Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(12): 2566-2582.e6, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33878294

RESUMEN

The mitochondrial translation system originates from a bacterial ancestor but has substantially diverged in the course of evolution. Here, we use single-particle cryo-electron microscopy (cryo-EM) as a screening tool to identify mitochondrial translation termination mechanisms and to describe them in molecular detail. We show how mitochondrial release factor 1a releases the nascent chain from the ribosome when it encounters the canonical stop codons UAA and UAG. Furthermore, we define how the peptidyl-tRNA hydrolase ICT1 acts as a rescue factor on mitoribosomes that have stalled on truncated messages to recover them for protein synthesis. Finally, we present structural models detailing the process of mitochondrial ribosome recycling to explain how a dedicated elongation factor, mitochondrial EFG2 (mtEFG2), has specialized for cooperation with the mitochondrial ribosome recycling factor to dissociate the mitoribosomal subunits at the end of the translation process.


Asunto(s)
Mitocondrias/fisiología , Ribosomas Mitocondriales/metabolismo , Terminación de la Cadena Péptídica Traduccional/fisiología , Animales , Hidrolasas de Éster Carboxílico , Codón de Terminación , Microscopía por Crioelectrón/métodos , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Terminación de la Cadena Péptídica Traduccional/genética , Factor G de Elongación Peptídica/metabolismo , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/fisiología , Ribosomas/metabolismo
2.
J Biol Chem ; 298(11): 102509, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36300356

RESUMEN

Translation terminates by releasing the polypeptide chain in one of two chemical reactions catalyzed by the ribosome. Release is also a target for engineering, as readthrough of a stop codon enables incorporation of unnatural amino acids and treatment of genetic diseases. Hydrolysis of the ester bond of peptidyl-tRNA requires conformational changes of both a class I release factor (RF) protein and the peptidyl transferase center of a large subunit rRNA. The rate-limiting step was proposed to be hydrolysis at physiological pH and an RF conformational change at higher pH, but evidence was indirect. Here, we tested this by activating the ester electrophile at the Escherichia coli ribosomal P site using a trifluorine-substituted amino acid. Quench-flow kinetics revealed that RF1-catalyzed release could be accelerated, but only at pH 6.2-7.7 and not higher pH. This provided direct evidence for rate-limiting hydrolysis at physiological or lower pH and a different rate limitation at higher pH. Additionally, we optimized RF-free release catalyzed by unacylated tRNA or the CCA trinucleotide (in 30% acetone). We determined that these two model release reactions, although very slow, were surprisingly accelerated by the trifluorine analog but to a different extent from each other and from RF-catalyzed release. Hence, hydrolysis was rate limiting in all three reactions. Furthermore, in 20% ethanol, we found that there was significant competition between fMet-ethyl ester formation and release in all three release reactions. We thus favor proposed mechanisms for translation termination that do not require a fully-negatively-charged OH- nucleophile.


Asunto(s)
Ésteres , Factores de Terminación de Péptidos , Factores de Terminación de Péptidos/metabolismo , Hidrólisis , Ésteres/metabolismo , Ribosomas/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Codón de Terminación/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Terminación de la Cadena Péptídica Traduccional/fisiología
3.
Nucleic Acids Res ; 47(13): 7018-7034, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31114879

RESUMEN

The yeast ribosome-associated complex RAC and the Hsp70 homolog Ssb are anchored to the ribosome and together act as chaperones for the folding and co-translational assembly of nascent polypeptides. In addition, the RAC/Ssb system plays a crucial role in maintaining the fidelity of translation termination; however, the latter function is poorly understood. Here we show that the RAC/Ssb system promotes the fidelity of translation termination via two distinct mechanisms. First, via direct contacts with the ribosome and the nascent chain, RAC/Ssb facilitates the translation of stalling-prone poly-AAG/A sequences encoding for polylysine segments. Impairment of this function leads to enhanced ribosome stalling and to premature nascent polypeptide release at AAG/A codons. Second, RAC/Ssb is required for the assembly of fully functional ribosomes. When RAC/Ssb is absent, ribosome biogenesis is hampered such that core ribosomal particles are structurally altered at the decoding and peptidyl transferase centers. As a result, ribosomes assembled in the absence of RAC/Ssb bind to the aminoglycoside paromomycin with high affinity (KD = 76.6 nM) and display impaired discrimination between stop codons and sense codons. The combined data shed light on the multiple mechanisms by which the RAC/Ssb system promotes unimpeded biogenesis of newly synthesized polypeptides.


Asunto(s)
Codón/genética , Chaperonas Moleculares/fisiología , Complejos Multiproteicos/fisiología , Terminación de la Cadena Péptídica Traduccional/fisiología , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Codón de Terminación/genética , Conformación de Ácido Nucleico , Biogénesis de Organelos , Paromomicina/metabolismo , Polilisina/genética , ARN Ribosómico/química , ARN Ribosómico/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética
4.
Nucleic Acids Res ; 46(19): 10184-10194, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30247639

RESUMEN

During protein synthesis genetic instructions are passed from DNA via mRNA to the ribosome to assemble a protein chain. Occasionally, stop codons in the mRNA are bypassed and translation continues into the untranslated region (3'-UTR). This process, called translational readthrough (TR), yields a protein chain that becomes longer than would be predicted from the DNA sequence alone. Protein sequences vary in propensity for translational errors, which may yield evolutionary constraints by limiting evolutionary paths. Here we investigated TR in Saccharomyces cerevisiae by analysing ribosome profiling data. We clustered proteins as either prone or non-prone to TR, and conducted comparative analyses. We find that a relatively high frequency (5%) of genes undergo TR, including ribosomal subunit proteins. Our main finding is that proteins undergoing TR are highly expressed and have intrinsically disordered C-termini. We suggest that highly expressed proteins may compensate for the deleterious effects of TR by having intrinsically disordered C-termini, which may provide conformational flexibility but without distorting native function. Moreover, we discuss whether minimizing deleterious effects of TR is also enabling exploration of the phenotypic landscape of protein isoforms.


Asunto(s)
Regiones no Traducidas 3'/genética , Codón de Terminación , Sistema de Lectura Ribosómico/fisiología , Terminación de la Cadena Péptídica Traduccional/fisiología , Biosíntesis de Proteínas/fisiología , ARN Mensajero/química , Codón/química , Codón/metabolismo , Biología Computacional , Análisis Mutacional de ADN , Mutación del Sistema de Lectura/genética , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
5.
Nucleic Acids Res ; 45(3): 1307-1318, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28180304

RESUMEN

The human DEAD-box RNA-helicase DDX19 functions in mRNA export through the nuclear pore complex. The yeast homolog of this protein, Dbp5, has been reported to participate in translation termination. Using a reconstituted mammalian in vitro translation system, we show that the human protein DDX19 is also important for translation termination. It is associated with the fraction of translating ribosomes. We show that DDX19 interacts with pre-termination complexes (preTCs) in a nucleotide-dependent manner. Furthermore, DDX19 increases the efficiency of termination complex (TC) formation and the peptide release in the presence of eukaryotic release factors. Using the eRF1(AGQ) mutant protein or a non-hydrolysable analog of GTP to inhibit subsequent peptidyl-tRNA hydrolysis, we reveal that the activation of translation termination by DDX19 occurs during the stop codon recognition. This activation is a result of DDX19 binding to preTC and a concomitant stabilization of terminating ribosomes. Moreover, we show that DDX19 stabilizes ribosome complexes with translation elongation factors eEF1 and eEF2. Taken together, our findings reveal that the human RNA helicase DDX19 actively participates in protein biosynthesis.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Extensión de la Cadena Peptídica de Translación/fisiología , Terminación de la Cadena Péptídica Traduccional/fisiología , Ribosomas/metabolismo , Codón de Terminación , ARN Helicasas DEAD-box/genética , Células HEK293 , Humanos , Mutación , Proteínas de Transporte Nucleocitoplasmático/genética , Factor 1 de Elongación Peptídica/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Polirribosomas/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Biochemistry ; 57(13): 1954-1966, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29499110

RESUMEN

During translation, the small subunit of the ribosome rotates with respect to the large subunit primarily between two states as mRNA is being translated into a protein. At the termination of bacterial translation, class I release factors (RFs) bind to a stop codon in the A-site and catalyze the release of the peptide chain from the ribosome. Periodically, mRNA is truncated prematurely, and the translating ribosome stalls at the end of the mRNA forming a nonstop complex requiring one of several ribosome rescue factors to intervene. One factor, YaeJ, is structurally homologous with the catalytic region of RFs but differs by binding to the ribosome directly through its C-terminal tail. Structures of the ribosome show that the ribosome adopts the nonrotated state conformation when these factors are bound. However, these studies do not elucidate the influence of binding to cognate or noncognate codons on the dynamics of intersubunit rotation. Here, we investigate the effects of wild-type and mutant forms of RF1, RF2, and YaeJ binding on ribosome intersubunit rotation using single-molecule Förster resonance energy transfer. We show that both RF1 binding and RF2 binding are sufficient to shift the population of posthydrolysis ribosome complexes from primarily the rotated to the nonrotated state only when a cognate stop codon is present in the A-site. Similarly, YaeJ binding stabilizes nonstop ribosomal complexes in the nonrotated state. Along with previous studies, these results are consistent with the idea that directed conformational changes and binding of subsequent factors to the ribosome are requisite for efficient termination and ribosome recycling.


Asunto(s)
Hidrolasas de Éster Carboxílico , Codón de Terminación , Proteínas de Escherichia coli , Escherichia coli , Terminación de la Cadena Péptídica Traduccional/fisiología , Factores de Terminación de Péptidos , Ribosomas , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo
7.
Cell Mol Life Sci ; 72(23): 4523-44, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26283621

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a translation-dependent, multistep process that degrades irregular or faulty messenger RNAs (mRNAs). NMD mainly targets mRNAs with a truncated open reading frame (ORF) due to premature termination codons (PTCs). In addition, NMD also regulates the expression of different types of endogenous mRNA substrates. A multitude of factors are involved in the tight regulation of the NMD mechanism. In this review, we focus on the molecular mechanism of mammalian NMD. Based on the published data, we discuss the involvement of translation termination in NMD initiation. Furthermore, we provide a detailed overview of the core NMD machinery, as well as several peripheral NMD factors, and discuss their function. Finally, we present an overview of diseases associated with NMD factor mutations and summarize the current state of treatment for genetic disorders caused by nonsense mutations.


Asunto(s)
Predisposición Genética a la Enfermedad , Degradación de ARNm Mediada por Codón sin Sentido/fisiología , Regiones no Traducidas 3' , Animales , Codón sin Sentido , ARN Helicasas DEAD-box/genética , Factor 4A Eucariótico de Iniciación/genética , Humanos , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación , Terminación de la Cadena Péptídica Traduccional/fisiología , Fosforilación , ARN Helicasas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
J Biol Chem ; 289(25): 17589-96, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24798339

RESUMEN

In bacteria, stop codons are recognized by two similar class 1 release factors, release factor 1 (RF1) and release factor 2 (RF2). Normally, during termination, the class 2 release factor 3 (RF3), a GTPase, functions downstream of peptide release where it accelerates the dissociation of RF1/RF2 prior to ribosome recycling. In addition to their canonical function in termination, both classes of release factor are also involved in a post peptidyl transfer quality control (post PT QC) mechanism where the termination factors recognize mismatched (i.e. error-containing) ribosome complexes and promote premature termination. Here, using a well defined in vitro system, we explored the role of release factors in canonical termination and post PT QC. As reported previously, during canonical termination, RF1 and RF2 recognize stop codons in a similar manner, and RF3 accelerates their rate of dissociation. During post PT QC, only RF2 (and not RF1) effectively binds to mismatched ribosome complexes; and whereas the addition of RF3 to RF2 increased its rate of release on mismatched complexes, the addition of RF3 to RF1 inhibited its rate of release but increased the rate of peptidyl-tRNA dissociation. Our data strongly suggest that RF2, in addition to its primary role in peptide release, functions as the principle factor for post PT QC.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Terminación de la Cadena Péptídica Traduccional/fisiología , Factores de Terminación de Péptidos/metabolismo , Ribosomas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Factores de Terminación de Péptidos/genética , Ribosomas/genética
9.
J Bacteriol ; 196(12): 2123-30, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24706739

RESUMEN

Problems during gene expression can result in a ribosome that has translated to the 3' end of an mRNA without terminating at a stop codon, forming a nonstop translation complex. The nonstop translation complex contains a ribosome with the mRNA and peptidyl-tRNA engaged, but because there is no codon in the A site, the ribosome cannot elongate or terminate the nascent chain. Recent work has illuminated the importance of resolving these nonstop complexes in bacteria. Transfer-messenger RNA (tmRNA)-SmpB specifically recognizes and resolves nonstop translation complexes in a reaction known as trans-translation. trans-Translation releases the ribosome and promotes degradation of the incomplete nascent polypeptide and problematic mRNA. tmRNA and SmpB have been found in all bacteria and are essential in some species. However, other bacteria can live without trans-translation because they have one of the alternative release factors, ArfA or ArfB. ArfA recruits RF2 to nonstop translation complexes to promote hydrolysis of the peptidyl-tRNAs. ArfB recognizes nonstop translation complexes in a manner similar to tmRNA-SmpB recognition and directly hydrolyzes the peptidyl-tRNAs to release the stalled ribosomes. Genetic studies indicate that most or all species require at least one mechanism to resolve nonstop translation complexes. Consistent with such a requirement, small molecules that inhibit resolution of nonstop translation complexes have broad-spectrum antibacterial activity. These results suggest that resolving nonstop translation complexes is a matter of life or death for bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Terminación de la Cadena Péptídica Traduccional/fisiología , Proteínas Bacterianas/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero
10.
Nat Med ; 12(9): 1093-9, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16892063

RESUMEN

Here, we describe a system for the exogenous control of gene expression in mammalian cells that relies on the control of translational termination. To achieve gene regulation, we modified protein-coding sequences by introduction of a translational termination codon just downstream from the initiator AUG codon. Translation of the resulting mRNA leads to potent reduction in expression of the desired gene product. Expression of the gene product can be controlled by treating cells that express the mRNA with either aminoglycoside antibiotics or several nonantibiotic compounds. We show that the extent of regulation of gene expression can be substantial (60-fold) and that regulation can be achieved in the case of a variety of different genes, in different cultured cell lines and in primary cells in vivo. This gene regulation strategy offers significant advantages over existing methods for controlling gene expression and should have both immediate experimental application and possible clinical application.


Asunto(s)
Codón de Terminación/fisiología , Regulación de la Expresión Génica/fisiología , Ingeniería Genética/métodos , Terminación de la Cadena Péptídica Traduccional/fisiología , Acetanilidas/farmacología , Aminobenzoatos/farmacología , Aminoglicósidos/farmacología , Animales , Línea Celular , Células Cultivadas , Vectores Genéticos , Gentamicinas/farmacología , Luciferasas/biosíntesis , Ratones , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos , Transgenes/genética
11.
J Biol Chem ; 285(40): 30767-78, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20630870

RESUMEN

Efficiency of translation termination relies on the specific recognition of the three stop codons by the eukaryotic translation termination factor eRF1. To date only a few proteins are known to be involved in translation termination in eukaryotes. Saccharomyces cerevisiae Tpa1, a largely conserved but uncharacterized protein, has been described to associate with a messenger ribonucleoprotein complex located at the 3' end of mRNAs that contains at least eRF1, eRF3, and Pab1. Deletion of the TPA1 gene results in a decrease of translation termination efficacy and an increase in mRNAs half-lives and longer mRNA poly(A) tails. In parallel, Schizosaccharomyces pombe Ofd1, a Tpa1 ortholog, and its partner Nro1 have been implicated in the regulation of the stability of a transcription factor that regulates genes essential for the cell response to hypoxia. To gain insight into Tpa1/Ofd1 function, we have solved the crystal structure of S. cerevisiae Tpa1 protein. This protein is composed of two equivalent domains with the double-stranded ß-helix fold. The N-terminal domain displays a highly conserved active site with strong similarities with prolyl-4-hydroxylases. Further functional studies show that the integrity of Tpa1 active site as well as the presence of Yor051c/Ett1 (the S. cerevisiae Nro1 ortholog) are essential for correct translation termination. In parallel, we show that Tpa1 represses the expression of genes regulated by Hap1, a transcription factor involved in the response to levels of heme and oxygen. Altogether, our results support that Tpa1 is a putative enzyme acting as an oxygen sensor and influencing several distinct regulatory pathways.


Asunto(s)
Proteínas Portadoras/química , Terminación de la Cadena Péptídica Traduccional/fisiología , Procolágeno-Prolina Dioxigenasa/química , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Transcripción Genética/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Hemo/química , Hemo/genética , Hemo/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
RNA Biol ; 7(3): 310-5, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20473037

RESUMEN

Evolutionary related multisubunit RNA polymerases from all three domains of life, Eukarya, Archaea and Bacteria, have common structural and functional properties. We have recently shown that two RNAP subunits, F/E (RPB4/7)-which are conserved between eukaryotes and Archaea but have no bacterial homologues-interact with the nascent RNA chain and thereby profoundly modulate RNAP activity. Overall F/E increases transcription processivity, but it also stimulates transcription termination in a sequence-dependent manner. In addition to RNA-binding, these two apparently opposed processes are likely to involve an allosteric mechanism of the RNAP clamp. Spt4/5 is the only known RNAP-associated transcription factor that is conserved in all three domains of life, and it stimulates elongation similar to RNAP subunits F/E. Spt4/5 enhances processivity in a fashion that is independent of the nontemplate DNA strand, by interacting with the RNAP clamp. Whereas the molecular mechanism of Spt4/5 is universally conserved in evolution, the added functionality of F/E-like complexes has emerged after the split of the bacterial and archaeoeukaryotic lineages. Interestingly, bacteriophage-encoded antiterminator proteins could, in theory, fulfil an analogous function in the bacterial RNAP.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Terminación de la Cadena Péptídica Traduccional/fisiología , ARN/metabolismo , Transcripción Genética , Animales , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/fisiología , Humanos , Modelos Biológicos , Modelos Moleculares , Unión Proteica/fisiología , Sitio de Iniciación de la Transcripción , Transcripción Genética/genética , Transcripción Genética/fisiología , Factores de Elongación Transcripcional/metabolismo
13.
RNA Biol ; 7(3): 282-6, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20458175

RESUMEN

Until recently, human mitochondria were regarded as unusual as they appeared to employ four stop codons to terminate translation. In addition to the UAA/UAG of the universal genetic code, two arginine triplets (AGA/AGG) had been re-assigned as termination signals. This posed the conundrum of what factor was responsible for recognizing these triplets to promote translation termination? Recent data indicates that in fact no protein is required to recognize AGA/AGG. Indeed, it is the absence of any cognate factor, tRNA or polypeptide that is important. On encountering either of these 'hungry' codons at the end of an open reading frame, instead of requiring a novel or modified release factor, human mitoribosomes employ -1 frameshifting to reposition a standard UAG codon in the A-site, indicating that only the universal UAA and UAG are used as stop codons. This renders a single mitochondrial release factor, mtRF1a, previously shown to be capable of terminating 11 of the 13 open reading frames encoded by the mitochondrial genome, to be sufficient to release all nascent human mitochondrial gene products from the mitoribosome.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Terminación de la Cadena Péptídica Traduccional/fisiología , Secuencia de Aminoácidos , Codón de Terminación/metabolismo , Formación de Concepto , Humanos , Proteínas Mitocondriales/genética , Modelos Biológicos , Datos de Secuencia Molecular , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/metabolismo , Factores de Terminación de Péptidos/fisiología , Biosíntesis de Proteínas/genética , Pensamiento
14.
Cell Rep ; 33(7): 108399, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33207198

RESUMEN

Multiple factors influence translation termination efficiency, including nonsense codon identity and immediate context. To determine whether the relative position of a nonsense codon within an open reading frame (ORF) influences termination efficiency, we quantitate the production of prematurely terminated and/or readthrough polypeptides from 26 nonsense alleles of 3 genes expressed in yeast. The accumulation of premature termination products and the extent of readthrough for the respective premature termination codons (PTCs) manifest a marked dependence on PTC proximity to the mRNA 3' end. Premature termination products increase in relative abundance, whereas readthrough efficiencies decrease progressively across different ORFs, and readthrough efficiencies for a PTC increase in response to 3' UTR lengthening. These effects are eliminated and overall translation termination efficiency decreases considerably in cells harboring pab1 mutations. Our results support a critical role for poly(A)-binding protein in the regulation of translation termination and also suggest that inefficient termination is a trigger for nonsense-mediated mRNA decay (NMD).


Asunto(s)
Terminación de la Cadena Péptídica Traduccional/genética , Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Regiones no Traducidas 3' , Codón sin Sentido/genética , Codón de Terminación/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Sistemas de Lectura Abierta , Terminación de la Cadena Péptídica Traduccional/fisiología , Proteínas de Unión a Poli(A)/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Biomolecules ; 10(6)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560154

RESUMEN

Translation termination is the final step in protein biosynthesis when the synthesized polypeptide is released from the ribosome. Understanding this complex process is important for treatment of many human disorders caused by nonsense mutations in important genes. Here, we present a new method for the analysis of translation termination rate in cell-free systems, CTELS (for C-terminally extended luciferase-based system). This approach was based on a continuously measured luciferase activity during in vitro translation reaction of two reporter mRNA, one of which encodes a C-terminally extended luciferase. This extension occupies a ribosomal polypeptide tunnel and lets the completely synthesized enzyme be active before translation termination occurs, i.e., when it is still on the ribosome. In contrast, luciferase molecule without the extension emits light only after its release. Comparing the translation dynamics of these two reporters allows visualization of a delay corresponding to the translation termination event. We demonstrated applicability of this approach for investigating the effects of cis- and trans-acting components, including small molecule inhibitors and read-through inducing sequences, on the translation termination rate. With CTELS, we systematically assessed negative effects of decreased 3' UTR length, specifically on termination. We also showed that blasticidin S implements its inhibitory effect on eukaryotic translation system, mostly by affecting elongation, and that an excess of eRF1 termination factor (both the wild-type and a non-catalytic AGQ mutant) can interfere with elongation. Analysis of read-through mechanics with CTELS revealed a transient stalling event at a "leaky" stop codon context, which likely defines the basis of nonsense suppression.


Asunto(s)
Bioensayo/métodos , Codón sin Sentido , Tasa de Mutación , Terminación de la Cadena Péptídica Traduccional/genética , Sistema Libre de Células/fisiología , Codón de Terminación/genética , Análisis Mutacional de ADN , Genes Reporteros , Humanos , Técnicas In Vitro , Luciferasas/genética , Luciferasas/metabolismo , Terminación de la Cadena Péptídica Traduccional/fisiología , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas/genética
16.
Biochemistry ; 48(47): 11296-303, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19883125

RESUMEN

Ribosomal release factors (RFs) catalyze the termination of protein synthesis by triggering hydrolysis of the peptidyl-tRNA ester bond in the peptidyl transferase center of the ribosome. With new medium-resolution crystallographic structures of RF-ribosome complexes available, it has become possible to examine the detailed mechanism of this process to resolve the key factors responsible for catalysis of the termination reaction. Here, we report computer simulations of the termination reaction that utilize both the new RF complex structures and information from a high-resolution complex with a P-site substrate analogue. The calculations yield a consistent reaction mechanism that reproduces experimental rates and allows us to identify key interactions responsible for the catalytic efficiency. The results are also in general agreement with an earlier model based on molecular docking. The methylated glutamine residue of the universally conserved GGQ motif plays a key role in the hydrolysis reaction by orienting the water nucleophile and by stabilizing the transition state, and its side chain makes an entropic contribution to the lowering of the activation barrier. Two additional water molecules interacting with the P-site substrate are also found to be critically important. Furthermore, the 2'-OH group of the peptidyl-tRNA substrate is predicted to act as a proton shuttle for the leaving group in analogy with the consensus mechanism for peptidyl transfer. Thus, the ribosome's ability to catalyze both the termination (hydrolysis) and peptidyl transfer (aminolysis) reactions is largely explained by this type of unified mechanism, with similar transition states occurring in both processes.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional/fisiología , Ribosomas/metabolismo , Algoritmos , Sitios de Unión , Catálisis , Simulación por Computador , Glutamina/química , Glutamina/metabolismo , Hidrólisis , Metilación , Modelos Moleculares , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Ribosomas/química , Termodinámica
17.
Biochemistry ; 48(47): 11178-84, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19874047

RESUMEN

Recognition of stop codons by class I release factors is a fundamental step in the termination phase of protein synthesis. Since premature termination is costly to the cell, release factors have to efficiently discriminate between stop and sense codons. To understand the mechanism of discrimination between stop and sense codons, we developed a new, pre-steady state kinetic assay to monitor the interaction of RF1 with the ribosome. Our results show that RF1 associates with similar association rate constants with ribosomes programmed with stop or sense codons. However, dissociation of RF1 from sense codons is as much as 3 orders of magnitude faster than from stop codons. Interestingly, the affinity of RF1 for ribosomes programmed with different sense codons does not correlate with the defects in peptide release. Thus, discrimination against sense codons is achieved with both an increase in the dissociation rates and a decrease in the rate of peptide release. These results suggest that sense codons inhibit conformational changes necessary for RF1 to stably bind to the ribosome and catalyze peptide release.


Asunto(s)
Codón de Terminación/metabolismo , Terminación de la Cadena Péptídica Traduccional/fisiología , Factores de Terminación de Péptidos/metabolismo , Ribosomas/metabolismo , Codón/análisis , Codón/metabolismo , Codón de Terminación/química , Codón de Terminación/genética , Cristalografía por Rayos X , Cinética , Microscopía Fluorescente , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Unión Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/química , Ribosomas/genética
18.
Trends Biochem Sci ; 25(11): 561-6, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11084369

RESUMEN

Translational termination has been a largely ignored aspect of protein synthesis for many years. However, the recent identification of new release-factor genes, the mapping of release-factor functional sites and in vitro reconstitution experiments have provided a deeper understanding of the termination mechanism. In addition, protein-protein interactions among release factors and with other proteins have been revealed. The three-dimensional structures of a prokaryotic ribosome recycling factor and eukaryotic release factor 1 (eRF1) mimic the shape of transfer RNA, indicating that they bind to the same ribosomal site. Post-termination events in bacteria have been clarified, linking termination, ribosomal recycling and translation initiation.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional/fisiología , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Ribosomas/metabolismo , Secuencias de Aminoácidos , GTP Fosfohidrolasas/metabolismo , Ribosomas/genética
19.
Nat Commun ; 10(1): 4006, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488843

RESUMEN

The genomes of many prokaryotes contain substantial fractions of gene pairs with overlapping stop and start codons (ATGA or TGATG). A potential benefit of overlapping gene pairs is translational coupling. In 720 genomes of archaea and bacteria representing all major phyla, we identify substantial, albeit highly variable, fractions of co-directed overlapping gene pairs. Various patterns are observed for the utilization of the SD motif for de novo initiation at upstream genes versus reinitiation at overlapping gene pairs. We experimentally test the predicted coupling in 9 gene pairs from the archaeon Haloferax volcanii and 5 gene pairs from the bacterium Escherichia coli. In 13 of 14 cases, translation of both genes is strictly coupled. Mutational analysis of SD motifs located upstream of the downstream genes indicate that the contribution of the SD to translational coupling widely varies from gene to gene. The nearly universal, abundant occurrence of overlapping gene pairs suggests that tight translational coupling is widespread in archaea and bacteria.


Asunto(s)
Archaea/genética , Bacterias/genética , Genes Arqueales/genética , Genes Bacterianos/genética , Iniciación de la Cadena Peptídica Traduccional/fisiología , Terminación de la Cadena Péptídica Traduccional/fisiología , Biosíntesis de Proteínas/fisiología , Archaea/metabolismo , Bacterias/metabolismo , Secuencia de Bases , Codón Iniciador , Escherichia coli/genética , Genes Sobrepuestos , Genes Reporteros , Sistemas de Lectura Abierta/genética , ARN Mensajero , Regiones Terminadoras Genéticas
20.
Nat Commun ; 10(1): 2579, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189921

RESUMEN

When the ribosome encounters a stop codon, it recruits a release factor (RF) to hydrolyze the ester bond between the peptide chain and tRNA. RFs have structural motifs that recognize stop codons in the decoding center and a GGQ motif for induction of hydrolysis in the peptidyl transfer center 70 Å away. Surprisingly, free RF2 is compact, with only 20 Å between its codon-reading and GGQ motifs. Cryo-EM showed that ribosome-bound RFs have extended structures, suggesting that RFs are compact when entering the ribosome and then extend their structures upon stop codon recognition. Here we use time-resolved cryo-EM to visualize transient compact forms of RF1 and RF2 at 3.5 and 4 Å resolution, respectively, in the codon-recognizing ribosome complex on the native pathway. About 25% of complexes have RFs in the compact state at 24 ms reaction time, and within 60 ms virtually all ribosome-bound RFs are transformed to their extended forms.


Asunto(s)
Proteínas de Escherichia coli/ultraestructura , Modelos Moleculares , Terminación de la Cadena Péptídica Traduccional/fisiología , Factores de Terminación de Péptidos/ultraestructura , Dominios Proteicos/fisiología , Sitios de Unión/fisiología , Codón de Terminación/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , Factores de Terminación de Péptidos/metabolismo , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA