RESUMEN
We herein report the selection and characterization of a new riboswitch dependent on the aminoglycoside tobramycin. Its dynamic range rivals even the tetracycline dependent riboswitch to be the current best performing, synthetic riboswitch that controls translation initiation. The riboswitch was selected with RNA Capture-SELEX, a method that not only selects for binding but also for structural changes in aptamers on binding. This study demonstrates how this method can fundamentally reduce the labour required for the de novo identification of synthetic riboswitches. The initially selected riboswitch candidate harbours two distinct tobramycin binding sites with KDs of 1.1 nM and 2.4 µM, respectively, and can distinguish between tobramycin and the closely related compounds kanamycin A and B. Using detailed genetic and biochemical analyses and 1H NMR spectroscopy, the proposed secondary structure of the riboswitch was verified and the tobramycin binding sites were characterized. The two binding sites were found to be essentially non-overlapping, allowing for a separate investigation of their contribution to the activity of the riboswitch. We thereby found that only the high-affinity binding site was responsible for regulatory activity, which allowed us to engineer a riboswitch from only this site with a minimal sequence size of 33 nt and outstanding performance.
Asunto(s)
Aptámeros de Nucleótidos , Ingeniería Genética , Riboswitch , Tobramicina , Aptámeros de Nucleótidos/química , Ligandos , Conformación de Ácido Nucleico , Inhibidores de la Síntesis de la Proteína , ARN/química , Tetraciclina , Tobramicina/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Ingeniería Genética/métodosRESUMEN
Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.
Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Tobramicina , Fibrosis Quística/microbiología , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Fibrosis Quística/tratamiento farmacológico , Animales , Tobramicina/farmacología , Humanos , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/patología , Ratones , Ratones Endogámicos C57BL , Interleucina-8/metabolismo , Neumonía/metabolismo , Neumonía/patología , Neumonía/microbiología , Pulmón/patología , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Líquido del Lavado BronquioalveolarRESUMEN
Murepavadin is a peptidomimetic that specifically targets the lipopolysaccharide transport protein LptD of Pseudomonas aeruginosa. Here, we found that murepavadin enhances the bactericidal efficacies of tobramycin and amikacin. We further demonstrated that murepavadin enhances bacterial respiration activity and subsequent membrane potential, which promotes intracellular uptake of aminoglycoside antibiotics. In addition, the murepavadin-amikacin combination displayed a synergistic bactericidal effect in a murine pneumonia model.
Asunto(s)
Amicacina , Péptidos Cíclicos , Infecciones por Pseudomonas , Animales , Ratones , Amicacina/farmacología , Pseudomonas aeruginosa , Potenciales de la Membrana , Antibacterianos/farmacología , Aminoglicósidos/farmacología , Tobramicina/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pruebas de Sensibilidad MicrobianaRESUMEN
Murepavadin is a peptidomimetic exhibiting specific inhibitory activity against Pseudomonas species. In the present study, its in vitro activity was assessed on 230 cystic fibrosis (CF) strains of Pseudomonas aeruginosa isolated from 12 French hospitals, in comparison with 12 other antipseudomonal antibiotics. Although murepavadin is still in preclinical stage of development, 9.1% (n = 21) of strains had a minimum inhibitory concentration (MIC) >4 mg/L, a level at least 128-fold higher than the modal MIC value of the whole collection (≤0.06 mg/L). Whole-genome sequencing of these 21 strains along with more susceptible isogenic counterparts coexisting in the same patients revealed diverse mutations in genes involved in the synthesis (lpxL1 and lpxL2) or transport of lipopolysaccharides (bamA, lptD, and msbA), or encoding histidine kinases of two-component systems (pmrB and cbrA). Allelic replacement experiments with wild-type reference strain PAO1 confirmed that alteration of genes lpxL1, bamA, and/or pmrB can decrease the murepavadin susceptibility from 8- to 32-fold. Furthermore, we found that specific amino acid substitutions in histidine kinase PmrB (G188D, Q105P, and D45E) reduce the susceptibility of P. aeruginosa to murepavadin, colistin, and tobramycin, three antibiotics used or intended to be used (murepavadin) in aerosols to treat colonized CF patients. Whether colistin or tobramycin may select mutants resistant to murepavadin or the opposite needs to be addressed by clinical studies.
Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Colistina/farmacología , Colistina/uso terapéutico , Pseudomonas aeruginosa , Fibrosis Quística/tratamiento farmacológico , Aerosoles y Gotitas Respiratorias , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/complicaciones , Tobramicina/farmacología , Mutación/genética , Pruebas de Sensibilidad MicrobianaRESUMEN
Cystic fibrosis (CF) airways are L-arginine deficient which may affect susceptibility to infection with certain pathogens. The potential impact of L-arginine supplementation on Pseudomonas aeruginosa, a common CF airway pathogen, is unclear. This study investigated the effects of L-arginine on P. aeruginosa biofilm cultures, using the laboratory strain PAO1 and multi-drug resistant CF clinical isolates. P. aeruginosa biofilms were grown in a chambered cover-glass slide model for 24 h, then exposed to either L-arginine alone or combined with tobramycin for an additional 24 h. Biofilms were visualized using confocal microscopy, and viable cells were measured via plating for colony-forming units. Increasing concentrations of L-arginine in bacterial culture medium reduced the biovolume of P. aeruginosa in a dose-dependent manner. Notably, L-arginine concentrations within the physiological range (50 mM and 100 mM) in combination with tobramycin promoted biofilm growth, while higher concentrations (600 mM and 1200 mM) inhibited growth. These findings demonstrate the potential of L-arginine as an adjuvant therapy to inhaled tobramycin in treating P. aeruginosa infections in people with CF.
Asunto(s)
Antibacterianos , Arginina , Biopelículas , Fibrosis Quística , Pseudomonas aeruginosa , Tobramicina , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Arginina/farmacología , Fibrosis Quística/microbiología , Fibrosis Quística/tratamiento farmacológico , Tobramicina/farmacología , Antibacterianos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacosRESUMEN
Pseudomonas aeruginosa (PA) is a major healthcare concern due to its tolerance to antibiotics when enclosed in biofilms. Tobramycin (Tob), an effective cationic aminoglycoside antibiotic against planktonic PA, loses potency within PA biofilms due to hindered diffusion caused by interactions with anionic biofilm components. Loading Tob into nano-carriers can enhance its biofilm efficacy by shielding its charge. Polyion complex vesicles (PIC-somes) are promising nano-carriers for charged drugs, allowing higher drug loadings than liposomes and polymersomes. In this study, a new class of nano-sized PIC-somes, formed by Tob-diblock copolymer complexation is presented. This approach replaces conventional linear PEG with brush-like poly[ethylene glycol (methyl ether methacrylate)] (PEGMA) in the shell-forming block, distinguishing it from past methods. Tob paired with a block copolymer containing hydrophilic PEGMA induces micelle formation (PIC-micelles), while incorporating hydrophobic pyridyldisulfide ethyl methacrylate (PDSMA) monomer into PEGMA chains reduces shell hydrophilicity, leads to the formation of vesicles (PIC-somes). PDSMA unit incorporation enables unprecedented dynamic disulfide bond-based shell cross-linking, significantly enhancing stability under saline conditions. Neither PIC-somes nor PIC-micelles show any relevant cytotoxicity on A549, Calu-3, and dTHP-1 cells. Tob's antimicrobial efficacy against planktonic PA remains unaffected after encapsulation into PIC-somes and PIC-micelles, but its potency within PA biofilms significantly increases.
Asunto(s)
Biopelículas , Polietilenglicoles , Pseudomonas aeruginosa , Tobramicina , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Biopelículas/efectos de los fármacos , Tobramicina/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Metacrilatos/química , Metacrilatos/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/químicaRESUMEN
BACKGROUND: The aac(6')-Im (aacA16) amikacin, netilmicin and tobramycin resistance gene cassette had been circulating globally undetected for many years in a sublineage of Acinetobacter baumannii global clone 2. OBJECTIVES: To identify sources for the aac(6')-Im fragment found in A. baumannii. METHODS: MinION long-read sequencing and Unicycler hybrid assemblies were used to determine the genetic context of the aac(6')-Im gene. Quantitative reverse transcriptase PCR was used to measure expression. RESULTS: Among >60â000 non-Acinetobacter draft genomes in the MRSN collection, the aac(6')-Im gene was detected in Pseudomonas putida and Enterobacter hormaechei isolates recovered from patients in Thailand between 2016 and 2019. Genomes of multiply resistant P. putida MRSN365855 and E. hormaechei MRSN791417 were completed. The class 1 integron containing the aac(6')-Im cassette was in the chromosome in MRSN365855, and in an HI2 plasmid in MRSN791417. However, MRSN791417 was amikacin susceptible and the gene was not expressed due to loss of the Pc promoter of the integron. Further examples of aac(6')-Im in plasmids from or the chromosome of various Gram-negative species were found in the GenBank nucleotide database. The aac(6')-Im context in integrons in pMRSN791417-8 and a Klebsiella plasmid pAMR200031 shared similarities with the aac(6')-Im region of AbGRI2-Im islands in A. baumannii. In other cases, the cassette array including the aac(6')-Im cassette was different. CONCLUSIONS: The aac(6')-Im gene is widespread, being found so far in several different species and in several different gene cassette arrays. The lack of amikacin resistance in E. hormaechei highlights the importance of correlating resistance gene content and antibiotic resistance phenotype.
Asunto(s)
Acinetobacter baumannii , Aminoglicósidos , Antibacterianos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Humanos , Aminoglicósidos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Tailandia , Integrones/genética , Plásmidos/genética , Amicacina/farmacología , Enterobacter/genética , Enterobacter/efectos de los fármacos , Proteínas Bacterianas/genética , Tobramicina/farmacología , Acetiltransferasas/genética , Genoma BacterianoRESUMEN
Quorum sensing (QS) has a central role in biofilm lifestyle and antimicrobial resistance, and disrupting these signaling pathways is a promising strategy to control bacterial pathogenicity and virulence. In this study, the efficacy of three structurally related benzaldehydes (4-hydroxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde (vanillin) and 4-hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde)) in disrupting the las and pqs systems of Pseudomonas aeruginosa was investigated using bioreporter strains and computational simulations. Additionally, these benzaldehydes were combined with tobramycin and ciprofloxacin antibiotics to evaluate their ability to increase antibiotic efficacy in preventing and eradicating P. aeruginosa biofilms. To this end, the total biomass, metabolic activity and culturability of the biofilm cells were determined. In vitro assays results indicated that the aromatic aldehydes have potential to inhibit the las and pqs systems by > 80 %. Molecular docking studies supported these findings, revealing the aldehydes binding in the same pocket as the natural ligands or receptor proteins (LasR, PQSA, PQSE, PQSR). Benzaldehydes were shown to act as virulence factor attenuators, with vanillin achieving a 48 % reduction in pyocyanin production. The benzaldehyde-tobramycin combination led not only to a 60 % reduction in biomass production but also to a 90 % reduction in the metabolic activity of established biofilms. A similar result was observed when benzaldehydes were combined with ciprofloxacin. 4-Hydroxybenzaldehyde demonstrated relevant action in increasing biofilm susceptibility to ciprofloxacin, resulting in a 65 % reduction in biomass. This study discloses, for the first time, that the benzaldehydes studied are potent QS inhibitors and also enhancers of antibiotics antibiofilm activity against P. aeruginosa.
Asunto(s)
Antibacterianos , Proteínas Bacterianas , Benzaldehídos , Biopelículas , Ciprofloxacina , Simulación del Acoplamiento Molecular , Pseudomonas aeruginosa , Percepción de Quorum , Tobramicina , Biopelículas/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Benzaldehídos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Tobramicina/farmacología , Ciprofloxacina/farmacología , Proteínas Bacterianas/metabolismo , Factores de Virulencia/metabolismo , Pruebas de Sensibilidad Microbiana , Sinergismo Farmacológico , Piocianina/metabolismo , Transactivadores/metabolismo , Transactivadores/antagonistas & inhibidoresRESUMEN
Although the trans-translation system is a promising target for antcibiotic development, its antibacterial mechanism in Klebsiella pneumoniae (KP) is unclear. Considering that tmRNA was the core component of trans-translation, this study firstly investigated phenotypic changes caused by various environmental stresses in KP lacking trans-translation activities (tmRNA-deleted), and then aimed to evaluate antibacterial activities of the trans-translation-targeting antibiotic combination (tobramycin/ciprofloxacin) in clinical KP isolates based on inhibition activities of aminoglycosides against trans-translation. We found that the tmRNA-deleted strain P4325/ΔssrA was significantly more susceptible than the wild-type KP strain P4325 under environments with hypertonicity (0.5 and 1 M NaCl), hydrogen peroxide (40 mM), and UV irradiation. No significant differences in biofilm formation and survivals under human serum were observed between P4325/ΔssrA and P4325. tmRNA deletion caused twofold lower MIC values for aminoglycosides. As for the membrane permeability, tmRNA deletion increased ethidium bromide (EtBr) uptake of KP in the presence or absence of verapamil and carbonyl cyanide-m-chlorophenylhydrazone (CCCP), decreased EtBr uptake in presence of reserpine in P4325/ΔssrA, and reduced EtBr efflux in P4325/ΔssrA in the presence of CCCP. The time-kill curve and in vitro experiments revealed significant bactericidal activities of the tmRNA-targeting aminoglycoside-based antibiotic combination (tobramycin/ciprofloxacin). Thus, the corresponding tmRNA-targeting antibiotic combinations (aminoglycoside-based) might be effective and promising treatment options against multi-drug resistant KP.
Asunto(s)
Ciprofloxacina , Klebsiella pneumoniae , Humanos , Ciprofloxacina/farmacología , Klebsiella pneumoniae/genética , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Antibacterianos/farmacología , Aminoglicósidos/farmacología , Tobramicina/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
Many antibiotics specific to Gram-positive bacteria like rifampicin (RIF) are inactive in Gram-negative bacteria because of outer membrane (OM) impermeability. Enhancing the OM permeability of these antibiotics with the help of OM perturbants is a promising strategy to develop new agents against Gram-negative bacteria. Here we report the synthesis and biological properties of amphiphilic tribasic galactosamines as potential RIF potentiators. Our results demonstrate that tribasic galactose-based amphiphiles potentiate RIF in multidrug-resistant Acinetobacter baumannii and Escherichia coli but not Pseudomonas aeruginosa in low salt-containing media. Under these conditions, lead compounds 20, 22 and 35 lowered the minimum inhibitory concentration of RIF by 64- to 256-fold against Gram-negative bacteria. However, the RIF-potentiating effect was reduced when bivalent Mg++ or Ca++ ions were added in the media at physiological concentrations. Overall, our results indicate that amphiphilic tribasic galactosamine-based compounds show reduced RIF-potentiating effects when compared to amphiphilic tobramycin antibiotics at physiological salt concentrations.
Asunto(s)
Antibacterianos , Rifampin , Rifampin/farmacología , Antibacterianos/farmacología , Tobramicina/farmacología , Bacterias Gramnegativas , Permeabilidad de la Membrana Celular , Pruebas de Sensibilidad MicrobianaRESUMEN
BACKGROUND: Aminoglycosides have been a cornerstone of the treatment of nosocomial infections caused by Pseudomonas aeruginosa for over 80 years. However, escalating emergence of resistance poses a significant challenge. Therefore, this study aimed to investigate the prevailing patterns of aminoglycoside resistance among clinical isolates of P. aeruginosa in Iran; as well as the underlying resistance mechanisms observed in patients referred to Ardabil hospitals. METHODS: A total of 200 isolates from five hospitals were evaluated. The resistance profiles of P. aeruginosa isolates to tobramycin, amikacin, and netilmicin were determined using the disk diffusion method. The capacity of aminoglycoside-resistant isolates to form biofilms was assessed through a phenotypic assay, and the results were confirmed using the gene amplification technique. The presence of genes associated with aminoglycoside resistance was detected using polymerase chain reaction (PCR). Quantitative reverse transcription PCR (qRT-PCR) was performed to measure the expression levels of genes encoding the MexXY-OprM efflux pump and PhoPQ two-component system (TCS). RESULTS: The prevalence of aminoglycoside-resistant P. aeruginosa isolates was 48%, with 94.7% demonstrating multidrug resistance (MDR). All aminoglycoside-resistant P. aeruginosa strains exhibited biofilm-forming capabilities and harbored all the genes associated with biofilm production. Among the nine genes encoding 16S rRNA methylase and aminoglycoside-modifying enzymes, three genes were detected in these isolates: aac(6')-Ib (85.4%), ant(2'')-Ia (18.7%), and aph(3')-VI (3.1%). Additionally, all aminoglycoside-resistant P. aeruginosa isolates carried mexY and phoP genes, although the expression levels of mexY and phoP were 75% and 87.5%, respectively. CONCLUSION: Given the considerably high prevalence of aminoglycoside-resistant P. aeruginosa strains, urgent measures are warranted to transition towards the use of novel aminoglycosides and to uphold vigilant surveillance of resistance patterns.
Asunto(s)
Aminoglicósidos , Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Irán/epidemiología , Humanos , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/epidemiología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Prevalencia , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Amicacina/farmacología , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Tobramicina/farmacologíaRESUMEN
BACKGROUND: Commercial tobramycin ophthalmic solution is frequently used empirically to treat ocular disorders in equines, despite being primarily formulated for use in humans. It has been noted that tobramycin MIC90 concentration (minimal inhibitory concentration to 90% of microbial growth) rapidly declined following topical administration. It is hypothesized that adjustment of the pH of the empirically used tobramycin ophthalmic solution -prepared for human use- with the pH of the tears of donkeys, could increase the bioavailability of the drug and subsequently improve its penetration to the aqueous humor. Therefore, this study aimed to evaluate the impact of pH adjustment of the empirically used tobramycin ophthalmic solution on MIC90 concentration in tears and aqueous humor of donkeys (Equus asinus). The study was conducted on six (n = 6) clinically healthy donkeys. In each donkey, one eye was randomly selected to receive 210 µg tobramycin of the commercial tobramycin (CT) and used as a positive control (C group, n = 6). The other eye (treated eye) received 210 µg of the modified tobramycin ophthalmic solution (MT) (T group, n = 6). Tears and aqueous humor samples were collected 5-, 10-, 15-, 30- min, and 1-, 2-, 4-, and 6 h post-instillation. RESULTS: Modifying the pH of the empirically used commercial tobramycin ophthalmic solution in donkeys at a pH of 8.26 enhanced the drug's bioavailability. The MIC90 of the most hazardous bacteria isolated from equines' eyes such as Pseudomonas aeruginosa (MIC90 = 128 µg/ml) and Staphylococcus aureus (MIC90 = 256 µg/ml) was covered early (5 min post-instillation) and over a longer period in donkey tears (239-342 min) and aqueous humor (238-330 min) with the modified tobramycin solution. CONCLUSIONS: Adjustment of the pH of the commercial tobramycin ophthalmic solution, empirically used by veterinarians to treat donkeys' ophthalmic infections at a pH of 8.26, isotonic with the donkeys' tears pH, resulting in higher concentrations of tobramycin in tears and aqueous humor for a longer time.
Asunto(s)
Antibacterianos , Humor Acuoso , Equidae , Pruebas de Sensibilidad Microbiana , Soluciones Oftálmicas , Lágrimas , Tobramicina , Animales , Tobramicina/farmacología , Tobramicina/administración & dosificación , Tobramicina/farmacocinética , Humor Acuoso/química , Antibacterianos/farmacología , Antibacterianos/farmacocinética , Antibacterianos/administración & dosificación , Lágrimas/efectos de los fármacos , Concentración de Iones de HidrógenoRESUMEN
Pseudomonas aeruginosa is an opportunistic human pathogen that develops difficult-to-treat biofilms in immunocompromised individuals, cystic fibrosis patients, and in chronic wounds. P. aeruginosa has an arsenal of physiological attributes that enable it to evade standard antibiotic treatments, particularly in the context of biofilms where it grows slowly and becomes tolerant to many drugs. One of its survival strategies involves the production of the redox-active phenazine, pyocyanin, which promotes biofilm development. We previously identified an enzyme, PodA, that demethylated pyocyanin and disrupted P. aeruginosa biofilm development in vitro. Here, we asked if this protein could be used as a potential therapeutic for P. aeruginosa infections together with tobramycin, an antibiotic typically used in the clinic. A major roadblock to answering this question was the poor yield and stability of wild-type PodA purified from standard Escherichia coli overexpression systems. We hypothesized that the insufficient yields were due to poor packing within PodA's obligatory homotrimeric interfaces. We therefore applied the protein design algorithm, AffiLib, to optimize the symmetric core of this interface, resulting in a design that incorporated five mutations leading to a 20-fold increase in protein yield from heterologous expression and purification and a substantial increase in stability to environmental conditions. The addition of the designed PodA with tobramycin led to increased killing of P. aeruginosa cultures under oxic and hypoxic conditions in both the planktonic and biofilm states. This study highlights the potential for targeting extracellular metabolites to assist the control of P. aeruginosa biofilms that tolerate conventional antibiotic treatment.
Asunto(s)
Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Oxidorreductasas N-Desmetilantes/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Piocianina/metabolismo , Tobramicina/farmacología , Diseño de Fármacos , Sinergismo Farmacológico , Humanos , Oxidorreductasas N-Desmetilantes/farmacología , Ingeniería de Proteínas , Pseudomonas aeruginosa/fisiologíaRESUMEN
Persisters are antibiotic-tolerant bacteria, playing a role in the recalcitrance and relapse of many bacterial infections, including P. aeruginosa pulmonary infections in Cystic Fibrosis (CF) patients. Among novel antimicrobial strategies, the use of probiotics and their products is emerging as a particularly promising approach. The aim of this study was to evaluate the anti-persisters activity of culture filtrate supernatants of Lacticaseibacillus rhamnosus (LRM-CFS) against P. aeruginosa in artificial sputum medium (ASM), which resembles the CF lung environment. Planktonic persisters of two clinical strains of P. aeruginosa (PaCF1 and PaCF4) were obtained following two different procedures: (i) exposing stationary-phase cultures to cyanide m-chlorophenylhydrazone (CCCP) in LB medium; (ii) incubating stationary-phase cultures with high doses of tobramycin (128-fold MIC) in ASM. In addition, persisters from biofilm were obtained by exposing 48 h old biofilm of P. aeruginosa to 128 x MIC of ciprofloxacin. LRM-CFS at dilutions of 1:6 and 1:4 resulted in being bactericidal in ASM against both PaCF1 and PaCF4 persisters obtained after CCCP or tobramycin treatment. Moreover, LRM-CFS at dilution 1:4 caused a reduction of antibiotic-tolerant bacteria in the biofilm of both P. aeruginosa strains. Overall, LRM-CFS represents a promising adjuvant therapeutic strategy against P. aeruginosa recalcitrant infections in CF patients.
Asunto(s)
Antibacterianos , Biopelículas , Lacticaseibacillus rhamnosus , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Esputo , Pseudomonas aeruginosa/efectos de los fármacos , Esputo/microbiología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Humanos , Lacticaseibacillus rhamnosus/fisiología , Antibacterianos/farmacología , Fibrosis Quística/microbiología , Medios de Cultivo/farmacología , Medios de Cultivo/química , Medios de Cultivo Condicionados/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Tobramicina/farmacologíaRESUMEN
The opportunistic bacterium Pseudomonas aeruginosa uses the LasR-I quorum-sensing system to increase resistance to the aminoglycoside antibiotic tobramycin. Paradoxically, lasR-null mutants are commonly isolated from chronic human infections treated with tobramycin, suggesting there may be a mechanism that permits the emergence of lasR-null mutants under tobramycin selection. We hypothesized that some other genetic mutations that emerge in these isolates might modulate the effects of lasR-null mutations on antibiotic resistance. To test this hypothesis, we inactivated lasR in several highly tobramycin-resistant isolates from long-term evolution experiments. In some of these isolates, inactivating lasR further increased resistance, compared with decreasing resistance of the wild-type ancestor. These strain-dependent effects were due to a G61A nucleotide polymorphism in the fusA1 gene encoding amino acid substitution A21T in the translation elongation factor EF-G1A. The EF-G1A mutational effects required the MexXY efflux pump and the MexXY regulator ArmZ. The fusA1 mutation also modulated ΔlasR mutant resistance to two other antibiotics, ciprofloxacin and ceftazidime. Our results identify a gene mutation that can reverse the direction of the antibiotic selection of lasR mutants, a phenomenon known as sign epistasis, and provide a possible explanation for the emergence of lasR-null mutants in clinical isolates. IMPORTANCE One of the most common mutations in Pseudomonas aeruginosa clinical isolates is in the quorum sensing lasR gene. In laboratory strains, lasR disruption decreases resistance to the clinical antibiotic tobramycin. To understand how lasR mutations emerge in tobramycin-treated patients, we mutated lasR in highly tobramycin-resistant laboratory strains and determined the effects on resistance. Disrupting lasR enhanced the resistance of some strains. These strains had a single amino acid substitution in the translation factor EF-G1A. The EF-G1A mutation reversed the selective effects of tobramycin on lasR mutants. These results illustrate how adaptive mutations can lead to the emergence of new traits in a population and are relevant to understanding how genetic diversity contributes to the progression of disease during chronic infections.
Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Sustitución de Aminoácidos , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Bacterianas/metabolismo , Mutación , Tobramicina/farmacología , Tobramicina/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Percepción de Quorum , Infecciones por Pseudomonas/microbiologíaRESUMEN
Pseudomonas aeruginosa can form biofilms at the site of burn wound, leading to infection and the failure of treatment regimens. The previous in vitro study demonstrated that a combination of the quorum-quenching enzyme AidHA147G and the extracellular matrix hydrolase PslG was effective in inhibiting biofilm and promoting antibiotic synergy. The aim of the present study was to evaluate the efficacy of this combination of enzymes in conjunction with tobramycin in treating burn wound infected with P. aeruginosa. The results showed that this treatment was effective in quorum-quenching and biofilm inhibition on infected wounds. Compared with the tobramycin treatment only, simultaneous treatment with the enzymes and antibiotics significantly reduced the severity of tissue damage, decreased the bacterial load, and reduced the expression of the inflammatory indicators myeloperoxidase (MPO) and malondialdehyde (MDA). Topical application of the enzymes also reduced the bacterial load and inflammation to some extent. These results indicate that the combined-enzyme approach is a potentially effective treatment for P. aeruginosa biofilm infections of burn wounds.
Asunto(s)
Quemaduras , Enfermedades Transmisibles , Infecciones por Pseudomonas , Infección de Heridas , Humanos , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Pseudomonas aeruginosa , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Tobramicina/farmacología , Tobramicina/uso terapéutico , Biopelículas , Quemaduras/complicaciones , Quemaduras/tratamiento farmacológico , Quemaduras/microbiología , Infección de Heridas/microbiologíaRESUMEN
In the present study we evaluated the fitness, antimicrobial susceptibility, metabolic activity, gene expression, in vitro production of virulence factors and in vivo virulence of experimentally evolved Pseudomonas aeruginosa PAO1. These strains were previously evolved in the presence of tobramycin and the quorum sensing inhibitor furanone C-30 (C-30) and carried mutations in mexT and fusA1. Compared to the wild-type (WT), the evolved strains show a different growth rate and different metabolic activity, suggesting they have an altered fitness. mexT mutants were less susceptible to C-30 than WT strains; they also show reduced susceptibility to chloramphenicol and ciprofloxacin, two substrates of the MexEF-OprN efflux pump. fusA1 mutants had a decreased susceptibility to aminoglycoside antibiotics, and an increased susceptibility to chloramphenicol. The decreased antimicrobial susceptibility and decreased susceptibility to C-30 was accompanied by a changed metabolic activity profile during treatment. The expression of mexE was significantly increased in mexT mutants and induced by C-30, suggesting that MexEF-OprN exports C-30 out of the bacterial cell. The in vitro production of virulence factors as well as virulence in two in vivo models of the strains evolved in the presence of C-30 was unchanged compared to the virulence of the WT. Finally, the evolved strains were less susceptible towards tobramycin (alone and combined with C-30) in an in vivo mouse model. In conclusion, this study shows that mutations acquired during experimental evolution of P. aeruginosa biofilms in the presence of tobramycin and C-30, are accompanied by an altered fitness, metabolism, mexE expression and in vitro and in vivo antimicrobial susceptibility.
Asunto(s)
Pseudomonas aeruginosa , Tobramicina , Animales , Ratones , Pseudomonas aeruginosa/metabolismo , Tobramicina/farmacología , Tobramicina/metabolismo , Percepción de Quorum/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Cloranfenicol , Biopelículas , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismoRESUMEN
OBJECTIVES: To use a pre-clinical pharmacokinetic infection model to assess the antibacterial effect of ceftolozane/tazobactam alone or in combination with fosfomycin or tobramycin against Pseudomonas aeruginosa strains with MICs at or higher than the clinical breakpoint (MICâ≥â4 mg/L). METHODS: An in vitro model was used to assess changes in bacterial load and population profiles after exposure to mean human serum concentrations of ceftolozane/tazobactam associated with doses of 2 g/1 g q8h, fosfomycin concentrations associated with doses of 8 g q8h or tobramycin at doses of 7 mg/kg q24 h over 168 h. RESULTS: Simulations of ceftolozane/tazobactam at 2 g/1 g q8h alone produced 3.5-4.5 log reductions in count by 6 h post drug exposure for strains with MIC ≤32 mg/L. The antibacterial effect over the first 24 h was related to ceftolozane/tazobactam MIC. There was subsequent regrowth with most strains to bacterial densities of >106 CFU/mL. Addition of either fosfomycin or tobramycin resulted in suppression of regrowth and in the case of tobramycin more rapid initial bacterial killing up to 6 h. These effects could not be related to either fosfomycin or tobramycin MICs. Changes in population profiles were noted with ceftolozane/tazobactam alone often after 96 h exposure but such changes were suppressed by fosfomycin and almost abolished by the addition of tobramycin. CONCLUSIONS: The addition of either fosfomycin or tobramycin to ceftolozane/tazobactam at simulated human clinically observed concentrations reduced P. aeruginosa bacterial loads and the risk of resistance to ceftolozane/tazobactam when strains had ceftolozane/tazobactam MIC values at or above the clinical breakpoint.
Asunto(s)
Fosfomicina , Infecciones por Pseudomonas , Humanos , Pseudomonas aeruginosa , Tobramicina/farmacología , Tobramicina/uso terapéutico , Fosfomicina/farmacología , Fosfomicina/uso terapéutico , Antibacterianos/uso terapéutico , Cefalosporinas/uso terapéutico , Tazobactam/farmacocinética , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiologíaRESUMEN
BACKGROUND: Tobramycin inhalation solution (TIS) and chronic azithromycin (AZ) have known clinical benefits for children with CF, likely due to antimicrobial and anti-inflammatory activity. The effects of chronic AZ in combination with TIS on the airway microbiome have not been extensively investigated. Oropharyngeal swab samples were collected in the OPTIMIZE multicenter, randomized, placebo-controlled trial examining the addition of AZ to TIS in 198 children with CF and early P. aeruginosa infection. Bacterial small subunit rRNA gene community profiles were determined. The effects of TIS and AZ were assessed on oropharyngeal microbial diversity and composition to uncover whether effects on the bacterial community may be a mechanism of action related to the observed changes in clinical outcomes. RESULTS: Substantial changes in bacterial communities (total bacterial load, diversity and relative abundance of specific taxa) were observed by week 3 of TIS treatment for both the AZ and placebo groups. On average, these shifts were due to changes in non-traditional CF taxa that were not sustained at the later study visits (weeks 13 and 26). Bacterial community measures did not differ between the AZ and placebo groups. CONCLUSIONS: This study provides further evidence that the mechanism for AZ's effect on clinical outcomes is not due solely to action on airway microbial composition.
Asunto(s)
Fibrosis Quística , Microbiota , Infecciones por Pseudomonas , Humanos , Niño , Azitromicina/farmacología , Azitromicina/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Administración por Inhalación , Pseudomonas aeruginosa/genética , Tobramicina/farmacología , Bacterias/genética , Microbiota/genéticaRESUMEN
Resistance to aminoglycoside antibiotics is a serious problem, typically arising from inactivating enzymes, reduced uptake, or increased efflux in the important pathogens for which they are used as treatment. Conjugating aminoglycosides to proline-rich antimicrobial peptides (PrAMPs), which also target ribosomes and have a distinct bacterial uptake mechanism, might mutually benefit their individual activities. To this aim we have developed a strategy for noninvasively modifying tobramycin to link it to a Cys residue and through this covalently link it to a Cys-modified PrAMP by formation of a disulfide bond. Reduction of this bridge in the bacterial cytosol should release the individual antimicrobial moieties. We found that the conjugation of tobramycin to the well-characterized N-terminal PrAMP fragment Bac7(1-35) resulted in a potent antimicrobial capable of inactivating not only tobramycin-resistant bacterial strains but also those less susceptible to the PrAMP. To a certain extent, this activity also extends to the shorter and otherwise poorly active fragment Bac7(1-15). Although the mechanism that allows the conjugate to act when its individual components do not is as yet unclear, results are very promising and suggest this may be a way of resensitizing pathogens that have developed resistance to the antibiotic.