Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(4): 716-728.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30712871

RESUMEN

Sensory axons degenerate following separation from their cell body, but partial injury to peripheral nerves may leave the integrity of damaged axons preserved. We show that an endogenous ligand for the natural killer (NK) cell receptor NKG2D, Retinoic Acid Early 1 (RAE1), is re-expressed in adult dorsal root ganglion neurons following peripheral nerve injury, triggering selective degeneration of injured axons. Infiltration of cytotoxic NK cells into the sciatic nerve by extravasation occurs within 3 days following crush injury. Using a combination of genetic cell ablation and cytokine-antibody complex stimulation, we show that NK cell function correlates with loss of sensation due to degeneration of injured afferents and reduced incidence of post-injury hypersensitivity. This neuro-immune mechanism of selective NK cell-mediated degeneration of damaged but intact sensory axons complements Wallerian degeneration and suggests the therapeutic potential of modulating NK cell function to resolve painful neuropathy through the clearance of partially damaged nerves.


Asunto(s)
Células Asesinas Naturales/fisiología , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Axones , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Regeneración Nerviosa , Neuronas/citología , Neuronas Aferentes/inmunología , Neuronas Aferentes/metabolismo , Proteínas Asociadas a Matriz Nuclear/fisiología , Proteínas de Transporte Nucleocitoplasmático/fisiología , Dolor , Traumatismos de los Nervios Periféricos/inmunología , Enfermedades del Sistema Nervioso Periférico , Nervio Ciático , Células Receptoras Sensoriales/metabolismo
2.
J Neuroinflammation ; 19(1): 179, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35820932

RESUMEN

BACKGROUND: Peripheral nerve injuries stimulate the regenerative capacity of injured neurons through a neuroimmune phenomenon termed the conditioning lesion (CL) response. This response depends on macrophage accumulation in affected dorsal root ganglia (DRGs) and peripheral nerves. The macrophage chemokine CCL2 is upregulated after injury and is allegedly required for stimulating macrophage recruitment and pro-regenerative signaling through its receptor, CCR2. In these tissues, CCL2 is putatively produced by neurons in the DRG and Schwann cells in the distal nerve. METHODS: Ccl2fl/fl mice were crossed with Advillin-Cre, P0-Cre, or both to create conditional Ccl2 knockouts (CKOs) in sensory neurons, Schwann cells, or both to hypothetically remove CCL2 and macrophages from DRGs, nerves or both. CCL2 was localized using Ccl2-RFPfl/fl mice. CCL2-CCR2 signaling was further examined using global Ccl2 KOs and Ccr2gfp knock-in/knock-outs. Unilateral sciatic nerve transection was used as the injury model, and at various timepoints, chemokine expression, macrophage accumulation and function, and in vivo regeneration were examined using qPCR, immunohistochemistry, and luxol fast blue staining. RESULTS: Surprisingly, in all CKOs, DRG Ccl2 gene expression was decreased, while nerve Ccl2 was not. CCL2-RFP reporter mice revealed CCL2 expression in several cell types beyond the expected neurons and Schwann cells. Furthermore, macrophage accumulation, myelin clearance, and in vivo regeneration were unaffected in all CKOs, suggesting CCL2 may not be necessary for the CL response. Indeed, Ccl2 global knockout mice showed normal macrophage accumulation, myelin clearance, and in vivo regeneration, indicating these responses do not require CCL2. CCR2 ligands, Ccl7 and Ccl12, were upregulated after nerve injury and perhaps could compensate for the absence of Ccl2. Finally, Ccr2gfp knock-in/knock-out animals were used to differentiate resident and recruited macrophages in the injured tissues. Ccr2gfp/gfp KOs showed a 50% decrease in macrophages in the distal nerve compared to controls with a relative increase in resident macrophages. In the DRG there was a small but insignificant decrease in macrophages. CONCLUSIONS: CCL2 is not necessary for macrophage accumulation, myelin clearance, and axon regeneration in the peripheral nervous system. Without CCL2, other CCR2 chemokines, resident macrophage proliferation, and CCR2-independent monocyte recruitment can compensate and allow for normal macrophage accumulation.


Asunto(s)
Quimiocina CCL2 , Macrófagos , Traumatismos de los Nervios Periféricos , Animales , Axones/inmunología , Axones/patología , Quimiocina CCL2/inmunología , Quimiocina CCL2/metabolismo , Quimiocinas/inmunología , Quimiocinas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/inmunología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología
3.
Mol Cell Neurosci ; 111: 103590, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33422671

RESUMEN

Peripheral nerve injuries remain challenging to treat despite extensive research on reparative processes at the injury site. Recent studies have emphasized the importance of immune cells, particularly macrophages, in recovery from nerve injury. Macrophage plasticity enables numerous functions at the injury site. At early time points, macrophages perform inflammatory functions, but at later time points, they adopt pro-regenerative phenotypes to support nerve regeneration. Research has largely been limited, however, to the injury site. The neuromuscular junction (NMJ), the synapse between the nerve terminal and end target muscle, has received comparatively less attention, despite the importance of NMJ reinnervation for motor recovery. Macrophages are present at the NMJ following nerve injury. Moreover, in denervating diseases, such as amyotrophic lateral sclerosis (ALS), macrophages may also play beneficial roles at the NMJ. Evidence of positive macrophages roles at the injury site after peripheral nerve injury and at the NMJ in denervating pathologies suggest that macrophages may promote NMJ reinnervation. In this review, we discuss the intersection of nerve injury and immunity, with a focus on macrophages.


Asunto(s)
Macrófagos/inmunología , Enfermedad de la Neurona Motora/inmunología , Unión Neuromuscular/inmunología , Traumatismos de los Nervios Periféricos/inmunología , Animales , Humanos , Enfermedad de la Neurona Motora/fisiopatología , Regeneración Nerviosa , Unión Neuromuscular/fisiología , Unión Neuromuscular/fisiopatología , Traumatismos de los Nervios Periféricos/fisiopatología
4.
J Neuroinflammation ; 18(1): 227, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645458

RESUMEN

BACKGROUND: Macrophages in the peripheral nervous system are key players in the repair of nerve tissue and the development of neuropathic pain due to peripheral nerve injury. However, there is a lack of information on the origin and morphological features of macrophages in sensory ganglia after peripheral nerve injury, unlike those in the brain and spinal cord. We analyzed the origin and morphological features of sensory ganglionic macrophages after nerve ligation or transection using wild-type mice and mice with bone-marrow cell transplants. METHODS: After protecting the head of C57BL/6J mice with lead caps, they were irradiated and transplanted with bone-marrow-derived cells from GFP transgenic mice. The infraorbital nerve of a branch of the trigeminal nerve of wild-type mice was ligated or the infraorbital nerve of GFP-positive bone-marrow-cell-transplanted mice was transected. After immunostaining the trigeminal ganglion, the structures of the ganglionic macrophages, neurons, and satellite glial cells were analyzed using two-dimensional or three-dimensional images. RESULTS: The number of damaged neurons in the trigeminal ganglion increased from day 1 after infraorbital nerve ligation. Ganglionic macrophages proliferated from days 3 to 5. Furthermore, the numbers of macrophages increased from days 3 to 15. Bone-marrow-derived macrophages increased on day 7 after the infraorbital nerve was transected in the trigeminal ganglion of GFP-positive bone-marrow-cell-transplanted mice but most of the ganglionic macrophages were composed of tissue-resident cells. On day 7 after infraorbital nerve ligation, ganglionic macrophages increased in volume, extended their processes between the neurons and satellite glial cells, and contacted these neurons. Most of the ganglionic macrophages showed an M2 phenotype when contact was observed, and little neuronal cell death occurred. CONCLUSION: Most of the macrophages that appear after a nerve injury are tissue-resident, and these make direct contact with damaged neurons that act in a tissue-protective manner in the M2 phenotype. These results imply that tissue-resident macrophages signal to neurons directly through physical contact.


Asunto(s)
Trasplante de Médula Ósea/métodos , Aumento de la Célula , Ganglios Sensoriales/patología , Macrófagos/patología , Traumatismos de los Nervios Periféricos/patología , Células Receptoras Sensoriales/patología , Animales , Ganglios Sensoriales/inmunología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Traumatismos de los Nervios Periféricos/inmunología , Traumatismos de los Nervios Periféricos/terapia , Células Receptoras Sensoriales/inmunología
5.
Proc Natl Acad Sci U S A ; 114(26): E5077-E5084, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28611218

RESUMEN

Injuries to the peripheral nervous system are major sources of disability and often result in painful neuropathies or the impairment of muscle movement and/or normal sensations. For gaps smaller than 10 mm in rodents, nearly normal functional recovery can be achieved; for longer gaps, however, there are challenges that have remained insurmountable. The current clinical gold standard used to bridge long, nonhealing nerve gaps, the autologous nerve graft (autograft), has several drawbacks. Despite best efforts, engineering an alternative "nerve bridge" for peripheral nerve repair remains elusive; hence, there is a compelling need to design new approaches that match or exceed the performance of autografts across critically sized nerve gaps. Here an immunomodulatory approach to stimulating nerve repair in a nerve-guidance scaffold was used to explore the regenerative effect of reparative monocyte recruitment. Early modulation of the immune environment at the injury site via fractalkine delivery resulted in a dramatic increase in regeneration as evident from histological and electrophysiological analyses. This study suggests that biasing the infiltrating inflammatory/immune cellular milieu after injury toward a proregenerative population creates a permissive environment for repair. This approach is a shift from the current modes of clinical and laboratory methods for nerve repair, which potentially opens an alternative paradigm to stimulate endogenous peripheral nerve repair.


Asunto(s)
Regeneración Nerviosa/inmunología , Traumatismos de los Nervios Periféricos/terapia , Nervio Ciático/fisiología , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Autoinjertos , Quimiocina CX3CL1/farmacología , Traumatismos de los Nervios Periféricos/inmunología , Traumatismos de los Nervios Periféricos/patología , Ratas , Nervio Ciático/trasplante
6.
Muscle Nerve ; 57(1): E38-E45, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28445921

RESUMEN

INTRODUCTION: The immune system plays a pivotal role in nerve injury. The aim of this study was to determine the role of multiparametric magnetic resonance imaging (MRI) in evaluation of the synergic effect of immunomodulation on nerve regeneration in neurotmesis. METHODS: Rats with sciatic nerve neurotmesis and surgical repair underwent serial multiparametric MR examinations over an 8-week period after subepineurial microinjection of lipopolysaccharide (LPS) and subsequent subcutaneous injection of FK506 or subepineurial microinjection of LPS or phosphate-buffered saline (PBS) alone. RESULTS: Nerves treated with immunomodulation showed more prominent regeneration than those treated with LPS or PBS alone and more rapid restoration toward normal T2, fractional anisotropy (FA), and radial diffusivity (RD) values than nerves injected with LPS or PBS. DISCUSSION: Nerves treated with immunomodulation exert synergic beneficial effects on nerve regeneration that can be predicted by T2 measurements and FA and RD values. Muscle Nerve 57: E38-E45, 2018.


Asunto(s)
Inmunomodulación , Traumatismos de los Nervios Periféricos/inmunología , Traumatismos de los Nervios Periféricos/patología , Animales , Anisotropía , Imagen de Difusión Tensora , Procesamiento de Imagen Asistido por Computador , Inmunosupresores/farmacología , Lipopolisacáridos/farmacología , Imagen por Resonancia Magnética , Masculino , Regeneración Nerviosa/efectos de los fármacos , Traumatismos de los Nervios Periféricos/fisiopatología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Nervio Ciático/lesiones , Nervio Ciático/fisiopatología , Tacrolimus/farmacología
7.
Pain Med ; 18(5): 932-946, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27497321

RESUMEN

Objective: Neuropathic pain is common and debilitating with limited effective treatments. Macrophage/microglial activation along ascending somatosensory pathways following peripheral nerve injury facilitates neuropathic pain. However, polarization of macrophages/microglia in neuropathic pain is not well understood. Photobiomodulation treatment has been used to decrease neuropathic pain, has anti-inflammatory effects in spinal injury and wound healing models, and modulates microglial polarization in vitro. Our aim was to characterize macrophage/microglia response after peripheral nerve injury and modulate the response with photobiomodulation. Methods: Adult male Sprague-Dawley rats were randomly assigned to sham (N = 13), spared nerve injury (N = 13), or injury + photobiomodulation treatment groups (N = 7). Mechanical hypersensitivity was assessed with electronic von Frey. Photobiomodulation (980 nm) was applied to affected hind paw (output power 1 W, 20 s, 41cm above skin, power density 43.25 mW/cm 2 , dose 20 J), dorsal root ganglia (output power 4.5W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 85.5 J), and spinal cord regions (output power 1.5 W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 28.5 J) every other day from day 7-30 post-operatively. Immunohistochemistry characterized macrophage/microglial activation. Results: Injured groups demonstrated mechanical hypersensitivity 1-30 days post-operatively. Photobiomodulation-treated animals began to recover after two treatments; at day 26, mechanical sensitivity reached baseline. Peripheral nerve injury caused region-specific macrophages/microglia activation along spinothalamic and dorsal-column medial lemniscus pathways. A pro-inflammatory microglial marker was expressed in the spinal cord of injured rats compared to photobiomodulation-treated and sham group. Photobiomodulation-treated dorsal root ganglion macrophages expressed anti-inflammatory markers. Conclusion: Photobiomodulation effectively reduced mechanical hypersensitivity, potentially through modulating macrophage/microglial activation to an anti-inflammatory phenotype.


Asunto(s)
Modelos Animales de Enfermedad , Terapia por Luz de Baja Intensidad/métodos , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Microglía/inmunología , Neuralgia/inmunología , Neuralgia/terapia , Animales , Masculino , Neuralgia/patología , Tratamientos Conservadores del Órgano , Dimensión del Dolor , Traumatismos de los Nervios Periféricos/inmunología , Traumatismos de los Nervios Periféricos/terapia , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
8.
Int J Mol Sci ; 18(2)2017 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-28146061

RESUMEN

The peripheral nervous system (PNS) exhibits a much larger capacity for regeneration than the central nervous system (CNS). One reason for this difference is the difference in glial cell types between the two systems. PNS glia respond rapidly to nerve injury by clearing debris from the injury site, supplying essential growth factors and providing structural support; all of which enhances neuronal regeneration. Thus, transplantation of glial cells from the PNS is a very promising therapy for injuries to both the PNS and the CNS. There are two key types of PNS glia: olfactory ensheathing cells (OECs), which populate the olfactory nerve, and Schwann cells (SCs), which are present in the rest of the PNS. These two glial types share many similar morphological and functional characteristics but also exhibit key differences. The olfactory nerve is constantly turning over throughout life, which means OECs are continuously stimulating neural regeneration, whilst SCs only promote regeneration after direct injury to the PNS. This review presents a comparison between these two PNS systems in respect to normal physiology, developmental anatomy, glial functions and their responses to injury. A thorough understanding of the mechanisms and differences between the two systems is crucial for the development of future therapies using transplantation of peripheral glia to treat neural injuries and/or disease.


Asunto(s)
Regeneración Nerviosa , Neuroglía/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Animales , Trasplante de Células , Homeostasis , Humanos , Inmunomodulación , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Neuroglía/inmunología , Bulbo Olfatorio/citología , Bulbo Olfatorio/embriología , Bulbo Olfatorio/fisiología , Nervio Olfatorio/citología , Nervio Olfatorio/embriología , Nervio Olfatorio/fisiología , Traumatismos de los Nervios Periféricos/inmunología , Traumatismos de los Nervios Periféricos/terapia , Células de Schwann/fisiología , Células Receptoras Sensoriales/metabolismo , Transducción de Señal
9.
Bull Exp Biol Med ; 162(6): 714-717, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28432492
10.
Int J Mol Sci ; 17(3): 352, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-27005622

RESUMEN

The immune system is involved in the development of neuropathic pain. In particular, the infiltration of T-lymphocytes into the spinal cord following peripheral nerve injury has been described as a contributor to sensory hypersensitivity. We used the spared nerve injury (SNI) model of neuropathic pain in Sprague Dawley adult male rats to assess proliferation, and/or protein/gene expression levels for microglia (Iba1), T-lymphocytes (CD2) and cytotoxic T-lymphocytes (CD8). In the dorsal horn ipsilateral to SNI, Iba1 and BrdU stainings revealed microglial reactivity and proliferation, respectively, with different durations. Iba1 expression peaked at D4 and D7 at the mRNA and protein level, respectively, and was long-lasting. Proliferation occurred almost exclusively in Iba1 positive cells and peaked at D2. Gene expression observation by RT-qPCR array suggested that T-lymphocytes attracting chemokines were upregulated after SNI in rat spinal cord but only a few CD2/CD8 positive cells were found. A pronounced infiltration of CD2/CD8 positive T-cells was seen in the spinal cord injury (SCI) model used as a positive control for lymphocyte infiltration. Under these experimental conditions, we show early and long-lasting microglia reactivity in the spinal cord after SNI, but no lymphocyte infiltration was found.


Asunto(s)
Microglía/fisiología , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de la Médula Espinal/etiología , Linfocitos T/fisiología , Animales , Antígenos CD2/genética , Antígenos CD8/genética , Proteínas de Unión al Calcio/genética , Proliferación Celular , Quimiocinas/inmunología , Modelos Animales de Enfermedad , Expresión Génica , Masculino , Proteínas de Microfilamentos/genética , Microglía/metabolismo , Microglía/patología , Neuralgia , Traumatismos de los Nervios Periféricos/inmunología , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/fisiopatología , Linfocitos T/metabolismo , Linfocitos T/patología
11.
Cytokine ; 71(2): 207-14, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25461400

RESUMEN

Neuropathic pain is a debilitating condition caused by damage to the somatosensory nervous system, such as peripheral nerve injury. The immune system, and in particular the adaptive T cell response, plays a key role in mediating such pain. Regulatory T (Treg) cells are a small subpopulation of inhibitory T cells that prevent autoimmunity, limit immunopathology and maintain immune homeostasis. Here, we investigated the effects of conditional depletion of Treg cells on mechanical allodynia and serum cytokines in mice with chronic constriction injury (CCI) of the sciatic nerve, an animal model of neuropathic pain. We demonstrate that CCI induced the infiltration of small numbers of Treg cells within effected neuronal tissue. Utilising the transgenic DEREG (DEpletion of REGulatory T cells) mice, we confirmed effective depletion of Foxp3+ Treg cells by diphtheria toxin injections. Following CCI we observed a transient, though significant, increase in pain hypersensitivity for Treg-depleted DEREG mice compared to non-Treg-depleted mice. Analysis of systemic cytokine levels demonstrated significant changes in serum cytokine expression profiles. In particular, we observed significant increases in systemic concentration of RANTES, IL-2 and IL-5, and significant decreases in IL-12 and IFN-γ in nerve-injured Treg-depleted DEREG mice. Further analysis indicated a substantial increase in the serum concentration of IL-12p40 as a direct result of Treg cell depletion. These results suggest that depletion of Foxp3+ Treg cells promote nerve injury-induced pain hypersensitivity, partially by inducing altered systemic concentrations of cytokines, which may act to regulate neuropathic pain.


Asunto(s)
Citocinas/inmunología , Hiperalgesia/inmunología , Traumatismos de los Nervios Periféricos/inmunología , Linfocitos T Reguladores/inmunología , Animales , Western Blotting , Quimiocina CCL5/inmunología , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Toxina Diftérica/toxicidad , Modelos Animales de Enfermedad , Citometría de Flujo , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-12/inmunología , Interleucina-12/metabolismo , Interleucina-2/inmunología , Interleucina-2/metabolismo , Interleucina-5/inmunología , Interleucina-5/metabolismo , Depleción Linfocítica/métodos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Neuralgia/inmunología , Neuralgia/metabolismo , Neuralgia/fisiopatología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología , Nervio Ciático/inmunología , Nervio Ciático/lesiones , Nervio Ciático/fisiopatología , Índice de Severidad de la Enfermedad , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo
12.
Brain Behav Immun ; 45: 198-210, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25449579

RESUMEN

Neuropathic pain resulting from peripheral nerve injury involves many persistent neuroinflammatory processes including inflammatory chemokines that control leukocyte trafficking and activate resident cells. Several studies have shown that CCL2 chemokine, a potent attractant of monocytes, and its cognate receptor, CCR2, play a critical role in regulating nociceptive processes during neuropathic pain. However, the role of CCL2 in peripheral leukocyte infiltration-associated neuropathic pain remains poorly understood. In particular, the contribution of individual CCL2-expressing cell populations (i.e. stromal and leukocytes) to immune cell recruitment into the injured nerve has not been established. Here, in preclinical model of peripheral neuropathic pain (i.e. chronic constriction injury of the sciatic nerve), we have demonstrated that, CCL2 content was increased specifically in nerve fibers. This upregulation of CCL2 correlated with local monocyte/macrophage infiltration and pain processing. Furthermore, sciatic intraneural microinjection of CCL2 in naïve animals triggered long-lasting pain behavior associated with local monocyte/macrophage recruitment. Using a specific CCR2 antagonist and mice with a CCL2 genetic deletion, we have also established that the CCL2/CCR2 axis drives monocyte/macrophage infiltration and pain hypersensitivity in the CCI model. Finally, specific deletion of CCL2 in stromal or immune cells respectively using irradiated bone marrow-chimeric CCI mice demonstrated that stromal cell-derived CCL2 (in contrast to CCL2 immune cell-derived) tightly controls monocyte/macrophage recruitment into the lesion and plays a major role in the development of neuropathic pain. These findings demonstrate that in chronic pain states, CCL2 expressed by sciatic nerve cells predominantly drove local neuro-immune interactions and pain-related behavior through CCR2 signaling.


Asunto(s)
Quimiocina CCL2/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Neuralgia/inmunología , Traumatismos de los Nervios Periféricos/inmunología , Nervio Ciático/lesiones , Animales , Trasplante de Médula Ósea , Constricción Patológica , Hiperalgesia/genética , Hiperalgesia/inmunología , Ratones , Células Mieloides/inmunología , Ratas , Nervio Ciático/inmunología , Regulación hacia Arriba
14.
Clin Dev Immunol ; 2013: 901420, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23818916

RESUMEN

The purpose of this study is to investigate the possible different cellular marker expression associated with spinal cord microglial activation in different pain models. Immunohistochemistry and western blotting analysis of CD45, CD68, and MHC class I antigen as well as CD11b and Iba-1 in the spinal cord were quantitatively compared among widely used three pain animal models, complete Freund's adjuvant (CFA) injection, formalin injection, and chronic constriction injury (CCI) models. The results showed that significant upregulated expressions of CD45 and MHC class I antigen in spinal microglia as well as morphological changes with increased staining with CD11b and Iba-1 were seen in CCI and formalin models and not found in CFA-induced inflammatory pain model. CD68 expression was only detected in CCI model. Our findings suggested that different peripheral tissue injuries produced differential phenotypic changes associated with spinal microglial activation; peripheral nerve injury might induce spinal microglia to acquire these immunomolecular phenotypic changes.


Asunto(s)
Microglía/patología , Neuralgia/patología , Dolor/patología , Traumatismos de los Nervios Periféricos/patología , Médula Espinal/patología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/inmunología , Antígeno CD11b/genética , Antígeno CD11b/inmunología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/inmunología , Modelos Animales de Enfermedad , Formaldehído , Adyuvante de Freund , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/inmunología , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/inmunología , Microglía/inmunología , Neuralgia/inducido químicamente , Neuralgia/inmunología , Dolor/inducido químicamente , Dolor/inmunología , Traumatismos de los Nervios Periféricos/inmunología , Ratas , Ratas Sprague-Dawley , Médula Espinal/inmunología
15.
J Reconstr Microsurg ; 29(8): 495-500, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23757152

RESUMEN

Immune system augmentation, using the antigen glatiramer acetate (GA), which is known to affect cellular immunity, has been shown to have a positive effect on peripheral nerve regeneration. We aimed to compare the effect of GA on the regeneration of crushed versus transected nerves. Wild-type rats underwent crush or transection and repair of the sciatic nerve. They were examined 3 weeks postinjury histologically (axon count) and functionally (tibialis anterior muscle weight and footprint analysis). GA was found to augment regeneration both histologically and functionally. In the transected nerve, a significant increase in axon count distal to the injury site was seen in the GA group versus control. A similar yet statistically insignificant trend was found in the crushed nerve. Improvement was found in the footprint analysis between the GA and control groups in both crush and transected nerve groups. We found improvement in the footprint analysis in the crush versus transection group. GA was found to improve the regeneration of the peripheral nerve. Histologically, this was more pronounced in the transection injury. The discrepancy between the different functional measures examined may be explained by the distance of the reinnervated muscles evaluated from the injury site.


Asunto(s)
Compresión Nerviosa , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/inmunología , Péptidos/farmacología , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/inmunología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Animales , Axones , Adyuvante de Freund/farmacología , Acetato de Glatiramer , Inmunidad Celular , Músculo Esquelético/inervación , Ratas , Ratas Sprague-Dawley
16.
J Neuroinflammation ; 9: 176, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22818207

RESUMEN

BACKGROUND: The activation of the immune system in neurodegeneration has detrimental as well as beneficial effects. Which aspects of this immune response aggravate the neurodegenerative breakdown and which stimulate regeneration remains an open question. To unravel the neuroprotective aspects of the immune system we focused on a model of acute peripheral nerve injury, in which the immune system was shown to be protective. METHODS: To determine the type of immune response triggered after axotomy of the sciatic nerve, a model for Wallerian degeneration in the peripheral nervous system, we evaluated markers representing the two extremes of a type I and type II immune response (classical vs. alternative) using real-time quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemistry. RESULTS: Our results showed that acute peripheral nerve injury triggers an anti-inflammatory and immunosuppressive response, rather than a pro-inflammatory response. This was reflected by the complete absence of classical macrophage markers (iNOS, IFN γ, and IL12p40), and the strong up-regulation of tissue repair markers (arginase-1, Ym1, and Trem2). The signal favoring the alternative macrophage environment was induced immediately after nerve damage and appeared to be established within the nerve, well before the infiltration of macrophages. In addition, negative regulators of the innate immune response, as well as the anti-inflammatory cytokine IL-10 were induced. The strict regulation of the immune system dampens the potential tissue damaging effects of an over-activated response. CONCLUSIONS: We here demonstrate that acute peripheral nerve injury triggers an inherent protective environment by inducing the M2 phenotype of macrophages and the expression of arginase-1. We believe that the M2 phenotype, associated with a sterile inflammatory response and tissue repair, might explain their neuroprotective capacity. As such, shifting the neurodegeneration-induced immune responses towards an M2/Th2 response could be an important therapeutic strategy.


Asunto(s)
Macrófagos/inmunología , Macrófagos/patología , Traumatismos de los Nervios Periféricos/inmunología , Enfermedad Aguda , Animales , Inmunidad Celular/inmunología , Ratones , Ratones Endogámicos C57BL , Traumatismos de los Nervios Periféricos/patología , Sistema Nervioso Periférico/inmunología , Sistema Nervioso Periférico/patología , Degeneración Walleriana/inmunología , Degeneración Walleriana/patología
17.
Mol Pain ; 7: 74, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21951975

RESUMEN

BACKGROUND: We have previously reported that nerve injury-induced neuropathic pain is attenuated in toll-like receptor 2 (TLR2) knock-out mice. In these mice, inflammatory gene expression and spinal cord microglia actvation is compromised, whereas the effects in the dorsal root ganglia (DRG) have not been tested. In this study, we investigated the role of TLR2 in inflammatory responses in the DRG after peripheral nerve injury. RESULTS: L5 spinal nerve transection injury induced the expression of macrophage-attracting chemokines such as CCL2/MCP-1 and CCL3/MIP-1 and subsequent macrophage infiltration in the DRG of wild-type mice. In TLR2 knock-out mice, however, the induction of chemokine expression and macrophage infiltration following nerve injury were markedly reduced. Similarly, the induction of IL-1ß and TNF-α expression in the DRG by spinal nerve injury was ameliorated in TLR2 knock-out mice. The reduced inflammatory response in the DRG was accompanied by attenuation of nerve injury-induced spontaneous pain hypersensitivity in TLR2 knock-out mice. CONCLUSIONS: Our data show that TLR2 contributes to nerve injury-induced proinflammatory chemokine/cytokine gene expression and macrophage infiltration in the DRG, which may have relevance in the reduced pain hypersensitivity in TLR2 knock-out mice after spinal nerve injury.


Asunto(s)
Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Traumatismos de los Nervios Periféricos/inmunología , Traumatismos de los Nervios Periféricos/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Interleucina-1beta/metabolismo , Masculino , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Toll-Like 2/genética , Factor de Necrosis Tumoral alfa/metabolismo
18.
J Neuroinflammation ; 8: 110, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21878126

RESUMEN

In this review, we first provide a brief historical perspective, discussing how peripheral nerve injury (PNI) may have caused World War I. We then consider the initiation, progression, and resolution of the cellular inflammatory response after PNI, before comparing the PNI inflammatory response with that induced by spinal cord injury (SCI).In contrast with central nervous system (CNS) axons, those in the periphery have the remarkable ability to regenerate after injury. Nevertheless, peripheral nervous system (PNS) axon regrowth is hampered by nerve gaps created by injury. In addition, the growth-supportive milieu of PNS axons is not sustained over time, precluding long-distance regeneration. Therefore, studying PNI could be instructive for both improving PNS regeneration and recovery after CNS injury. In addition to requiring a robust regenerative response from the injured neuron itself, successful axon regeneration is dependent on the coordinated efforts of non-neuronal cells which release extracellular matrix molecules, cytokines, and growth factors that support axon regrowth. The inflammatory response is initiated by axonal disintegration in the distal nerve stump: this causes blood-nerve barrier permeabilization and activates nearby Schwann cells and resident macrophages via receptors sensitive to tissue damage. Denervated Schwann cells respond to injury by shedding myelin, proliferating, phagocytosing debris, and releasing cytokines that recruit blood-borne monocytes/macrophages. Macrophages take over the bulk of phagocytosis within days of PNI, before exiting the nerve by the circulation once remyelination has occurred. The efficacy of the PNS inflammatory response (although transient) stands in stark contrast with that of the CNS, where the response of nearby cells is associated with inhibitory scar formation, quiescence, and degeneration/apoptosis. Rather than efficiently removing debris before resolving the inflammatory response as in other tissues, macrophages infiltrating the CNS exacerbate cell death and damage by releasing toxic pro-inflammatory mediators over an extended period of time. Future research will help determine how to manipulate PNS and CNS inflammatory responses in order to improve tissue repair and functional recovery.


Asunto(s)
Inflamación/inmunología , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/inmunología , Traumatismos de los Nervios Periféricos/patología , Degeneración Walleriana/inmunología , Animales , Axones/metabolismo , Axones/patología , Humanos , Inflamación/patología , Células de Schwann/citología , Células de Schwann/metabolismo , Degeneración Walleriana/patología
19.
J Peripher Nerv Syst ; 16(4): 277-86, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22176142

RESUMEN

This 2011 Peripheral Nerve Society plenary lecture reviews the role of axonal transport in neuroimmune communication following peripheral nerve injury, linking focal changes in Schwann cell activation and release of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α) with subsequent activation and sensitization of ascending sensory neurons and glia which culminate in the neuropathic pain state. New data demonstrate that axonally transported (biotinylated) TNF-α activates and localizes with dorsal horn astrocytes within 96 h after injection into sciatic nerve, and that glial fibrillary acidic protein (GFAP) activation in these glial cells is diminished in TNF receptor 1 knockout mice. The pathophysiology, neuropathology and molecular biology of Wallerian degeneration are also reviewed from a perspective that links it to upregulation of proinflammatory cytokines and the development of neuropathic pain states. Finally, insights into neuroimmune communication provide rationale for new therapy based on interference with the processes of Wallerian degeneration, cytokine signaling and TNF-α protein sequestration.


Asunto(s)
Transporte Axonal/fisiología , Neuralgia/inmunología , Neuroinmunomodulación/fisiología , Traumatismos de los Nervios Periféricos/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Humanos , Ratones , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/metabolismo
20.
Acta Neuropathol Commun ; 9(1): 125, 2021 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-34274026

RESUMEN

Peripheral nerve injury is a serious health problem and repairing long nerve deficits remains a clinical challenge nowadays. Nerve guidance conduit (NGC) serves as the most promising alternative therapy strategy to autografts but its repairing efficiency needs improvement. In this study, we investigated whether modulating the immune microenvironment by Interleukin-17F (IL-17F) could promote NGC mediated peripheral nerve repair. Chitosan conduits were used to bridge sciatic nerve defect in IL-17F knockout mice and wild-type mice with autografts as controls. Our data revealed that IL-17F knockout mice had improved functional recovery and axonal regeneration of sciatic nerve bridged by chitosan conduits comparing to the wild-type mice. Notably, IL-17F knockout mice had enhanced anti-inflammatory macrophages in the NGC repairing microenvironment. In vitro data revealed that IL-17F knockout peritoneal and bone marrow derived macrophages had increased anti-inflammatory markers after treatment with the extracts from chitosan conduits, while higher pro-inflammatory markers were detected in the Raw264.7 macrophage cell line, wild-type peritoneal and bone marrow derived macrophages after the same treatment. The biased anti-inflammatory phenotype of macrophages by IL-17F knockout probably contributed to the improved chitosan conduit guided sciatic nerve regeneration. Additionally, IL-17F could enhance pro-inflammatory factors production in Raw264.7 cells and wild-type peritoneal macrophages. Altogether, IL-17F may partially mediate chitosan conduit induced pro-inflammatory polarization of macrophages during nerve repair. These results not only revealed a role of IL-17F in macrophage function, but also provided a unique and promising target, IL-17F, to modulate the microenvironment and enhance the peripheral nerve regeneration.


Asunto(s)
Quitosano , Regeneración Tisular Dirigida , Interleucina-17/genética , Macrófagos/inmunología , Regeneración Nerviosa/inmunología , Traumatismos de los Nervios Periféricos/inmunología , Nervio Ciático/fisiología , Animales , Interleucina-17/inmunología , Macrófagos Peritoneales/inmunología , Ratones , Ratones Noqueados , Regeneración Nerviosa/fisiología , Células RAW 264.7 , Nervio Ciático/cirugía , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA