RESUMEN
Transcription of viral mRNA in cells infected with influenza viruses involves capturing and cleaving the first 10-20 nucleotides of 5' capped host mRNAs to be used as primers in viral RNA synthesis. A newly developed inhibitor of the viral endonuclease responsible for this cap-snatching shows therapeutic efficacy for the treatment of influenza. To view this Bench to Bedside, open or download the PDF.
Asunto(s)
Gripe Humana/tratamiento farmacológico , Oxazinas/farmacología , Oxazinas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Tiepinas/farmacología , Tiepinas/uso terapéutico , Triazinas/farmacología , Triazinas/uso terapéutico , Dibenzotiepinas , Endonucleasas/genética , Humanos , Morfolinas , Orthomyxoviridae/efectos de los fármacos , Orthomyxoviridae/patogenicidad , Piridonas , Caperuzas de ARN/genética , ARN Mensajero/genética , ARN Viral/genética , Proteínas Virales/genéticaRESUMEN
All cellular proteins are synthesized by ribosomes, whose biogenesis in eukaryotes is a complex multi-step process completed within minutes. Several chemical inhibitors of ribosome function are available and used as tools or drugs. By contrast, we lack potent validated chemical probes to analyze the dynamics of eukaryotic ribosome assembly. Here, we combine chemical and genetic approaches to discover ribozinoindoles (or Rbins), potent and reversible triazinoindole-based inhibitors of eukaryotic ribosome biogenesis. Analyses of Rbin sensitivity and resistance conferring mutations in fission yeast, along with biochemical assays with recombinant proteins, provide evidence that Rbins' physiological target is Midasin, an essential â¼540-kDa AAA+ (ATPases associated with diverse cellular activities) protein. Using Rbins to acutely inhibit or activate Midasin function, in parallel experiments with inhibitor-sensitive or inhibitor-resistant cells, we uncover Midasin's role in assembling Nsa1 particles, nucleolar precursors of the 60S subunit. Together, our findings demonstrate that Rbins are powerful probes for eukaryotic ribosome assembly.
Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Indoles/farmacología , Subunidades Ribosómicas Grandes de Eucariotas/efectos de los fármacos , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Schizosaccharomyces pombe/antagonistas & inhibidores , Triazinas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Indoles/química , Indoles/aislamiento & purificación , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/metabolismo , Relación Estructura-Actividad , Triazinas/química , Triazinas/aislamiento & purificaciónRESUMEN
Context-specific molecular vulnerabilities that arise during tumor evolution represent an attractive intervention target class. However, the frequency and diversity of somatic lesions detected among lung tumors can confound efforts to identify these targets. To confront this challenge, we have applied parallel screening of chemical and genetic perturbations within a panel of molecularly annotated NSCLC lines to identify intervention opportunities tightly linked to molecular response indicators predictive of target sensitivity. Anchoring this analysis on a matched tumor/normal cell model from a lung adenocarcinoma patient identified three distinct target/response-indicator pairings that are represented with significant frequencies (6%-16%) in the patient population. These include NLRP3 mutation/inflammasome activation-dependent FLIP addiction, co-occurring KRAS and LKB1 mutation-driven COPI addiction, and selective sensitivity to a synthetic indolotriazine that is specified by a seven-gene expression signature. Target efficacies were validated in vivo, and mechanism-of-action studies informed generalizable principles underpinning cancer cell biology.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Indoles/farmacología , Neoplasias Pulmonares/metabolismo , Triazinas/farmacología , Animales , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Portadoras , Línea Celular Tumoral , Proteína Coatómero/metabolismo , Femenino , Genes ras , Xenoinjertos , Humanos , Neoplasias Pulmonares/patología , Lisosomas/metabolismo , Ratones , Terapia Molecular Dirigida , Proteína con Dominio Pirina 3 de la Familia NLR , Trasplante de Neoplasias , Fosforilación OxidativaRESUMEN
The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants1,2. The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries3. Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone4, we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants.
Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/farmacología , Anticuerpos Antivirales/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/genética , COVID-19/inmunología , COVID-19/virología , Cricetinae , Citidina/análogos & derivados , Combinación de Medicamentos , Hidroxilaminas , Indazoles , Lactamas , Leucina , Ratones , Nitrilos , Prolina , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Triazinas , TriazolesRESUMEN
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.
Asunto(s)
Antivirales/análisis , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/efectos de los fármacos , Betacoronavirus/crecimiento & desarrollo , COVID-19 , Línea Celular , Inhibidores de Cisteína Proteinasa/análisis , Inhibidores de Cisteína Proteinasa/farmacología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidrazonas , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Morfolinas/análisis , Morfolinas/farmacología , Pandemias , Pirimidinas , Reproducibilidad de los Resultados , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Triazinas/análisis , Triazinas/farmacología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19RESUMEN
BACKGROUND: Capmatinib has previously shown activity in treatment-naive and previously treated patients with non-small-cell lung cancer (NSCLC) and a MET exon 14-skipping mutation (METex14). Here, we report the final outcomes from the phase 2 GEOMETRY mono-1 study with an aim to provide further evidence for the activity of capmatinib. METHODS: In this non-randomised, multi-cohort, open-label, phase 2 trial conducted in 152 centres and hospitals in 25 countries, with patients treated in 95 centres in 20 countries, eligible patients (aged ≥18 years) with MET-dysregulated, EGFR wild-type, and ALK rearrangement-negative advanced NSCLC (stage IIIB/IV) and an Eastern Cooperative Oncology Group performance status of 0 or 1 were assigned to cohorts (1a, 1b, 2, 3, 4, 5a, 5b, 6 and 7) based on their MET status (METex14 or MET amplification) and previous therapy lines. Patients received capmatinib (400 mg orally twice daily) in 21-day treatment cycles. The primary endpoint was overall response rate by blinded independent central review per Response Evaluation Criteria in Solid Tumours version 1.1 and was performed on the full analysis set (all patients who received at least one dose of capmatinib). Previous reports of this study had published interim or primary data for cohorts 1-7. Here, we report the final clinical outcomes from all METex14 cohorts (4, 5b, 6, and 7) and safety from all study cohorts (1-7). The trial is registered with ClinicalTrials.gov, NCT02414139, and has been completed. FINDINGS: Of 373 treated patients enrolled from June 11, 2015, to March 12, 2020, 160 (97 [61%] female) patients had METex14 NSCLC and were enrolled in four cohorts: 60 treatment-naive (cohorts 5b and 7) and 100 previously treated (cohorts 4 and 6). The overall median study follow-up was 46·4 months (IQR 41·8-65·4) for the treatment-naïve patients and 66·9 months (56·7-73·9) for previously treated patients, respectively. Overall responses were recorded in 41 (68%; 95% CI 55·0-79·7) of 60 treatment-naive patients and 44 (44%; 95% CI 34·1-54·3) of 100 previously treated patients. In all 373 treated patients, the most common treatment-related adverse events were peripheral oedema (n=174; 47%), nausea (n=130; 35%), increased blood creatinine (n=78; 21%), and vomiting (n=74; 20%). Grade 3-4 serious adverse events occurred in 164 (44%) patients, dyspnoea being the most common (18 patients [5%]). Treatment-related deaths occurred in four (1%) patients (one each of cardiac arrest, hepatitis, organising pneumonia, and pneumonitis). No new safety signals were reported. INTERPRETATION: These long-term results support METex14 as a targetable oncogenic driver in NSCLC and add to the evidence supporting capmatinib as a targeted treatment option for treatment-naive and previously treated patients with METex14 NSCLC. FUNDING: Novartis Pharmaceuticals.
Asunto(s)
Benzamidas , Carcinoma de Pulmón de Células no Pequeñas , Exones , Neoplasias Pulmonares , Mutación , Proteínas Proto-Oncogénicas c-met , Triazinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Proto-Oncogénicas c-met/genética , Femenino , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Anciano , Triazinas/uso terapéutico , Triazinas/efectos adversos , Triazinas/administración & dosificación , Benzamidas/efectos adversos , Adulto , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/administración & dosificación , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , ImidazolesRESUMEN
BACKGROUND: The PI3K-mTOR pathway is frequently dysregulated in breast cancer. Combining an inhibitor targeting all class I PI3K isoforms and mTOR complex 1 (mTORC1)-mTOR complex 2 (mTORC2) with endocrine therapy and a CDK4/6 inhibitor might provide more effective tumour control than standard-of-care therapy. To evaluate this hypothesis, gedatolisib, a pan-PI3K-mTOR inhibitor, was assessed in a phase 1b trial combined with palbociclib and endocrine therapy in patients with hormone receptor-positive, HER2-negative, advanced breast cancer. Results from the dose expansion portion of this trial are reported herein. METHODS: This multicentre, open-label, phase 1b study recruited female patients aged at least 18 years from 17 sites across the USA with hormone-receptor-positive, HER2-negative, advanced breast cancer and an Eastern Cooperative Oncology Group performance status of 0-1. Four patient groups were studied in the dose expansion portion of the study: treatment-naive in the advanced setting (first line; group A), progression on 1-2 lines of endocrine therapy but CDK4/6 inhibitor-naive (group B); and one or more previous lines (second-line and higher) of therapy, including a CDK4/6 inhibitor (groups C and D). Gedatolisib 180 mg was administered intravenously weekly in 28-day treatment cycles for groups A-C, and on days 1, 8, and 15 for group D. Letrozole (group A), fulvestrant (groups B-D), and palbociclib (all groups) were administered at standard doses and schedules. The primary endpoint was investigator-assessed objective response rate per RECIST version 1.1 in the evaluable analysis set. This trial is completed and registered with ClinicalTrials.gov, NCT02684032. FINDINGS: Between Dec 19, 2017, and June 19, 2019, 103 female participants were enrolled in the dose expansion groups A (n=31), B (n=13), C (n=32), and D (n=27). Median follow-up was 16·6 months (IQR 5·7-48·4) for group A, 11·0 months (7·6-16·9) for group B, 3·6 months (1·8-7·5) for group C, and 9·4 months (5·3-16·7) for group D for the primary endpoint. Gedatolisib, palbociclib, and endocrine therapy induced an objective response in 23 (85·2%; 90% CI 69·2-94·8) of 27 evaluable first-line participants (group A). In the second-line and higher setting, an objective response was observed in eight (61·5%; 90% CI 35·5-83·4) of 13 evaluable group B participants, seven (25·0%; 12·4-41·9) of 28 evaluable group C participants, and 15 (55·6%; 38·2-72·0) of 27 evaluable group D participants; this included participants with both wild-type and mutated PIK3CA tumours. The most common grade 3-4 treatment-related adverse events were neutropenia (65 [63%] of 103), stomatitis (28 [27%]), and rash (21 [20%]). Grade 3-4 hyperglycaemia was reported in six (6%) participants. 23 (22%) of 103 participants had a treatment-related serious adverse event, and there were no treatment-related deaths. Nine (9%) participants discontinued treatment because of a treatment-emergent adverse event. INTERPRETATION: Gedatolisib plus palbociclib and endocrine therapy showed a promising objective response rate compared with the published results for standard-of-care therapies and had an acceptable safety profile. FUNDING: Pfizer and Celcuity.
Asunto(s)
Neoplasias de la Mama , Morfolinas , Piperazinas , Piridinas , Triazinas , Femenino , Humanos , Adolescente , Adulto , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptor ErbB-2/metabolismo , Supervivencia sin Enfermedad , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Serina-Treonina Quinasas TORRESUMEN
RsgA (small ribosomal subunit, 30S, GTPase), a late-stage biogenesis factor, releases RbfA from 30S-RbfA complex. Escherichia coli ΔrsgA (deleted for rsgA) shows a slow growth phenotype and an increased accumulation of 17S rRNA (precursor of 16S rRNA) and the ribosomal subunits. Here, we show that the rescue of the ΔrsgA strain by multicopy infB (IF2) is enhanced by simultaneous overexpression of initiator tRNA (i-tRNA), suggesting a role of initiation complex formation in growth rescue. The synergistic effect of IF2/i-tRNA is accompanied by increased processing of 17S rRNA (to 16S), and protection of the 16S rRNA 3'-minor domain. Importantly, we show that an IF2-binding anticonvulsant drug, lamotrigine (Ltg), also rescues the ΔrsgA strain growth. The rescue is accompanied by increased processing of 17S rRNA, protection of the 3'-minor domain of 16S rRNA, and increased 70S ribosomes in polysome profiles. However, Ltg becomes inhibitory to the ΔrsgA strain whose growth was already rescued by an L83R mutation in rbfA. Interestingly, like wild-type infB, overproduction of LtgRinfB alleles (having indel mutations in their domain II) also rescues the ΔrsgA strain (independent of Ltg). Our observations suggest the dual role of IF2 in rescuing the ΔrsgA strain. First, together with i-tRNA, IF2 facilitates the final steps of processing of 17S rRNA. Second, a conformer of IF2 functionally compensates for RsgA, albeit poorly, during 30S biogenesis. IMPORTANCE: RsgA is a late-stage ribosome biogenesis factor. Earlier, infB (IF2) was isolated as a multicopy suppressor of the Escherichia coli ΔrsgA strain. How IF2 rescued the strain growth remained unclear. This study reveals that (i) the multicopy infB-mediated growth rescue of E. coli ΔrsgA and the processing of 17S precursor to 16S rRNA in the strain are enhanced upon simultaneous overexpression of initiator tRNA and (ii) a conformer of IF2, whose occurrence increases when IF2 is overproduced or when E. coli ΔrsgA is treated with Ltg (an anticonvulsant drug that binds to domain II of IF2), compensates for the function of RsgA. Thus, this study reveals yet another role of IF2 in ribosome biogenesis.
Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Lamotrigina , Ribosomas , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Lamotrigina/farmacología , Ribosomas/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/genética , ARN Ribosómico 16S/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/genética , Triazinas/farmacología , Triazinas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , GTP FosfohidrolasasRESUMEN
Quinone analogue molecules, functioning as herbicides, bind to the secondary quinone site, QB, in type-II photosynthetic reaction centers, including those from purple bacteria (PbRC). Here, we investigated the impact of herbicide binding on electron transfer branches, using herbicide-bound PbRC crystal structures and employing the linear Poisson-Boltzmann equation. In contrast to urea and phenolic herbicides [Fufezan, C. Biochemistry 2005, 44, 12780-12789], binding of atrazine and triazine did not cause significant changes in the redox-potential (Em) values of the primary quinone (QA) in these crystal structures. However, a slight Em difference at the bacteriopheophytin in the electron transfer inactive branch (HM) was observed between the S(-)- and R(+)-triazine-bound PbRC structures. This discrepancy is linked to variations in the protonation pattern of the tightly coupled Glu-L212 and Glu-H177 pairs, crucial components of the proton uptake pathway in native PbRC. These findings suggest the existence of a QB-mediated link between the electron transfer inactive HM and the proton uptake pathway in PbRCs.
Asunto(s)
Atrazina , Herbicidas , Proteínas del Complejo del Centro de Reacción Fotosintética , Triazinas , Herbicidas/química , Herbicidas/metabolismo , Atrazina/química , Atrazina/metabolismo , Transporte de Electrón , Triazinas/química , Triazinas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Oxidación-Reducción , Modelos Moleculares , Rhodobacter sphaeroides/metabolismo , Cristalografía por Rayos XRESUMEN
Vital to the treatment of influenza is the use of antivirals such as Oseltamivir (Tamiflu) and Zanamivir (Relenza); however, antiviral resistance is becoming an increasing problem for these therapeutics. The RNA-dependent RNA polymerase acidic N-terminal (PAN) endonuclease, a critical component of influenza viral replication machinery, is an antiviral target that was recently validated with the approval of Baloxavir Marboxil (BXM). Despite its clinical success, BXM has demonstrated susceptibility to resistance mutations, specifically the I38T, E23K, and A36 V mutants of PAN. To better understand the effects of these mutations on BXM resistance and improve the design of more robust therapeutics, this study examines key differences in protein-inhibitor interactions with two inhibitors and the I38T, E23K, and A36 V mutants. Differences in inhibitor binding were evaluated by measuring changes in binding to PAN using two biophysical methods. The binding mode of two distinct inhibitors was determined crystallographically with both wild-type and mutant forms of PAN. Collectively, these studies give some insight into the mechanism of antiviral resistance of these mutants.
Asunto(s)
Dibenzotiepinas , Gripe Humana , Morfolinas , Tiepinas , Humanos , Oxazinas , Piridinas/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Endonucleasas/genética , Tiepinas/farmacología , Tiepinas/uso terapéutico , Piridonas/uso terapéutico , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Zanamivir/uso terapéutico , Triazinas/farmacología , Triazinas/uso terapéuticoRESUMEN
Coccidia of the genus Eimeria are specialized intracellular parasitic protozoa that cause severe coccidiosis when they infect their hosts. Animals infected with Eimeria develop clinical symptoms, such as anorexia, diarrhea, and hematochezia, which can even cause death. Although the current preferred regimen for the treatment of coccidiosis is antibiotics, this treatment strategy is limited by the ban on antibiotics and the growing problem of drug resistance. Therefore, the exploration of alternative methods for controlling coccidiosis has attracted much attention. Lactobacillus plantarum has been shown to have many beneficial effects. In this study, L. plantarum M2 was used as a research object to investigate the effect of L. plantarum on intestinal inflammation induced by infection with Eimeria falciformis in mice by detecting indicators, such as oocyst output, serum cytokines, and the intestinal microbiota. Compared with that in the infection group, the percent weight loss of the mice that were administered with L. plantarum M2 was significantly reduced (P < 0.05). Supplemented L. plantarum M2 and probiotics combined with diclazuril can reduce the total oocyst output significantly (P < 0.05, P < 0.001). L. plantarum M2 had outstanding performance in maintaining intestinal barrier function, and the levels of the mucin MUC1 and the tight junction protein E-cadherin were significantly elevated (P < 0.01, P < 0.05). Studies have shown that probiotic supplementation can alleviate adverse reactions after infection and significantly improve intestinal barrier function. In addition, probiotics combined with diclazuril could optimize the partial efficacy of diclazuril, which not only enhanced the effect of antibiotics but also alleviated their adverse effects. This study expands the application of probiotics, provides new ideas for alternative strategies for coccidia control, and suggests a basis for related research on lactobacilli antagonizing intracellular pathogen infection.IMPORTANCECoccidia of the genus Eimeria are specialized intracellular parasitic protozoa, and the current preferred regimen for the treatment of coccidiosis is antibiotics. However, due to antibiotic bans and drug resistance, the exploration of alternative methods for controlling coccidiosis has attracted much attention. In this work, we focused on Lactobacillus plantarum M2 and found that probiotic supplementation can alleviate adverse reactions after infection and improve intestinal barrier function. This study proposes the possibility of using lactic acid bacteria to control coccidiosis, and its potential mechanism needs further exploration.
Asunto(s)
Coccidiosis , Eimeria , Lactobacillus plantarum , Probióticos , Animales , Coccidiosis/parasitología , Eimeria/efectos de los fármacos , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Ratones , Citocinas/sangre , Citocinas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Oocistos , Modelos Animales de Enfermedad , Nitrilos , TriazinasRESUMEN
Artificial photosynthesis represents a sustainable strategy for accessing high-value chemicals; however, the conversion efficiency is significantly limited by its difficulty in the cycle of coenzymes such as NADH. In this study, we report a series of isostructural triazine covalent organic frameworks (COFs) and explore their N-substituted microenvironment-dependent photocatalytic activity for NADH regeneration. We discovered that the rational alteration of N-heterocyclic species, which are linked to the triazine center through an imine linkage, can significantly regulate both the electron band structure and planarity of a COF layer. This results in different separation efficiencies of the photoinduced electron-hole pairs and electron transfer behavior within and between individual layers. The optimal COF catalyst herein achieves an NADH regeneration capacity of 89% within 20 min, outperforming most of the reported nanomaterial photocatalysts. Based on this, an artificial photosynthesis system is constructed for the green synthesis of a high-value compound, L-glutamate, and its conversion efficiency significantly surpasses the enzymatic approach without the NADH photocatalytic cycle. This work offers new insights into the coenzyme regeneration by means of regulating the distal heterocyclic microenvironment of a COF skeleton, holding great potential for the green photosynthesis of important chemicals.
Asunto(s)
Estructuras Metalorgánicas , Triazinas , Triazinas/química , Catálisis , Estructuras Metalorgánicas/química , NAD/química , NAD/metabolismo , Procesos Fotoquímicos , Estructura Molecular , Coenzimas/química , Coenzimas/metabolismo , FotosíntesisRESUMEN
BACKGROUND: Pediatric-type diffuse high-grade glioma (pHGG) is the most frequent malignant brain tumor in children and can be subclassified into multiple entities. Fusion genes activating the MET receptor tyrosine kinase often occur in infant-type hemispheric glioma (IHG) but also in other pHGG and are associated with devastating morbidity and mortality. METHODS: To identify new treatment options, we established and characterized two novel orthotopic mouse models harboring distinct MET fusions. These included an immunocompetent, murine allograft model and patient-derived orthotopic xenografts (PDOX) from a MET-fusion IHG patient who failed conventional therapy and targeted therapy with cabozantinib. With these models, we analyzed the efficacy and pharmacokinetic properties of three MET inhibitors, capmatinib, crizotinib and cabozantinib, alone or combined with radiotherapy. RESULTS: Capmatinib showed superior brain pharmacokinetic properties and greater in vitro and in vivo efficacy than cabozantinib or crizotinib in both models. The PDOX models recapitulated the poor efficacy of cabozantinib experienced by the patient. In contrast, capmatinib extended survival and induced long-term progression-free survival when combined with radiotherapy in two complementary mouse models. Capmatinib treatment increased radiation-induced DNA double-strand breaks and delayed their repair. CONCLUSIONS: We comprehensively investigated the combination of MET inhibition and radiotherapy as a novel treatment option for MET-driven pHGG. Our seminal preclinical data package includes pharmacokinetic characterization, recapitulation of clinical outcomes, coinciding results from multiple complementing in vivo studies, and insights into molecular mechanism underlying increased efficacy. Taken together, we demonstrate the groundbreaking efficacy of capmatinib and radiation as a highly promising concept for future clinical trials.
Asunto(s)
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogénicas c-met , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Glioma/patología , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/terapia , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Ratones , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Benzamidas/farmacología , Benzamidas/uso terapéutico , Línea Celular Tumoral , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Femenino , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Crizotinib/farmacología , Crizotinib/uso terapéutico , Modelos Animales de Enfermedad , Niño , Clasificación del Tumor , Anilidas/farmacología , Imidazoles , TriazinasRESUMEN
Using the GISAID EpiCoV database, we identified 256 COVID-19 patients in Japan during March 31-December 31, 2023, who had mutations in the SARS-CoV-2 nonstructural protein 5 conferring ensitrelvir resistance. Ongoing genomic surveillance is required to monitor emergence of SARS-CoV-2 mutations that are resistant to anticoronaviral drugs.
Asunto(s)
Antivirales , COVID-19 , Farmacorresistencia Viral , Mutación , SARS-CoV-2 , Humanos , Japón/epidemiología , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/virología , Farmacorresistencia Viral/genética , Antivirales/uso terapéutico , Antivirales/farmacología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Proteínas no Estructurales Virales/genética , Tratamiento Farmacológico de COVID-19 , Indazoles , Triazinas , TriazolesRESUMEN
Since 2013, a total of 167 human infections with swine-origin (variant) influenza A viruses of A(H1N1)v, A(H1N2)v, and A(H3N2)v subtypes have been reported in the United States. Analysis of 147 genome sequences revealed that nearly all had S31N substitution, an M2 channel blocker-resistance marker, whereas neuraminidase inhibitor-resistance markers were not found. Two viruses had a polymerase acidic substitution (I38M or E199G) associated with decreased susceptibility to baloxavir, an inhibitor of viral cap-dependent endonuclease (CEN). Using phenotypic assays, we established subtype-specific susceptibility baselines for neuraminidase and CEN inhibitors. When compared with either baseline or CEN-sequence-matched controls, only the I38M substitution decreased baloxavir susceptibility, by 27-fold. Human monoclonal antibodies FI6v3 and CR9114 targeting the hemagglutinin's stem showed variable (0.03 to >10 µg/mL) neutralizing activity toward variant viruses, even within the same clade. Methodology and interpretation of laboratory data described in this study provide information for risk assessment and decision-making on therapeutic control measures.
Asunto(s)
Antivirales , Farmacorresistencia Viral , Gripe Humana , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Gripe Humana/virología , Gripe Humana/epidemiología , Gripe Humana/tratamiento farmacológico , Farmacorresistencia Viral/genética , Estados Unidos/epidemiología , Animales , Porcinos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Dibenzotiepinas , Morfolinas/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Piridonas/farmacología , Triazinas/farmacología , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/efectos de los fármacosRESUMEN
PURPOSE: The purpose of this study was to evaluate the effect of UGT1A4 and UGT2B7 polymorphisms on the plasma concentration of lamotrigine in Chinese patients with bipolar disorder. METHODS: A total of 104 patients were included in this study. Steady-state plasma lamotrigine concentrations were determined in each patient after at least 21â days of continuous treatment with a set dose of the drug. Lamotrigine plasma concentrations were ascertained using ultra-performance liquid chromatography. Simultaneously, plasma samples were used for patient genotyping. RESULTS: The age, sex, BMI, daily lamotrigine dose, plasma lamotrigine concentration, and lamotrigine concentration/dose ratio of patients exhibited significant differences, and these were associated with differences in the genotype [ UGT1A4 -142T>G and UGT2B7 -161C>T ( P â <â 0.05)]. Patients with the GG and GT genotypes in UGT1A4 -142T>G had significantly higher lamotrigine concentration/dose values (1.6â ±â 1.1 and 1.7â ±â 0.5â µg/ml per mg/kg) than those with the TT genotype (1.4â ±â 1.1â µg/ml per mg/kg). Likewise, patients with the UGT2B7 -161C>T TT genotype had significantly higher lamotrigine concentration/dose values (1.6â ±â 1.1â µg/ml per mg/kg) than those with the CC genotype (1.3â ±â 1.3â µg/ml per mg/kg). Multiple linear regression analysis showed that sex, lamotrigine dose, UGT1A4 -142T>G, and UGT2B7 -161C>T were the most important factors influencing lamotrigine pharmacokinetics ( P â <â 0.001). CONCLUSION: The study results suggest that the UGT1A4 -142T>G and UGT2B7 -161C>T polymorphisms affect lamotrigine plasma concentrations in patients with bipolar disorder.
Asunto(s)
Trastorno Bipolar , Glucuronosiltransferasa , Lamotrigina , Triazinas , Humanos , Lamotrigina/sangre , Lamotrigina/farmacocinética , Lamotrigina/administración & dosificación , Lamotrigina/uso terapéutico , Glucuronosiltransferasa/genética , Masculino , Femenino , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Trastorno Bipolar/sangre , Adulto , Triazinas/farmacocinética , Triazinas/sangre , Triazinas/administración & dosificación , Triazinas/uso terapéutico , Persona de Mediana Edad , Genotipo , Polimorfismo de Nucleótido Simple/genética , Pueblo Asiatico/genéticaRESUMEN
During development, embryos and foetuses may be exposed to maternally ingested antiseizure medications (ASM), valproate and lamotrigine, essential in some patients to control their epilepsy symptoms. Often, the two drugs are co-administered to reduce required doses of valproate, a known potential teratogen. This study used Genetic Absence Epilepsy Rat from Strasbourg to evaluate transfer of valproate and lamotrigine across late gestation placenta and their entry into cerebrospinal fluid (CSF) and brain of developing rats, in mono- and combination therapies. Animals at embryonic day (E) 19, postnatal day (P) 0, 4 and 21, and adults were administered valproate (30 mg/kg) or lamotrigine (6 mg/kg) with their respective [3H]-tracers, either alone or in combination. In chronic experiments, females consumed valproate-containing diet from 2 weeks prior to mating until offspring were used at E19 and P0. Drugs were injected 30 min before blood, CSF and brain samples were collected from terminally anaesthetised animals. Radioactivity in samples was measured. In acute monotherapy brain entry of valproate was higher in foetal than postnatal animals, correlating with its plasma protein binding. Brain entry of lamotrigine was not age-dependent. Combination therapy enhanced entry of lamotrigine into the adult brain but had no effects on brain and CSF entry of valproate. Following chronic valproate exposure, placental transfer of valproate decreased in combination therapy; however, foetal brain entry increased. Results suggest that during pregnancy, the use of combination therapy of valproate and lamotrigine may mitigate overall foetal exposure to valproate but potential risks to foetal brain development are less clear.
Asunto(s)
Anticonvulsivantes , Encéfalo , Epilepsia Tipo Ausencia , Lamotrigina , Placenta , Triazinas , Ácido Valproico , Animales , Femenino , Embarazo , Anticonvulsivantes/administración & dosificación , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/metabolismo , Ratas , Placenta/metabolismo , Placenta/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Triazinas/administración & dosificación , Intercambio Materno-Fetal , MasculinoRESUMEN
Babesia and Plasmodium pathogens, the causative agents of babesiosis and malaria, are vector-borne intraerythrocytic protozoan parasites, posing significant threats to both human and animal health. The widespread resistance exhibited by these pathogens to various classes of antiparasitic drugs underscores the need for the development of novel and more effective therapeutic strategies. Antifolates have long been recognized as attractive antiparasitic drugs as they target the folate pathway, which is essential for the biosynthesis of purines and pyrimidines, and thus is vital for the survival and proliferation of protozoan parasites. More efficacious and safer analogs within this class are needed to overcome challenges due to resistance to commonly used antifolates, such as pyrimethamine, and to address liabilities associated with the dihydrotriazines, WR99210 and JPC-2067. Here, we utilized an in vitro culture condition suitable for the continuous propagation of Babesia duncani, Babesia divergens, Babesia MO1, and Plasmodium falciparum in human erythrocytes to screen a library of 50 dihydrotriazines and 29 biguanides for their efficacy in vitro and compared their potency and therapeutic indices across different species and isolates. We identified nine analogs that inhibit the growth of all species, including the P. falciparum pyrimethamine-resistant strain HB3, with IC50 values below 10 nM, and display excellent in vitro therapeutic indices. These compounds hold substantial promise as lead antifolates for further development as broad-spectrum antiparasitic drugs.
Asunto(s)
Babesia , Eritrocitos , Plasmodium falciparum , Triazinas , Triazinas/farmacología , Humanos , Babesia/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Eritrocitos/parasitología , Eritrocitos/efectos de los fármacos , Babesiosis/tratamiento farmacológico , Babesiosis/parasitología , Antimaláricos/farmacología , Pruebas de Sensibilidad Parasitaria , Antagonistas del Ácido Fólico/farmacologíaRESUMEN
Antiviral susceptibility of influenza viruses was assessed using a high-content imaging-based neutralization test. Cap-dependent endonuclease inhibitors, baloxavir and AV5116, were superior to AV5115 against type A viruses, and AV5116 was most effective against PA mutants tested. However, these three inhibitors displayed comparable activity (EC50 8-22 nM) against type C viruses from six lineages. Banana lectin and a monoclonal antibody, YA3, targeting the hemagglutinin-esterase protein effectively neutralized some, but not all, type C viruses.
Asunto(s)
Antivirales , Dibenzotiepinas , Triazinas , Antivirales/farmacología , Humanos , Triazinas/farmacología , Dibenzotiepinas/farmacología , Gammainfluenzavirus/efectos de los fármacos , Gammainfluenzavirus/genética , Morfolinas/farmacología , Piridonas/farmacología , Animales , Anticuerpos Monoclonales/farmacología , Células de Riñón Canino Madin Darby , Perros , Ciclopropanos/farmacología , Virus de la Influenza A/efectos de los fármacos , Pruebas de Neutralización , Piridinas/farmacologíaRESUMEN
We evaluated the efficacy of ensitrelvir for the treatment of cough due to coronavirus disease 2019 Omicron variant in medical healthcare workers. A total of 633 patients were registered in this study: 206 patients chose ensitrelvir and 427 patients chose symptomatic treatment. Difference in score changes using the Leicester Cough Questionnaire between groups was 3.17 on day 4, 3.24 on day 7, and 2.46 on day 14. The analysis demonstrated a significant difference at all time points.