and PPB. The solid form of the precipitants was identified by powder X-ray diffraction and differential scanning microscopy. The precipitation of weak acids (pKa ≤ 5.1) and weak bases (pKa ≥ 7.3) was found to be slower in BCB than in PPB. In contrast, the precipitation profiles in BCB and PPB were similar for less ionizable or nonionizable drugs at pH 6.5. The final pH values of the bulk phase were pH 6.5 ± 0.1 after the precipitation tests in all cases. All precipitates were in their respective free forms. The precipitation of ionizable weak acids and bases was slower in BCB than in PPB. The surface pH of precipitating particles may have differed between BCB and PPB due to the slow hydration process of CO2 specific to BCB. Since BCB is a physiological buffer in the small intestine, it should be considered as an option for precipitation studies of ionizable weak acids and bases.


Asunto(s)
Bicarbonatos , Precipitación Química , Cristalización , Fosfatos , Tampones (Química) , Concentración de Iones de Hidrógeno , Bicarbonatos/química , Fosfatos/química , Solubilidad , Concentración Osmolar , Química Farmacéutica/métodos , Difracción de Rayos X/métodos
9.
Mol Pharm ; 21(9): 4618-4633, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39110953

RESUMEN

Near UV and visible light photodegradation can target therapeutic proteins during manufacturing and storage. While the underlying photodegradation pathways are frequently not well-understood, one important aspect of consideration is the formulation, specifically the formulation buffer. Citrate is a common buffer for biopharmaceutical formulations, which can complex with transition metals, such as Fe(III). In an aqueous solution, the exposure of such complexes to light leads to the formation of the carbon dioxide radical anion (•CO2-), a powerful reductant. However, few studies have characterized such processes in solid formulations. Here, we show that solid citrate formulations containing Fe(III) lead to the photochemical formation of •CO2-, identified through DMPO spin trapping and HPLC-MS/MS analysis. Factors such as buffers, the availability of oxygen, excipients, and manufacturing processes of solid formulations were evaluated for their effect on the formation of •CO2- and other radicals such as •OH.


Asunto(s)
Aniones , Dióxido de Carbono , Compuestos Férricos , Luz , Fotólisis , Rayos Ultravioleta , Dióxido de Carbono/química , Aniones/química , Compuestos Férricos/química , Tampones (Química) , Cromatografía Líquida de Alta Presión/métodos , Ácido Cítrico/química , Química Farmacéutica/métodos , Espectrometría de Masas en Tándem/métodos , Excipientes/química , Radicales Libres/química
10.
Mol Pharm ; 21(8): 4060-4073, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39013609

RESUMEN

Light exposure during manufacturing, storage, and administration can lead to the photodegradation of therapeutic proteins. This photodegradation can be promoted by pharmaceutical buffers or impurities. Our laboratory has previously demonstrated that citrate-Fe(III) complexes generate the •CO2- radical anion when photoirradiated under near UV (λ = 320-400 nm) and visible light (λ = 400-800 nm) [Subelzu, N.; Schöneich, C. Mol. Pharmaceutics 2020, 17 (11), 4163-4179; Zhang, Y. Mol. Pharmaceutics 2022, 19 (11), 4026-4042]. Here, we evaluated the impact of citrate-Fe(III) on the photostability and degradation mechanisms of disulfide-containing proteins (bovine serum albumin (BSA) and NISTmAb) under pharmaceutically relevant conditions. We monitored and localized competitive disulfide reduction and protein oxidation by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis depending on the reaction conditions. These competitive pathways were affected by multiple factors, including light dose, Fe(III) concentration, protein concentration, the presence of oxygen, and light intensity.


Asunto(s)
Anticuerpos Monoclonales , Compuestos Férricos , Luz , Oxidación-Reducción , Albúmina Sérica Bovina , Espectrometría de Masas en Tándem , Rayos Ultravioleta , Albúmina Sérica Bovina/química , Espectrometría de Masas en Tándem/métodos , Animales , Anticuerpos Monoclonales/química , Compuestos Férricos/química , Cromatografía Líquida de Alta Presión , Tampones (Química) , Fotólisis , Bovinos , Ácido Cítrico/química , Disulfuros/química , Hierro/química
11.
Langmuir ; 40(39): 20797-20810, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39287604

RESUMEN

This study has focused on adjusting sensing environment from basic to neutral pH and improve sensing performance by doping electrodeposited gold (Au) with metal oxide for nonenzymatic glucose measurements in forming a Schottky interface for superior glucose sensing with detailed analysis for the sensing mechanism. The prepared sensor also holds the ability to measure pH with the identical electrospun metal oxide-electrodeposited Au, which composed a dual sensor (glucose and pH sensor) through applying chronoamperometry and open circuit potential methods. The rhodium oxide nanocoral structure was fabricated with an electrospinning precursor solution, followed by a calcination process, and it was mixed with electrodeposited nanocoral gold to form the Schottky interface by constructing a p-n type heterogeneous junction for improved sensitivity in glucose detection. The prepared materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrometry (XPS), etc. The prepared materials were used for both pH responsive testing and amperometric glucose measurements. The rhodium oxide nanocoral doped gold demonstrated a sensitivity of 3.52 µA mM-1 cm-2 and limit of detection of 20 µM with linear range up to 3 mM glucose concentration compared to solely electrodeposited gold for a sensitivity of 0.46 µA mM-1 cm-2 and a limit of detection of 450 µM. The Mott-Schottky method was used for the analysis of an electron transfer process from noble metal to metal oxide to electrolyte in demonstrating the improved sensitivity at neutral pH for glucose measurements due to the Schottky barrier adjustment mechanism at an applied flat band potential of 0.3 V. This work opens a new venue in illustrating the metal oxide/metal materials in the glucose neutral response mechanism. In the end, human serum samples were tested against current commercial glucose meter to certify the accuracy of the proposed sensor.


Asunto(s)
Oro , Rodio , Humanos , Concentración de Iones de Hidrógeno , Oro/química , Rodio/química , Glucemia/análisis , Glucosa/análisis , Glucosa/química , Técnicas Electroquímicas/métodos , Óxidos/química , Tampones (Química) , Técnicas Biosensibles/métodos
12.
Pharm Res ; 41(7): 1443-1454, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951451

RESUMEN

PURPOSE: Chemical modifications in monoclonal antibodies can change hydrophobicity, charge heterogeneity as well as conformation, which eventually can impact their physical stability. In this study, the effect of the individual charge variants on physical stability and aggregation propensity in two different buffer conditions used during downstream purification was investigated. METHODS: The charge variants were separated using semi-preparative cation exchange chromatography and buffer exchanged in the two buffers with pH 6.0 and 3.8. Subsequently each variant was analysed for size heterogeneity using size exclusion chromatography and dynamic light scattering, conformational stability, colloidal stability, and aggregation behaviour under accelerated stability conditions. RESULTS: Size variants in each charge variant were similar in both pH conditions when analyzed without extended storage. However, conformational stability was lower at pH 3.8 than pH 6.0. All charge variants showed similar apparent melting temperature at pH 6.0. In contrast, at pH 3.8 variants A3, A5, B2, B3 and B4 display lower Tm, suggesting reduced conformational stability. Further, A2, A3 and A5 exhibit reduced colloidal stability at pH 3.8. In general, acidic variants are more prone to aggregation than basic variants. CONCLUSION: Typical industry practice today is to examine in-process intermediate stability with acidic species and basic species taken as a single category each. We suggest that perhaps stability evaluation needs to be performed at specie level as different acidic or basic species have different stability and this knowledge can be used for clever designing of the downstream process to achieve a stable product.


Asunto(s)
Anticuerpos Monoclonales , Estabilidad Proteica , Anticuerpos Monoclonales/química , Concentración de Iones de Hidrógeno , Estabilidad de Medicamentos , Conformación Proteica , Agregado de Proteínas , Cromatografía por Intercambio Iónico/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Cromatografía en Gel , Coloides/química , Productos Biológicos/química , Humanos , Tampones (Química)
13.
Pharm Res ; 41(5): 959-966, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653942

RESUMEN

PURPOSE: The purpose of this study was to clarify the extent to which the dissolution profiles of immediate release (IR) products of various drugs differ between biorelevant bicarbonate buffer (BCB) and compendial phosphate buffer (PPB). METHODS: The dissolution profiles of the IR products of fifteen poorly soluble ionizable drugs were measured in BCB and PPB. BCB was set to be relevant to the small intestine (pH 6.8, 10 mM). The pH was maintained using the floating lid method. The Japanese pharmacopeia second fluid (JP2, 25 mM phosphate buffer, nominal pH 6.8) was used as compendial PPB. The compendial paddle apparatus was used for the dissolution tests (500 mL, 50 rpm, 37°C). RESULTS: In 11/15 cases, a difference in dissolved% (< 0.8 or > 1.25-fold) was observed at a time point. In 4/15 cases, the ratio of the area under the dissolution curve was not equivalent (< 0.8 or > 1.25-fold). In the cases of free-form drugs, the dissolution rate tended to be slower in BCB than in JP2. In the case of salt-form drugs, a marked difference was observed for the cases that showed supersaturation. However, no trend was observed in the differences. CONCLUSIONS: Many IR products showed differences in the dissolution profiles between biorelevant BCB and compendial PPB. With the floating lid method, BCB is as simple and easy to use as PPB. Biorelevant BCB is recommended for dissolution testing.


Asunto(s)
Bicarbonatos , Fosfatos , Solubilidad , Tampones (Química) , Fosfatos/química , Concentración de Iones de Hidrógeno , Bicarbonatos/química , Preparaciones Farmacéuticas/química , Química Farmacéutica/métodos , Liberación de Fármacos
14.
Pharm Res ; 41(5): 937-945, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698196

RESUMEN

BACKGROUND: Phosphate buffer is often used as a replacement for the physiological bicarbonate buffer in pharmaceutical dissolution testing, although there are some discrepancies in their properties making it complicated to extrapolate dissolution results in phosphate to the in vivo situation. This study aims to characterize these discrepancies regarding solubility and dissolution behavior of ionizable compounds. METHODS: The dissolution of an ibuprofen powder with a known particle size distribution was simulated in silico and verified experimentally in vitro at two different doses and in two different buffers (5 mM pH 6.8 bicarbonate and phosphate). RESULTS: The results showed that there is a solubility vs. dissolution mismatch in the two buffers. This was accurately predicted by the in-house simulations based on the reversible non-equilibrium (RNE) and the Mooney models. CONCLUSIONS: The results can be explained by the existence of a relatively large gap between the initial surface pH of the drug and the bulk pH at saturation in bicarbonate but not in phosphate, which is caused by not all the interfacial reactions reaching equilibrium in bicarbonate prior to bulk saturation. This means that slurry pH measurements, while providing surface pH estimates for buffers like phosphate, are poor indicators of surface pH in the intestinal bicarbonate buffer. In addition, it showcases the importance of accounting for the H2CO3-CO2 interconversion kinetics to achieve good predictions of intestinal drug dissolution.


Asunto(s)
Bicarbonatos , Liberación de Fármacos , Ibuprofeno , Fosfatos , Solubilidad , Tampones (Química) , Bicarbonatos/química , Concentración de Iones de Hidrógeno , Ibuprofeno/química , Fosfatos/química , Tamaño de la Partícula , Simulación por Computador , Polvos/química , Cinética , Química Farmacéutica/métodos
15.
Inorg Chem ; 63(26): 12323-12332, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38872340

RESUMEN

The choice of correct pH buffer is crucial in chemical studies modeling biological processes involving Cu2+ ions. Popular buffers for physiological pH are known to form Cu(II) complexes, but their impact on kinetics of Cu(II) complexation has not been considered. We performed a stopped-flow kinetic study of Cu2+ ion interactions with four popular buffers (phosphate, Tris, HEPES, and MOPS) and two buffers considered as nonbinding (MES and PIPPS). Next, we studied their effects on the rate of Cu2+ reaction with Gly-Gly-His (GGH), a tripeptide modeling physiological Cu(II) sites, which we studied previously at conditions presumably excluding the buffer interference [Kotuniak, R.; Angew. Chem., Int. Ed. 2020, 59, 11234-11239]. We observed that (i) all tested pH 7.4 buffers formed Cu(II) complexes within the stopped-flow instrument dead time; (ii) Cu(II)-peptide complexes were formed via ternary complexes with the buffers; (iii) nevertheless, Good buffers affected the observed rate of Cu(II)-GGH complex formation only slightly; (iv) Tris was a competitive inhibitor of Cu(II)-GGH complexation; while (v) phosphate was a reaction catalyst. This is particularly important as phosphate is a biological buffer.


Asunto(s)
Cobre , Cobre/química , Tampones (Química) , Concentración de Iones de Hidrógeno , Cinética , Complejos de Coordinación/química , Péptidos/química , Oligopéptidos/química , Iones/química
16.
Org Biomol Chem ; 22(41): 8337-8343, 2024 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-39315916

RESUMEN

During a typical aptamer selection experiment, buffer molecules are used at the 10 to 50 mM range, whereas target molecules could be used at much lower concentrations even in low µM levels. Therefore, doubts existed regarding the potential enrichment of buffer binding aptamers, particularly for failed selections that cannot validate binding of enriched sequences. In this study, we used two common buffer molecules, Tris and HEPES, as target molecules. While we successfully isolated aptamers for Tris buffer, our attempts to generate aptamers for HEPES buffer failed. Thioflavin T (ThT) fluorescence spectroscopy showed the dissociation constant (Kd) of the Tris buffer aptamer to be 2.9 mM, while isothermal titration calorimetry showed a Kd of 43 µM. NMR spectroscopy also confirmed aptamer binding. Finally, we discussed the implications of this buffer selection work and recommended the use of certain buffers.


Asunto(s)
Aptámeros de Nucleótidos , Técnica SELEX de Producción de Aptámeros , Aptámeros de Nucleótidos/química , Tampones (Química) , HEPES/química , Trometamina/química , Espectrometría de Fluorescencia
17.
Biofouling ; 40(7): 377-389, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955544

RESUMEN

Biofouling on marine surfaces causes immense material and financial harm for maritime vessels and related marine industries. Previous reports have shown the effectiveness of amphiphilic coating systems based on poly(dimethylsiloxane) (PDMS) against such marine foulers. Recent studies on biofouling mechanisms have also demonstrated acidic microenvironments in biofilms and stronger adhesion at low-pH conditions. This report presents the design and utilization of amphiphilic polymer coatings with buffer functionalities as an active disruptor against four different marine foulers. Specifically, this study explores both neutral and zwitterionic buffer systems for marine coatings, offering insights into coating design. Overall, these buffer systems were found to improve foulant removal, and unexpectedly were the most effective against the diatom Navicula incerta.


Asunto(s)
Biopelículas , Incrustaciones Biológicas , Diatomeas , Dimetilpolisiloxanos , Incrustaciones Biológicas/prevención & control , Diatomeas/fisiología , Dimetilpolisiloxanos/química , Animales , Tampones (Química) , Propiedades de Superficie , Concentración de Iones de Hidrógeno
18.
J Oral Maxillofac Surg ; 82(6): 684-691, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554734

RESUMEN

BACKGROUND: Injections using buffered lidocaine may decrease discomfort, have a quicker onset, and be a more efficacious local anesthetic. Previous studies have been inconclusive in the oral context. PURPOSE: To address if bicarbonate buffered 2% lidocaine can decrease pain from the use of local anesthesia, has a quicker onset time, and is more efficacious. STUDY DESIGN: The design was a single-center double-blinded randomized control trial, set in an outpatient oral and maxillofacial clinic housed in the University of Cincinnati Medical Center. Inclusion criteria for the study were patients requiring a single tooth extraction due either to caries or periodontal disease. PREDICTOR VARIABLE: The predictor variable was the local anesthetic used either nonbuffered 2% lidocaine with 1:100,000 epinephrine (control) or bicarbonate buffered 2% lidocaine with 1:100,000 epinephrine (study) was randomly assigned. MAIN OUTCOME VARIABLES: Primary outcome variables were injection pain score, and postoperative pain, time to anesthetic onset, and the number of rounds of injections required to achieve adequate anesthesia. COVARIATES: The covariates were jaw involved, age, sex, and race, American Society of Anesthesiologists score, body mass index, current tobacco use, history of psychiatric illness, chronic pain, and preoperative pain score. ANALYSES: Test statistics were calculated using Wilcoxon rank-sum test, Kruskal-Wallis test, Spearman rank correlation test, χ2 test for bivariate analyses, and Fisher's exact test. P values ≤ .05 were considered statistically significant. RESULTS: The final sample was 114 subjects. The mean age of the sample was 42.97 years, standard deviation ±13.43 years. The sample was 39.47% male. The racial demographics were Caucasian (62.28%) and African American (33.33%). Buffered lidocaine did not have a statistically significant relationship with any of the outcomes. The jaw involved had a statistically significant association to the injection pain score (P value = .006), and the number of rounds of anesthetic required (P value = .047). Age showed a statistically significant association to injection pain score (P value = .032), and the number of rounds of anesthetic required (P value = .027). Finally, preoperative pain had a statistically significant relationship with injection pain score (P value = < .001). CONCLUSION AND RELEVANCE: In this study, bicarbonate buffered lidocaine did not exhibit any discernible advantages over nonbuffered lidocaine for any study outcomes.


Asunto(s)
Anestesia Dental , Anestésicos Locales , Lidocaína , Dimensión del Dolor , Extracción Dental , Humanos , Lidocaína/administración & dosificación , Método Doble Ciego , Masculino , Femenino , Anestésicos Locales/administración & dosificación , Adulto , Persona de Mediana Edad , Anestesia Dental/métodos , Dolor Postoperatorio/prevención & control , Dolor Postoperatorio/tratamiento farmacológico , Tampones (Química) , Resultado del Tratamiento , Epinefrina/administración & dosificación , Anciano , Inyecciones
19.
J Assist Reprod Genet ; 41(5): 1341-1356, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38436798

RESUMEN

PURPOSE/STUDY QUESTION: Does piercing oocyte membranes during ICSI allow the influx of surrounding zwitterionic buffer into human oocytes and result in altered developmental competence? METHODS: Human oocytes directed to IRB-approved research were used to determine the unrestricted influx of surrounding buffer into the oocyte after piercing of membranes via confocal fluorescence microscopy (n = 80 human MII oocytes) and the influence of the select buffer influx of HEPES, MOPS, and bicarbonate buffer on the oocyte transcriptome using ultra-low input RNA sequencing (n = 40 human MII oocytes). RESULTS: Piercing membranes of human MII oocytes during sham-ICSI resulted in the unrestricted influx of surrounding culture buffer into the oocyte that was beyond technician control. Transcriptome analysis revealed statistically significant decreased cytoskeletal transcripts in the pierced buffer cohorts, higher levels of embryo competency transcripts (IGF2 and G6PD) in the bicarbonate buffer cohort, higher levels of stress-induced transcriptional repressor transcripts (MAF1) in the HEPES and MOPS cohorts, and decreased levels of numerous chromosomal maintenance transcripts (SMC3) in the HEPES buffer cohort. The HEPES buffer cohort also revealed higher levels of transcripts suggesting increased oxidative (GPX1) and lysosomal stress (LAMP1). CONCLUSION: The influence of zwitterionic buffer on intrinsic cellular mechanisms provides numerous concerns for their use in IVF clinical applications. The primary concern is the ICSI procedure, in which the surrounding buffer is allowed influx into the oocytes after membrane piercing. Selecting a physiological bicarbonate buffer may reduce imposed stress on oocytes, resulting in improved embryo development and clinical results because intracellular MOPS, and especially HEPES, may negatively impact intrinsic biological mechanisms, as revealed by transcriptome changes. These findings further support the utilization of bicarbonate buffer as the oocyte-holding medium during ICSI.


Asunto(s)
Oocitos , Inyecciones de Esperma Intracitoplasmáticas , Transcriptoma , Humanos , Inyecciones de Esperma Intracitoplasmáticas/métodos , Oocitos/metabolismo , Oocitos/crecimiento & desarrollo , Femenino , Transcriptoma/genética , Tampones (Química) , Adulto , HEPES , Masculino , Desarrollo Embrionario/genética , Fertilización In Vitro/métodos
20.
Sensors (Basel) ; 24(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39275661

RESUMEN

The accurate determination of the post-dilution concentration of biological buffers is essential for retaining the necessary properties and effectiveness of the buffer to maintain stable cellular environments and optimal conditions for biochemical reactions. In this work, we introduce a silicon-based impedance chip, which offers a rapid and reagent-free approach for monitoring the buffer concentrations after dilution with deionized (DI) water. The impedance of the impedance chip is measured, and the impedance data are modeled using a multiparameter equivalent circuit model. We investigated six aqueous biological buffers with pH values above and below the physiological pH for most tissues (pH ~ 7.2-7.4) following dilution with DI water by factors of 2.0, 10.0, 20.0, 100.0, and 200.0. The impedance measurement is then performed for the frequency spectrum of 40 Hz to 1 MHz. From the interpretation of the impedance measurement using the multiparameter equivalent circuit model, we report a buffer-sensitive equivalent circuit parameter RAu/Si of the silicon-based impedance chip showing a linear trend on a logarithmic scale with the buffer concentration change after dilution. The parameter RAu/Si is independent of the buffer pH and the added volume. The results demonstrate the efficacy of the silicon-based impedance chip as a versatile tool for precise post-dilution concentration determination of diverse biologically relevant buffers. The presented impedance chip offers rapid, accurate, and reliable monitoring, making it highly suitable for integration into automated liquid-handling systems to enhance the efficiency and precision of biological and chemical processes.


Asunto(s)
Impedancia Eléctrica , Concentración de Iones de Hidrógeno , Tampones (Química) , Silicio/química , Soluciones/química , Técnicas Biosensibles/métodos , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA