Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.050
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 25(5): 396-415, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38242953

RESUMEN

Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.


Asunto(s)
Regulación de la Expresión Génica , ARN Largo no Codificante , Transcripción Genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Animales , Transcripción Genética/genética , Regulación de la Expresión Génica/genética , Inactivación del Cromosoma X/genética
2.
Nat Rev Mol Cell Biol ; 25(7): 534-554, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38509203

RESUMEN

Many steps of RNA processing occur during transcription by RNA polymerases. Co-transcriptional activities are deemed commonplace in prokaryotes, in which the lack of membrane barriers allows mixing of all gene expression steps, from transcription to translation. In the past decade, an extraordinary level of coordination between transcription and RNA processing has emerged in eukaryotes. In this Review, we discuss recent developments in our understanding of co-transcriptional gene regulation in both eukaryotes and prokaryotes, comparing methodologies and mechanisms, and highlight striking parallels in how RNA polymerases interact with the machineries that act on nascent RNA. The development of RNA sequencing and imaging techniques that detect transient transcription and RNA processing intermediates has facilitated discoveries of transcription coordination with splicing, 3'-end cleavage and dynamic RNA folding and revealed physical contacts between processing machineries and RNA polymerases. Such studies indicate that intron retention in a given nascent transcript can prevent 3'-end cleavage and cause transcriptional readthrough, which is a hallmark of eukaryotic cellular stress responses. We also discuss how coordination between nascent RNA biogenesis and transcription drives fundamental aspects of gene expression in both prokaryotes and eukaryotes.


Asunto(s)
Células Procariotas , Transcripción Genética , Transcripción Genética/genética , Células Procariotas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Células Eucariotas/metabolismo , Humanos , Regulación de la Expresión Génica/genética , Animales , Eucariontes/genética , Empalme del ARN/genética , Procesamiento Postranscripcional del ARN/genética , ARN/metabolismo , ARN/genética
3.
Cell ; 184(13): 3474-3485.e11, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34143953

RESUMEN

The capping of mRNA and the proofreading play essential roles in SARS-CoV-2 replication and transcription. Here, we present the cryo-EM structure of the SARS-CoV-2 replication-transcription complex (RTC) in a form identified as Cap(0)-RTC, which couples a co-transcriptional capping complex (CCC) composed of nsp12 NiRAN, nsp9, the bifunctional nsp14 possessing an N-terminal exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), and nsp10 as a cofactor of nsp14. Nsp9 and nsp12 NiRAN recruit nsp10/nsp14 into the Cap(0)-RTC, forming the N7-CCC to yield cap(0) (7MeGpppA) at 5' end of pre-mRNA. A dimeric form of Cap(0)-RTC observed by cryo-EM suggests an in trans backtracking mechanism for nsp14 ExoN to facilitate proofreading of the RNA in concert with polymerase nsp12. These results not only provide a structural basis for understanding co-transcriptional modification of SARS-CoV-2 mRNA but also shed light on how replication fidelity in SARS-CoV-2 is maintained.


Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Exorribonucleasas/genética , Metiltransferasas/genética , SARS-CoV-2/genética , Secuencia de Aminoácidos , COVID-19/virología , Humanos , ARN Mensajero/genética , ARN Viral/genética , Alineación de Secuencia , Transcripción Genética/genética , Replicación Viral/genética
4.
Cell ; 180(2): 248-262.e21, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978344

RESUMEN

The testis expresses the largest number of genes of any mammalian organ, a finding that has long puzzled molecular biologists. Our single-cell transcriptomic data of human and mouse spermatogenesis provide evidence that this widespread transcription maintains DNA sequence integrity in the male germline by correcting DNA damage through a mechanism we term transcriptional scanning. We find that genes expressed during spermatogenesis display lower mutation rates on the transcribed strand and have low diversity in the population. Moreover, this effect is fine-tuned by the level of gene expression during spermatogenesis. The unexpressed genes, which in our model do not benefit from transcriptional scanning, diverge faster over evolutionary timescales and are enriched for sensory and immune-defense functions. Collectively, we propose that transcriptional scanning shapes germline mutation signatures and modulates mutation rates in a gene-specific manner, maintaining DNA sequence integrity for the bulk of genes but allowing for faster evolution in a specific subset.


Asunto(s)
Expresión Génica/genética , Mutación de Línea Germinal/genética , Espermatogénesis/genética , Adulto , Animales , Secuencia de Bases/genética , Perfilación de la Expresión Génica/métodos , Células Germinativas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Tasa de Mutación , Testículo/metabolismo , Transcripción Genética/genética , Transcriptoma/genética
5.
Cell ; 181(4): 877-893.e21, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32304664

RESUMEN

Influenza polymerase uses unique mechanisms to synthesize capped and polyadenylated mRNAs from the genomic viral RNA (vRNA) template, which is packaged inside ribonucleoprotein particles (vRNPs). Here, we visualize by cryoelectron microscopy the conformational dynamics of the polymerase during the complete transcription cycle from pre-initiation to termination, focusing on the template trajectory. After exiting the active site cavity, the template 3' extremity rebinds into a specific site on the polymerase surface. Here, it remains sequestered during all subsequent transcription steps, forcing the template to loop out as it further translocates. At termination, the strained connection between the bound template 5' end and the active site results in polyadenylation by stuttering at uridine 17. Upon product dissociation, further conformational changes release the trapped template, allowing recycling back into the pre-initiation state. Influenza polymerase thus performs transcription while tightly binding to and protecting both template ends, allowing efficient production of multiple mRNAs from a single vRNP.


Asunto(s)
Virus de la Influenza A/genética , Transcripción Genética/genética , Replicación Viral/genética , Dominio Catalítico , Simulación por Computador , Microscopía por Crioelectrón/métodos , Genoma Viral/genética , Humanos , Virus de la Influenza A/metabolismo , Gripe Humana/genética , Gripe Humana/virología , Nucleotidiltransferasas/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Relación Estructura-Actividad
6.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32559462

RESUMEN

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Asunto(s)
Caperuzas de ARN/genética , Infecciones por Virus ARN/genética , Proteínas Recombinantes de Fusión/genética , Regiones no Traducidas 5'/genética , Animales , Bovinos , Línea Celular , Cricetinae , Perros , Humanos , Virus de la Influenza A/metabolismo , Ratones , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Sistemas de Lectura Abierta/genética , Caperuzas de ARN/metabolismo , Infecciones por Virus ARN/metabolismo , Virus ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transcripción Genética/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
7.
Nat Immunol ; 23(1): 62-74, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34764490

RESUMEN

The molecular mechanisms governing orderly shutdown and retraction of CD4+ type 1 helper T (TH1) cell responses remain poorly understood. Here we show that complement triggers contraction of TH1 responses by inducing intrinsic expression of the vitamin D (VitD) receptor and the VitD-activating enzyme CYP27B1, permitting T cells to both activate and respond to VitD. VitD then initiated the transition from pro-inflammatory interferon-γ+ TH1 cells to suppressive interleukin-10+ cells. This process was primed by dynamic changes in the epigenetic landscape of CD4+ T cells, generating super-enhancers and recruiting several transcription factors, notably c-JUN, STAT3 and BACH2, which together with VitD receptor shaped the transcriptional response to VitD. Accordingly, VitD did not induce interleukin-10 expression in cells with dysfunctional BACH2 or STAT3. Bronchoalveolar lavage fluid CD4+ T cells of patients with COVID-19 were TH1-skewed and showed de-repression of genes downregulated by VitD, from either lack of substrate (VitD deficiency) and/or abnormal regulation of this system.


Asunto(s)
Interferón gamma/inmunología , Interleucina-10/inmunología , SARS-CoV-2/inmunología , Células TH1/inmunología , Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Líquido del Lavado Bronquioalveolar/citología , COVID-19/inmunología , COVID-19/patología , Complemento C3a/inmunología , Complemento C3b/inmunología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Activación de Linfocitos/inmunología , Receptores de Calcitriol/metabolismo , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/inmunología , Transcripción Genética/genética
8.
Nat Rev Mol Cell Biol ; 23(9): 603-622, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35505252

RESUMEN

The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Eucariontes , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , ARN , ARN Polimerasa II/metabolismo , Transcripción Genética/genética
9.
Cell ; 176(1-2): 213-226.e18, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30554876

RESUMEN

Transcriptional regulation in metazoans occurs through long-range genomic contacts between enhancers and promoters, and most genes are transcribed in episodic "bursts" of RNA synthesis. To understand the relationship between these two phenomena and the dynamic regulation of genes in response to upstream signals, we describe the use of live-cell RNA imaging coupled with Hi-C measurements and dissect the endogenous regulation of the estrogen-responsive TFF1 gene. Although TFF1 is highly induced, we observe short active periods and variable inactive periods ranging from minutes to days. The heterogeneity in inactive times gives rise to the widely observed "noise" in human gene expression and explains the distribution of protein levels in human tissue. We derive a mathematical model of regulation that relates transcription, chromosome structure, and the cell's ability to sense changes in estrogen and predicts that hypervariability is largely dynamic and does not reflect a stable biological state.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Expresión Génica/fisiología , Transcripción Genética/fisiología , Receptor alfa de Estrógeno/metabolismo , Estrógenos , Expresión Génica/genética , Humanos , Modelos Teóricos , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/metabolismo , Análisis de la Célula Individual/métodos , Transcripción Genética/genética , Activación Transcripcional/fisiología , Factor Trefoil-1/genética
10.
Cell ; 178(1): 107-121.e18, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31251911

RESUMEN

Increasing evidence suggests that transcriptional control and chromatin activities at large involve regulatory RNAs, which likely enlist specific RNA-binding proteins (RBPs). Although multiple RBPs have been implicated in transcription control, it has remained unclear how extensively RBPs directly act on chromatin. We embarked on a large-scale RBP ChIP-seq analysis, revealing widespread RBP presence in active chromatin regions in the human genome. Like transcription factors (TFs), RBPs also show strong preference for hotspots in the genome, particularly gene promoters, where their association is frequently linked to transcriptional output. Unsupervised clustering reveals extensive co-association between TFs and RBPs, as exemplified by YY1, a known RNA-dependent TF, and RBM25, an RBP involved in splicing regulation. Remarkably, RBM25 depletion attenuates all YY1-dependent activities, including chromatin binding, DNA looping, and transcription. We propose that various RBPs may enhance network interaction through harnessing regulatory RNAs to control transcription.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Transcripción Genética/genética , Factor de Transcripción YY1/metabolismo , Sitios de Unión , Regulación de la Expresión Génica , Genoma Humano/genética , Células Hep G2 , Humanos , Células K562 , Proteínas Nucleares , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas de Unión al ARN/genética , RNA-Seq , Transcriptoma , Factor de Transcripción YY1/genética
11.
Nat Immunol ; 22(8): 1008-1019, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34312545

RESUMEN

Exhausted CD8 T cells (TEX) are a distinct state of T cell differentiation associated with failure to clear chronic viruses and cancer. Immunotherapies such as PD-1 blockade can reinvigorate TEX cells, but reinvigoration is not durable. A major unanswered question is whether TEX cells differentiate into functional durable memory T cells (TMEM) upon antigen clearance. Here, using a mouse model, we found that upon eliminating chronic antigenic stimulation, TEX cells partially (re)acquire phenotypic and transcriptional features of TMEM cells. These 'recovering' TEX cells originated from the T cell factor (TCF-1+) TEX progenitor subset. Nevertheless, the recall capacity of these recovering TEX cells remained compromised as compared to TMEM cells. Chromatin-accessibility profiling revealed a failure to recover core memory epigenetic circuits and maintenance of a largely exhausted open chromatin landscape. Thus, despite some phenotypic and transcriptional recovery upon antigen clearance, exhaustion leaves durable epigenetic scars constraining future immune responses. These results support epigenetic remodeling interventions for TEX cell-targeted immunotherapies.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Memoria Inmunológica/inmunología , Coriomeningitis Linfocítica/inmunología , Animales , Linfocitos T CD8-positivos/citología , Diferenciación Celular/inmunología , Línea Celular , Chlorocebus aethiops , Cricetinae , Epigénesis Genética/genética , Femenino , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transcripción Genética/genética , Células Vero
12.
Nat Immunol ; 22(9): 1093-1106, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34282331

RESUMEN

Neutrophils display distinct gene expression patters depending on their developmental stage, activation state and tissue microenvironment. To determine the transcription factor networks that shape these responses in a mouse model, we integrated transcriptional and chromatin analyses of neutrophils during acute inflammation. We showed active chromatin remodeling at two transition stages: bone marrow-to-blood and blood-to-tissue. Analysis of differentially accessible regions revealed distinct sets of putative transcription factors associated with control of neutrophil inflammatory responses. Using ex vivo and in vivo approaches, we confirmed that RUNX1 and KLF6 modulate neutrophil maturation, whereas RELB, IRF5 and JUNB drive neutrophil effector responses and RFX2 and RELB promote survival. Interfering with neutrophil activation by targeting one of these factors, JUNB, reduced pathological inflammation in a mouse model of myocardial infarction. Therefore, our study represents a blueprint for transcriptional control of neutrophil responses in acute inflammation and opens possibilities for stage-specific therapeutic modulation of neutrophil function in disease.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Inflamación/inmunología , Neutrófilos/inmunología , Activación Transcripcional/genética , Animales , Células CHO , Línea Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Cricetulus , Femenino , Factores Reguladores del Interferón/metabolismo , Factor 6 Similar a Kruppel/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/inmunología , Infarto del Miocardio/patología , Factores de Transcripción del Factor Regulador X/metabolismo , Factor de Transcripción ReIB/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética
13.
Nat Immunol ; 22(9): 1152-1162, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34385712

RESUMEN

The transcription factor TCF-1 is essential for the development and function of regulatory T (Treg) cells; however, its function is poorly understood. Here, we show that TCF-1 primarily suppresses transcription of genes that are co-bound by Foxp3. Single-cell RNA-sequencing analysis identified effector memory T cells and central memory Treg cells with differential expression of Klf2 and memory and activation markers. TCF-1 deficiency did not change the core Treg cell transcriptional signature, but promoted alternative signaling pathways whereby Treg cells became activated and gained gut-homing properties and characteristics of the TH17 subset of helper T cells. TCF-1-deficient Treg cells strongly suppressed T cell proliferation and cytotoxicity, but were compromised in controlling CD4+ T cell polarization and inflammation. In mice with polyposis, Treg cell-specific TCF-1 deficiency promoted tumor growth. Consistently, tumor-infiltrating Treg cells of patients with colorectal cancer showed lower TCF-1 expression and increased TH17 expression signatures compared to adjacent normal tissue and circulating T cells. Thus, Treg cell-specific TCF-1 expression differentially regulates TH17-mediated inflammation and T cell cytotoxicity, and can determine colorectal cancer outcome.


Asunto(s)
Neoplasias del Colon/patología , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/inmunología , Animales , Proliferación Celular/fisiología , Factores de Transcripción Forkhead/inmunología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Factor Nuclear 1-alfa del Hepatocito/genética , Memoria Inmunológica/inmunología , Inflamación/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Transcripción Genética/genética , Proteínas Supresoras de Tumor/metabolismo
14.
Nat Immunol ; 22(8): 969-982, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34312548

RESUMEN

The transcription factor ThPOK (encoded by the Zbtb7b gene) controls homeostasis and differentiation of mature helper T cells, while opposing their differentiation to CD4+ intraepithelial lymphocytes (IELs) in the intestinal mucosa. Thus CD4 IEL differentiation requires ThPOK transcriptional repression via reactivation of the ThPOK transcriptional silencer element (SilThPOK). In the present study, we describe a new autoregulatory loop whereby ThPOK binds to the SilThPOK to maintain its own long-term expression in CD4 T cells. Disruption of this loop in vivo prevents persistent ThPOK expression, leads to genome-wide changes in chromatin accessibility and derepresses the colonic regulatory T (Treg) cell gene expression signature. This promotes selective differentiation of naive CD4 T cells into GITRloPD-1loCD25lo (Triplelo) Treg cells and conversion to CD4+ IELs in the gut, thereby providing dominant protection from colitis. Hence, the ThPOK autoregulatory loop represents a key mechanism to physiologically control ThPOK expression and T cell differentiation in the gut, with potential therapeutic relevance.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Linfocitos Intraepiteliales/citología , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Reguladores/citología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/inmunología , Colitis/inmunología , Colitis/prevención & control , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Femenino , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Factores de Transcripción/genética , Transcripción Genética/genética
15.
Nat Immunol ; 22(9): 1118-1126, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34326534

RESUMEN

Transcription factors specialized to limit the destructive potential of inflammatory immune cells remain ill-defined. We discovered loss-of-function variants in the X-linked ETS transcription factor gene ELF4 in multiple unrelated male patients with early onset mucosal autoinflammation and inflammatory bowel disease (IBD) characteristics, including fevers and ulcers that responded to interleukin-1 (IL-1), tumor necrosis factor or IL-12p40 blockade. Using cells from patients and newly generated mouse models, we uncovered ELF4-mutant macrophages having hyperinflammatory responses to a range of innate stimuli. In mouse macrophages, Elf4 both sustained the expression of anti-inflammatory genes, such as Il1rn, and limited the upregulation of inflammation amplifiers, including S100A8, Lcn2, Trem1 and neutrophil chemoattractants. Blockade of Trem1 reversed inflammation and intestine pathology after in vivo lipopolysaccharide challenge in mice carrying patient-derived variants in Elf4. Thus, ELF4 restrains inflammation and protects against mucosal disease, a discovery with broad translational relevance for human inflammatory disorders such as IBD.


Asunto(s)
Proteínas de Unión al ADN/genética , Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades Inflamatorias del Intestino/genética , Macrófagos/inmunología , Factores de Transcripción/genética , Animales , Calgranulina A/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Enfermedades Autoinflamatorias Hereditarias/inmunología , Enfermedades Autoinflamatorias Hereditarias/patología , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Lipocalina 2/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Th17/inmunología , Transcripción Genética/genética , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores , Receptor Activador Expresado en Células Mieloides 1/metabolismo
16.
Nat Rev Mol Cell Biol ; 22(7): 465-482, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33837369

RESUMEN

Stromal progenitors are found in many different tissues, where they play an important role in the maintenance of tissue homeostasis owing to their ability to differentiate into parenchymal cells. These progenitor cells are differentially pre-programmed by their tissue microenvironment but, when cultured and stimulated in vitro, these cells - commonly referred to as mesenchymal stromal cells (MSCs) - exhibit a marked plasticity to differentiate into many different cell lineages. Loss-of-function studies in vitro and in vivo have uncovered the involvement of specific signalling pathways and key transcriptional regulators that work in a sequential and coordinated fashion to activate lineage-selective gene programmes. Recent advances in omics and single-cell technologies have made it possible to obtain system-wide insights into the gene regulatory networks that drive lineage determination and cell differentiation. These insights have important implications for the understanding of cell differentiation, the contribution of stromal cells to human disease and for the development of cell-based therapeutic applications.


Asunto(s)
Diferenciación Celular/genética , Redes Reguladoras de Genes , Células Madre Mesenquimatosas/citología , Transcripción Genética/genética , Animales , Linaje de la Célula , Plasticidad de la Célula , Epigénesis Genética , Humanos , Células Madre Mesenquimatosas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Nat Rev Mol Cell Biol ; 21(3): 167-178, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32005969

RESUMEN

R-loops are three-stranded structures that harbour an RNA-DNA hybrid and frequently form during transcription. R-loop misregulation is associated with DNA damage, transcription elongation defects, hyper-recombination and genome instability. In contrast to such 'unscheduled' R-loops, evidence is mounting that cells harness the presence of RNA-DNA hybrids in scheduled, 'regulatory' R-loops to promote DNA transactions, including transcription termination and other steps of gene regulation, telomere stability and DNA repair. R-loops formed by cellular RNAs can regulate histone post-translational modification and may be recognized by dedicated reader proteins. The two-faced nature of R-loops implies that their formation, location and timely removal must be tightly regulated. In this Perspective, we discuss the cellular processes that regulatory R-loops modulate, the regulation of R-loops and the potential differences that may exist between regulatory R-loops and unscheduled R-loops.


Asunto(s)
ADN/química , Inestabilidad Genómica/genética , Estructuras R-Loop/genética , Animales , ADN/genética , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/genética , Replicación del ADN/genética , Replicación del ADN/fisiología , Regulación de la Expresión Génica/genética , Código de Histonas/genética , Humanos , Conformación de Ácido Nucleico , Estructuras R-Loop/fisiología , ARN/química , ARN/genética , Telómero/genética , Transcripción Genética/genética
18.
Genes Dev ; 38(11-12): 504-527, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38986581

RESUMEN

Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.


Asunto(s)
Inestabilidad Genómica , Estructuras R-Loop , ARN , Inestabilidad Genómica/genética , ARN/metabolismo , ARN/genética , Replicación del ADN/genética , Animales , Humanos , Transcripción Genética/genética
19.
Nat Immunol ; 20(9): 1150-1160, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31358996

RESUMEN

Innate lymphoid cells (ILCs) play important functions in immunity and tissue homeostasis, but their development is poorly understood. Through the use of single-cell approaches, we examined the transcriptional and functional heterogeneity of ILC progenitors, and studied the precursor-product relationships that link the subsets identified. This analysis identified two successive stages of ILC development within T cell factor 1-positive (TCF-1+) early innate lymphoid progenitors (EILPs), which we named 'specified EILPs' and 'committed EILPs'. Specified EILPs generated dendritic cells, whereas this potential was greatly decreased in committed EILPs. TCF-1 was dispensable for the generation of specified EILPs, but required for the generation of committed EILPs. TCF-1 used a pre-existing regulatory landscape established in upstream lymphoid precursors to bind chromatin in EILPs. Our results provide insight into the mechanisms by which TCF-1 promotes developmental progression of ILC precursors, while constraining their dendritic cell lineage potential and enforcing commitment to ILC fate.


Asunto(s)
Linaje de la Célula/inmunología , Células Dendríticas/citología , Factor Nuclear 1-alfa del Hepatocito/inmunología , Células Progenitoras Linfoides/citología , Linfocitos T/citología , Animales , Diferenciación Celular/inmunología , Células Cultivadas , Regulación de la Expresión Génica/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Ratones , Ratones Endogámicos C57BL , Transcripción Genética/genética
20.
Nat Rev Mol Cell Biol ; 20(1): 55-64, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30420736

RESUMEN

The highly reproducible inheritance of chromosomes during mitosis in mammalian cells involves nuclear envelope breakdown, increased chromatin compaction, loss of long-range intrachromosomal interactions, loss of enhancer-promoter proximity, displacement of many transcription regulators from the chromatin and a marked decrease in RNA synthesis. Despite these dramatic changes in the mother cell, daughter cells are able to faithfully re-establish the parental chromatin and gene expression features characteristic of the cell type. Pioneering studies of mitotic chromatin signatures showed that despite global repression of transcription, the Hsp70 gene promoter retains an open chromatin conformation, which was proposed to allow the reactivation of the Hsp70 gene upon completion of mitosis - a phenomenon termed mitotic bookmarking. It was later shown that various cell-type-specific transcription factors, such as GATA-binding factor 1 (GATA1) in erythroblasts and forkhead box protein A1 (FOXA1) in hepatocytes, remain bound at a subset of their interphase binding sites in mitosis. Such bookmarking transcription factors remain on chromosomes in mitosis and have been shown to enable a subset of genes to be reactivated in a timely fashion upon mitotic exit. In addition, sensitive new methods to measure transcription revealed that mitotic cells retain residual transcription at a large number of genes. Furthermore, genes recover their interphase level of transcription in distinct waves. Thus, gene expression is precisely regulated as cells pass through mitosis to ensure faithful propagation of cell identity and function through cellular generations.


Asunto(s)
Memoria/fisiología , Mitosis/genética , Transcripción Genética/genética , Animales , Cromatina/genética , Cromosomas/genética , Regulación de la Expresión Génica/genética , Humanos , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA