Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90.551
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(15): 3145-3147, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37478819

RESUMEN

The DNA sensor cGAS and its adaptor STING constitute an ancient pathogen detection mechanism, but it is unclear to what extent its function is conserved across the animal kingdom. In this issue of Cell, Kranzusch and colleagues identify thousands of cGAS-like receptors and discover networks of second messengers that activate innate immune responses in animals.


Asunto(s)
Proteínas de la Membrana , Transducción de Señal , Animales , Transducción de Señal/fisiología , Nucleotidiltransferasas/metabolismo , Inmunidad Innata , Proteínas Serina-Treonina Quinasas/metabolismo
2.
Cell ; 185(23): 4394-4408.e10, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36368307

RESUMEN

Living organisms are constantly exposed to DNA damage, and optimal repair is therefore crucial. A characteristic hallmark of the response is the formation of sub-compartments around the site of damage, known as foci. Following multiple DNA breaks, the transcription factor p53 exhibits oscillations in its nuclear concentration, but how this dynamics can affect the repair remains unknown. Here, we formulate a theory for foci formation through droplet condensation and discover how oscillations in p53, with its specific periodicity and amplitude, optimize the repair process by preventing Ostwald ripening and distributing protein material in space and time. Based on the theory predictions, we reveal experimentally that the oscillatory dynamics of p53 does enhance the repair efficiency. These results connect the dynamical signaling of p53 with the microscopic repair process and create a new paradigm for the interplay of complex dynamics and phase transitions in biology.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Reparación del ADN , Daño del ADN , Transducción de Señal/fisiología
3.
Cell ; 185(1): 77-94, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995518

RESUMEN

Neurons of the mammalian central nervous system fail to regenerate. Substantial progress has been made toward identifying the cellular and molecular mechanisms that underlie regenerative failure and how altering those pathways can promote cell survival and/or axon regeneration. Here, we summarize those findings while comparing the regenerative process in the central versus the peripheral nervous system. We also highlight studies that advance our understanding of the mechanisms underlying neural degeneration in response to injury, as many of these mechanisms represent primary targets for restoring functional neural circuits.


Asunto(s)
Axones/metabolismo , Sistema Nervioso Central/metabolismo , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Sistema Nervioso Periférico/metabolismo
4.
Cell ; 185(9): 1618-1618.e1, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35487192

RESUMEN

Skeletal muscle size is highly plastic and sensitive to a variety of stimuli. Muscle atrophy occurs as the result of changes in multiple signaling pathways that regulate both protein synthesis and degradation. The signaling pathways that are activated or inhibited depend on the specific stimuli that are altered. To view this SnapShot, open of download the PDF.


Asunto(s)
Músculo Esquelético , Atrofia Muscular , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Transducción de Señal/fisiología
5.
Nat Immunol ; 25(2): 206-217, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38238609

RESUMEN

This Review explores the interplay between T cell activation and cell metabolism and highlights how metabolites serve two pivotal functions in shaping the immune response. Traditionally, T cell activation has been characterized by T cell antigen receptor-major histocompatibility complex interaction (signal 1), co-stimulation (signal 2) and cytokine signaling (signal 3). However, recent research has unveiled the critical role of metabolites in this process. Firstly, metabolites act as signal propagators that aid in the transmission of core activation signals, such as specific lipid species that are crucial at the immune synapse. Secondly, metabolites also function as unique signals that influence immune differentiation pathways, such as amino acid-induced mTORC1 signaling. Metabolites also play a substantial role in epigenetic remodeling, by directly modifying histones, altering gene expression and influencing T cell behavior. This Review discusses how T cells integrate nutrient sensing with activating stimuli to shape their differentiation and sensitivity to metabolites. We underscore the integration of immunological and metabolic inputs in T cell function and suggest that metabolite availability is a fundamental determinant of adaptive immune responses.


Asunto(s)
Transducción de Señal , Linfocitos T , Transducción de Señal/fisiología , Diferenciación Celular , Activación de Linfocitos
6.
Nat Rev Mol Cell Biol ; 25(3): 223-245, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38001393

RESUMEN

Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.


Asunto(s)
Lisosomas , Transducción de Señal , Humanos , Transducción de Señal/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Lisosomas/metabolismo , Homeostasis/fisiología , Autofagia/fisiología
7.
Cell ; 184(11): 2911-2926.e18, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33932338

RESUMEN

Hedgehog pathway components and select G protein-coupled receptors (GPCRs) localize to the primary cilium, an organelle specialized for signal transduction. We investigated whether cells distinguish between ciliary and extraciliary GPCR signaling. To test whether ciliary and extraciliary cyclic AMP (cAMP) convey different information, we engineered optogenetic and chemogenetic tools to control the subcellular site of cAMP generation. Generating equal amounts of ciliary and cytoplasmic cAMP in zebrafish and mammalian cells revealed that ciliary cAMP, but not cytoplasmic cAMP, inhibited Hedgehog signaling. Modeling suggested that the distinct geometries of the cilium and cell body differentially activate local effectors. The search for effectors identified a ciliary pool of protein kinase A (PKA). Blocking the function of ciliary PKA, but not extraciliary PKA, activated Hedgehog signal transduction and reversed the effects of ciliary cAMP. Therefore, cells distinguish ciliary and extraciliary cAMP using functionally and spatially distinct pools of PKA, and different subcellular pools of cAMP convey different information.


Asunto(s)
Cilios/metabolismo , AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/metabolismo , Neuronas/metabolismo , Optogenética/métodos , Transducción de Señal/fisiología , Pez Cebra/metabolismo
8.
Nat Rev Mol Cell Biol ; 24(12): 876-894, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37596501

RESUMEN

The transforming growth factor-ß (TGFß) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFß family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFß family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFß family signalling in disease.


Asunto(s)
Neoplasias , Factor de Crecimiento Transformador beta , Humanos , Transducción de Señal/fisiología
9.
Nat Rev Mol Cell Biol ; 24(12): 895-911, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37626124

RESUMEN

Complex physiological processes control whether stem cells self-renew, differentiate or remain quiescent. Two decades of research have placed the Hippo pathway, a highly conserved kinase signalling cascade, and its downstream molecular effectors YAP and TAZ at the nexus of this decision. YAP and TAZ translate complex biological cues acting on stem cells - from mechanical forces to cellular metabolism - into genome-wide effects to mediate stem cell functions. While aberrant YAP/TAZ activity drives stem cell dysfunction in ageing, tumorigenesis and disease, therapeutic targeting of Hippo signalling and YAP/TAZ can boost stem cell activity to enhance regeneration. In this Review, we discuss how YAP/TAZ control the self-renewal, fate and plasticity of stem cells in different contexts, how dysregulation of YAP/TAZ in stem cells leads to disease, and how therapeutic modalities targeting YAP/TAZ may benefit regenerative medicine and cancer therapy.


Asunto(s)
Autorrenovación de las Células , Transducción de Señal , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Humanos , Carcinogénesis , Transducción de Señal/fisiología , Células Madre/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo
10.
Nat Rev Mol Cell Biol ; 24(9): 668-687, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36932157

RESUMEN

The Hedgehog signalling pathway has crucial roles in embryonic tissue patterning, postembryonic tissue regeneration, and cancer, yet aspects of Hedgehog signal transmission and reception have until recently remained unclear. Biochemical and structural studies surprisingly reveal a central role for lipids in Hedgehog signalling. The signal - Hedgehog protein - is modified by cholesterol and palmitate during its biogenesis, thereby necessitating specialized proteins such as the transporter Dispatched and several lipid-binding carriers for cellular export and receptor engagement. Additional lipid transactions mediate response to the Hedgehog signal, including sterol activation of the transducer Smoothened. Access of sterols to Smoothened is regulated by the apparent sterol transporter and Hedgehog receptor Patched, whose activity is blocked by Hedgehog binding. Alongside these lipid-centric mechanisms and their relevance to pharmacological pathway modulation, we discuss emerging roles of Hedgehog pathway activity in stem cells or their cellular niches, with translational implications for regeneration and restoration of injured or diseased tissues.


Asunto(s)
Proteínas Hedgehog , Transducción de Señal , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transducción de Señal/fisiología , Colesterol/metabolismo , Esteroles/química , Esteroles/metabolismo
11.
Cell ; 182(5): 1362-1362.e1, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32888497

RESUMEN

The arrestins are ubiquitously expressed adaptor proteins that orchestrate transmembrane signaling cascades triggered by the 7-transmembrane G protein-coupled receptors. While originally discovered as proteins that block receptor-G protein coupling, arrestins are now appreciated for their expanding repertoire of dynamic protein interactions and cellular functions.


Asunto(s)
Arrestinas/metabolismo , Membrana Celular/metabolismo , Mapas de Interacción de Proteínas/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología
12.
Cell ; 181(6): 1346-1363.e21, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32473126

RESUMEN

Enhanced blood vessel (BV) formation is thought to drive tumor growth through elevated nutrient delivery. However, this observation has overlooked potential roles for mural cells in directly affecting tumor growth independent of BV function. Here we provide clinical data correlating high percentages of mural-ß3-integrin-negative tumor BVs with increased tumor sizes but no effect on BV numbers. Mural-ß3-integrin loss also enhances tumor growth in implanted and autochthonous mouse tumor models with no detectable effects on BV numbers or function. At a molecular level, mural-cell ß3-integrin loss enhances signaling via FAK-p-HGFR-p-Akt-p-p65, driving CXCL1, CCL2, and TIMP-1 production. In particular, mural-cell-derived CCL2 stimulates tumor cell MEK1-ERK1/2-ROCK2-dependent signaling and enhances tumor cell survival and tumor growth. Overall, our data indicate that mural cells can control tumor growth via paracrine signals regulated by ß3-integrin, providing a previously unrecognized mechanism of cancer growth control.


Asunto(s)
Integrina beta3/metabolismo , Neoplasias/metabolismo , Carga Tumoral/fisiología , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Femenino , Humanos , Masculino , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
13.
Cell ; 180(6): 1041-1043, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32169216

RESUMEN

ß-arrestins (ßarrs) play multifaceted roles in the signaling and regulation of G-protein-coupled receptors (GPCRs) including their desensitization and endocytosis. Recently determined cryo-EM structures of two different GPCRs in complex with ßarr1 provide the first glimpse of GPCR-ßarr engagement and a structural framework to understand their interaction.


Asunto(s)
Receptores Acoplados a Proteínas G/ultraestructura , beta-Arrestinas/metabolismo , beta-Arrestinas/ultraestructura , Arrestinas/metabolismo , Endocitosis/fisiología , Proteínas de Unión al GTP/metabolismo , Humanos , Fosforilación , Unión Proteica , Isoformas de Proteínas/ultraestructura , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Relación Estructura-Actividad , beta-Arrestina 1/metabolismo , Arrestina beta 2/metabolismo
14.
Cell ; 183(2): 395-410.e19, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33007268

RESUMEN

Collective metastasis is defined as the cohesive migration and metastasis of multicellular tumor cell clusters. Disrupting various cell adhesion genes markedly reduces cluster formation and colonization efficiency, yet the downstream signals transmitted by clustering remain largely unknown. Here, we use mouse and human breast cancer models to identify a collective signal generated by tumor cell clusters supporting metastatic colonization. We show that tumor cell clusters produce the growth factor epigen and concentrate it within nanolumina-intercellular compartments sealed by cell-cell junctions and lined with microvilli-like protrusions. Epigen knockdown profoundly reduces metastatic outgrowth and switches clusters from a proliferative to a collective migratory state. Tumor cell clusters from basal-like 2, but not mesenchymal-like, triple-negative breast cancer cell lines have increased epigen expression, sealed nanolumina, and impaired outgrowth upon nanolumenal junction disruption. We propose that nanolumenal signaling could offer a therapeutic target for aggressive metastatic breast cancers.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Uniones Intercelulares/patología , Metástasis de la Neoplasia/fisiopatología , Animales , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Epigen/metabolismo , Transición Epitelial-Mesenquimal/genética , Humanos , Ratones , Células Neoplásicas Circulantes/patología , Transducción de Señal/fisiología , Neoplasias de la Mama Triple Negativas/patología
15.
Cell ; 181(6): 1207-1217, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32531244

RESUMEN

Alzheimer's disease, obesity-related metabolic syndrome, and cancer are the leading causes of death and among the most costly medical conditions in the Western world. In all three cases, recent discoveries establish the TREM2 receptor as a major pathology-induced immune signaling hub that senses tissue damage and activates robust immune remodeling in response to it. In this review, we summarize and question what is known and remains to be discovered about TREM2 signaling pathway, track the consequences of its activation in physiological niches and pathological contexts, and highlight the promising potential of therapeutic manipulation of TREM2 signaling.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Transducción de Señal/fisiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Humanos , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Neoplasias/metabolismo , Neoplasias/patología
16.
Cell ; 181(7): 1696-1696.e1, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32589961

RESUMEN

The JAK-STAT pathway is an evolutionarily conserved signal transduction paradigm, providing mechanisms for rapid receptor-to-nucleus communication and transcription control. Discoveries in this field provided insights into primary immunodeficiencies, inherited autoimmune and autoinflammatory diseases, and hematologic and oncologic disorders, giving rise to a new class of drugs, JAK inhibitors (or Jakinibs).


Asunto(s)
Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Animales , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Humanos , Quinasas Janus/genética , Quinasas Janus/fisiología , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/fisiología , Transducción de Señal/fisiología
17.
Cell ; 180(3): 585-600.e19, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004457

RESUMEN

Molecular mechanisms of ovarian aging and female age-related fertility decline remain unclear. We surveyed the single-cell transcriptomic landscape of ovaries from young and aged non-human primates (NHPs) and identified seven ovarian cell types with distinct gene-expression signatures, including oocyte and six types of ovarian somatic cells. In-depth dissection of gene-expression dynamics of oocytes revealed four subtypes at sequential and stepwise developmental stages. Further analysis of cell-type-specific aging-associated transcriptional changes uncovered the disturbance of antioxidant signaling specific to early-stage oocytes and granulosa cells, indicative of oxidative damage as a crucial factor in ovarian functional decline with age. Additionally, inactivated antioxidative pathways, increased reactive oxygen species, and apoptosis were observed in granulosa cells from aged women. This study provides a comprehensive understanding of the cell-type-specific mechanisms underlying primate ovarian aging at single-cell resolution, revealing new diagnostic biomarkers and potential therapeutic targets for age-related human ovarian disorders.


Asunto(s)
Envejecimiento/genética , Ovario/fisiología , Análisis de la Célula Individual/métodos , Transcriptoma , Anciano , Animales , Antioxidantes/metabolismo , Apoptosis/fisiología , Atlas como Asunto , Biomarcadores , Línea Celular Tumoral , Femenino , Células de la Granulosa/metabolismo , Humanos , Macaca fascicularis , Oocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
18.
Cell ; 181(3): 716-727.e11, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32259488

RESUMEN

Human cells are able to sense and adapt to variations in oxygen levels. Historically, much research in this field has focused on hypoxia-inducible factor (HIF) signaling and reactive oxygen species (ROS). Here, we perform genome-wide CRISPR growth screens at 21%, 5%, and 1% oxygen to systematically identify gene knockouts with relative fitness defects in high oxygen (213 genes) or low oxygen (109 genes), most without known connection to HIF or ROS. Knockouts of many mitochondrial pathways thought to be essential, including complex I and enzymes in Fe-S biosynthesis, grow relatively well at low oxygen and thus are buffered by hypoxia. In contrast, in certain cell types, knockout of lipid biosynthetic and peroxisomal genes causes fitness defects only in low oxygen. Our resource nominates genetic diseases whose severity may be modulated by oxygen and links hundreds of genes to oxygen homeostasis.


Asunto(s)
Metabolismo de los Lípidos/genética , Mitocondrias/genética , Oxígeno/metabolismo , Transcriptoma/genética , Hipoxia de la Célula , Pruebas Genéticas/métodos , Estudio de Asociación del Genoma Completo/métodos , Células HEK293 , Humanos , Hipoxia/metabolismo , Células K562 , Metabolismo de los Lípidos/fisiología , Lípidos/genética , Lípidos/fisiología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
19.
Cell ; 181(6): 1364-1379.e14, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32470395

RESUMEN

Small molecule neurotensin receptor 1 (NTSR1) agonists have been pursued for more than 40 years as potential therapeutics for psychiatric disorders, including drug addiction. Clinical development of NTSR1 agonists has, however, been precluded by their severe side effects. NTSR1, a G protein-coupled receptor (GPCR), signals through the canonical activation of G proteins and engages ß-arrestins to mediate distinct cellular signaling events. Here, we characterize the allosteric NTSR1 modulator SBI-553. This small molecule not only acts as a ß-arrestin-biased agonist but also extends profound ß-arrestin bias to the endogenous ligand by selectively antagonizing G protein signaling. SBI-553 shows efficacy in animal models of psychostimulant abuse, including cocaine self-administration, without the side effects characteristic of balanced NTSR1 agonism. These findings indicate that NTSR1 G protein and ß-arrestin activation produce discrete and separable physiological effects, thus providing a strategy to develop safer GPCR-targeting therapeutics with more directed pharmacological action.


Asunto(s)
Conducta Adictiva/metabolismo , Receptores de Neurotensina/metabolismo , beta-Arrestinas/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Conducta Adictiva/tratamiento farmacológico , Línea Celular , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Bibliotecas de Moléculas Pequeñas/farmacología
20.
Annu Rev Cell Dev Biol ; 37: 89-114, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34152790

RESUMEN

Recent observations indicate that, rather than being an all-or-none response, phagocytosis is finely tuned by a host of developmental and environmental factors. The expression of key phagocytic determinants is regulated via transcriptional and epigenetic means that confer memory on the process. Membrane traffic, the cytoskeleton, and inside-out signaling control the activation of phagocytic receptors and their ability to access their targets. An exquisite extra layer of complexity is introduced by the coexistence of distinct "eat-me" and "don't-eat-me" signals on targets and of corresponding "eat" and "don't-eat" receptors on the phagocyte surface. Moreover, assorted physical barriers constitute "don't-come-close-to-me" hurdles that obstruct the engagement of ligands by receptors. The expression, mobility, and accessibility of all these determinants can be modulated, conferring extreme plasticity on phagocytosis and providing attractive targets for therapeutic intervention in cancer, atherosclerosis, and dementia.


Asunto(s)
Neoplasias , Plásticos , Humanos , Fagocitos , Fagocitosis/genética , Plásticos/uso terapéutico , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA