Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.240
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Plant ; 176(3): e14364, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837226

RESUMEN

Phytoremediation is a promising technology for removing the high-toxic explosive 2,4,6-trinitrotoluene (TNT) pollutant from the environment. Mining dominant genes is the key research direction of this technology. Most previous studies have focused on the detoxification of TNT rather than plants' TNT tolerance. Here, we conducted a transcriptomic analysis of wild type Arabidopsis plants under TNT stress and found that the Arabidopsis cytochrome P450 gene CYP81D11 was significantly induced in TNT-treated plants. Under TNT stress, the root length was approximately 1.4 times longer in CYP81D11-overexpressing transgenic plants than in wild type plants. The half-removal time for TNT was much shorter in CYP81D11-overexpressing transgenic plants (1.1 days) than in wild type plants (t1/2 = 2.2 day). In addition, metabolic analysis showed no difference in metabolites in transgenic plants compared to wild type plants. These results suggest that the high TNT uptake rates of CYP81D11-overexpressing transgenic plants were most likely due to increased tolerance and biomass rather than TNT degradation. However, CYP81D11-overexpressing plants were not more tolerant to osmotic stresses, such as salt or drought. Taken together, our results indicate that CYP81D11 is a promising target for producing bioengineered plants with high TNT removing capability.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Biodegradación Ambiental , Sistema Enzimático del Citocromo P-450 , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Trinitrotolueno , Arabidopsis/genética , Arabidopsis/metabolismo , Trinitrotolueno/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Fisiológico/genética
2.
Environ Res ; 252(Pt 1): 118820, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555093

RESUMEN

As a typical energetic compound widely used in military activities, 2,4,6-trinitrotoluene (TNT) has attracted great attention in recent years due to its heavy pollution and wide distribution in and around the training facilities, firing ranges, and demolition sites. However, the subcellular targets and the underlying toxic mechanism of TNT remain largely unknown. In this study, we explored the toxic effects of TNT biological reduction on the mitochondrial function and homeostasis in Caenorhabditis elegans (C. elegans). With short-term exposure of L4 larvae, 10-1000 ng/mL TNT reduced mitochondrial membrane potential and adenosine triphosphate (ATP) content, which was associated with decreased expression of specific mitochondrial complex involving gas-1 and mev-1 genes. Using fluorescence-labeled transgenic nematodes, we found that fluorescence expression of sod-3 (muls84) and gst-4 (dvls19) was increased, suggesting that TNT disrupted the mitochondrial antioxidant defense system. Furthermore, 10 ng/mL TNT exposure increased the expression of the autophagy-related gene pink-1 and activated mitochondrial unfolded protein response (mt UPR), which was indicated by the increased expression of mitochondrial stress activated transcription factor atfs-1, ubiquitin-like protein ubl-5, and homeobox protein dve-1. Our findings demonstrated that TNT biological reduction caused mitochondrial dysfunction and the development of mt UPR protective stress responses, and provided a basis for determining the potential risks of energetic compounds to living organisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mitocondrias , Trinitrotolueno , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Trinitrotolueno/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transporte de Electrón/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Adenosina Trifosfato/metabolismo
3.
Environ Res ; 251(Pt 2): 118640, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479720

RESUMEN

The effects of long-term ammunition pollution on microecological characteristics were analyzed to formulate microbial remediation strategies. Specifically, the response of enzyme systems, N/O stable isotopes, ion networks, and microbial community structure/function levels were analyzed in long-term (50 years) ammunition-contaminated water/sediments from a contamination site, and a compound bacterial agent capable of efficiently degrading trinitrotoluene (TNT) while tolerating many heavy metals was selected to remediate the ammunition-contaminated soil. The basic physical and chemical properties of the water/sediment (pH (up: 0.57-0.64), nitrate (up: 1.31-4.28 times), nitrite (up: 1.51-5.03 times), and ammonium (up: 7.06-70.93 times)) were changed significantly, and the significant differences in stable isotope ratios of N and O (nitrate nitrogen) confirmed the degradability of TNT by indigenous microorganisms exposed to long-term pollution. Heavy metals, such as Pb, Zn, Cu, Cd, Cs, and Sb, have synergistic toxic effects in ammunition-contaminated sites, and significantly decreased the microbial diversity and richness in the core pollution area. However, long-term exposure in the edge pollution area induced microorganisms to use TNT as a carbon and nitrogen sources for life activities and growth and development. The Bacteroidales microbial group was significantly inhibited by ammunition contamination, whereas microorganisms such as Proteobacteria, Acidobacteriota, and Comamonadaceae gradually adapted to this environmental stress by regulating their development and stress responses. Ammunition pollution significantly affected DNA replication and gene regulation in the microecological genetic networks and increased the risk to human health. Mg and K were significantly involved in the internal mechanism of microbial transport, enrichment, and metabolism of TNT. Nine strains of TNT-utilizing microbes were screened for efficient TNT degradation and tolerance to typical heavy metals (copper, zinc and lead) found in contaminated sites, and a compound bacterial agent prepared for effective repair of ammunition-contaminated soil significantly improved the soil ecological environment.


Asunto(s)
Sedimentos Geológicos , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Biodegradación Ambiental , Metales Pesados/toxicidad , Metales Pesados/análisis , Bacterias/metabolismo , Sustancias Explosivas/metabolismo , Trinitrotolueno/metabolismo
4.
Arch Microbiol ; 205(7): 271, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37358740

RESUMEN

Isolation of hydrocarbon-degrading bacteria is a key step for the study of microbiological diversity, metabolic pathways, and bioremediation. However current strategies lack simplicity and versatility. We developed an easy method for the screening and isolation of bacterial colonies capable of degrading hydrocarbons, such as diesel or polycyclic aromatic hydrocarbons (PAHs), as well as the pollutant explosive, 2,4,6-trinitrotoluene (TNT). The method uses a two-layer solid medium, with a layer of M9 medium, and a second layer containing the carbon source deposited through the evaporation of ethanol. Using this medium we grew hydrocarbon-degrading strains, as well as TNT-degrading isolates. We were able to isolate PAHs-degrading bacterial colonies directly from diesel-polluted soils. As a proof of concept, we used this method to isolate a phenanthrene-degrading bacteria, identified as Acinetobacter sp. and determined its ability to biodegrade this hydrocarbon.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Trinitrotolueno , Hidrocarburos Policíclicos Aromáticos/metabolismo , Trinitrotolueno/metabolismo , Bacterias , Biodegradación Ambiental , Contaminantes Ambientales/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
5.
Environ Sci Technol ; 57(13): 5284-5295, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36961098

RESUMEN

No single linear free energy relationship (LFER) exists that can predict reduction rate constants of all munition constituents (MCs). To address this knowledge gap, we measured the reduction rates of MCs and their surrogates including nitroaromatics [NACs; 2,4,6-trinitrotoluene (TNT), 2,4-dinitroanisole (DNAN), 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and 2,4-dinitrotoluene (DNT)], nitramines [hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and nitroguanidine (NQ)], and azoles [3-nitro-1,2,4-triazol-5-one (NTO) and 3,4-dinitropyrazole (DNP)] by three dithionite-reduced quinones (lawsone, AQDS, and AQS). All MCs/NACs were reduced by the hydroquinones except NQ. Hydroquinone and MC speciations were varied by controlling pH, permitting the application of a speciation model to determine second-order rate constants (k) from observed pseudo-first-order rate constants. The intrinsic reactivity of MCs (oxidants) decreased upon deprotonation, while the opposite was true for hydroquinones (reductants). The rate constants spanned ∼6 orders of magnitude in the order NTO ≈ TNT > DNP > DNT ≈ DNAN ≈ 2-A-DNT > DNP- > 4-A-DNT > NTO- > RDX. LFERs developed using density functional theory-calculated electron transfer and hydrogen atom transfer energies and reported one-electron reduction potentials successfully predicted k, suggesting that these structurally diverse MCs/NACs are all reduced by hydroquinones through the same mechanism and rate-limiting step. These results increase the applicability of LFER models for predicting the fate and half-lives of MCs and related nitro compounds in reducing environments.


Asunto(s)
Hidrógeno , Trinitrotolueno , Electrones , Hidroquinonas , Transporte de Electrón
6.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569443

RESUMEN

Binders mixed with explosives to form polymer-bonded explosives (PBXs) can reduce the sensitivity of the base explosive by improving interfacial interactions. The interface formed between the binder and matrix explosive also affects the thermal conductivity. Low thermal conductivity may result in localized heat concentration inside the PBXs, causing the detonation of the explosive. To investigate the binder-explosive interfacial interactions and thermal conductivity, PBXs with polyurethane as the binder and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-trinitrotoluene (CL-20/TNT) co-crystal as the matrix explosive were investigated through molecular dynamics (MD) simulations and reverse non-equilibrium molecular dynamics (rNEMD) simulation. The analysis of the pair correlation function revealed that there are hydrogen bonding interactions between Estane5703 and CL-20/TNT. The length of the trigger bonds was adopted as a theoretical criterion of sensitivity, and the effect of polymer binders on the sensibility of PBXs was correlated by analyzing the interfacial trigger bonds and internal trigger bonds of PBXs for the first time. The results indicated that the decrease in sensitivity of CL-20/TNT mainly comes from the CL-20/TNT contact with Estane5703. Therefore, the sensitivity of CL-20/TNT-based PBXs can be further reduced by increasing the contact area between CL-20/TNT and Estane5703. The thermal conductivity of PBXs composed of Estane5703 and CL-20/TNT (0 0 1), (0 1 0) and (1 0 0) crystal planes, respectively, were calculated through rNEMD simulations, and the results showed that only the addition of Estane5703 to the (1 0 0) crystal plane can improve the thermal conductivity of PBX100.


Asunto(s)
Sustancias Explosivas , Trinitrotolueno , Sustancias Explosivas/química , Simulación de Dinámica Molecular , Polímeros/química , Conductividad Térmica , Trinitrotolueno/análisis , Trinitrotolueno/química
7.
Molecules ; 28(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36838956

RESUMEN

2,4,6-Trinitrotoluene (TNT) is an aromatic pollutant that is difficult to be degraded in the natural environment. The screening of efficient degrading bacteria for bioremediation of TNT has received much attention from scholars. In this paper, transcriptome analysis of the efficient degrading bacterium Buttiauxella sp. S19-1 revealed that the monooxygenase gene (BuMO) was significantly up-regulated during TNT degradation. S-ΔMO (absence of BuMO gene in S19-1 mutant) degraded TNT 1.66-fold less efficiently than strain S19-1 (from 71.2% to 42.9%), and E-MO mutant (Escherichia coli BuMO-expressing strain) increased the efficiency of TNT degradation 1.33-fold (from 52.1% to 69.5%) for 9 h at 180 rpm at 27 °C in LB medium with 1.4 µg·mL-1 TNT. We predicted the structure of BuMO and purified recombinant BuMO (rBuMO). Its specific activity was 1.81 µmol·min-1·mg-1 protein at pH 7.5 and 35 °C. The results of gas chromatography mass spectrometry (GC-MS) analysis indicated that 4-amino-2,6-dinitrotoluene (ADNT) is a metabolite of TNT biodegradation. We speculate that MO is involved in catalysis in the bacterial degradation pathway of TNT in TNT-polluted environment.


Asunto(s)
Trinitrotolueno , Biodegradación Ambiental , Trinitrotolueno/metabolismo , Oxigenasas de Función Mixta , Escherichia coli/metabolismo
8.
Molecules ; 28(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446917

RESUMEN

Two new azaheterocycle-based bolas, such as (1-(4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenyl)-1H-1,2,3-triazol-4-yl)-methylenyls α,ω-bisfunctionalized PEGs, were prepared via Cu-catalyzed click reaction between 2-(4-azidophenyl)-5-(aryl)-oxadiazole-1,3,4 and terminal ethynyls derived from PEG-3 and PEG-4. Due to the presence of two heteroaromatic cores and a PEG linker, these bola molecules are considered as promising fluorescent chemosensors for electron-deficient species. As a result of a well-pronounced "turn-off" fluorescence response towards common nitro-explosive components, such as 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT), hard-to-detect pentaerythritol tetranitrate (PETN), as well as Hg2+ cation was observed.


Asunto(s)
Sustancias Explosivas , Trinitrotolueno
9.
Oncologist ; 27(1): e76-e84, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35305096

RESUMEN

OBJECTIVES: ALK inhibitors (ALKi) are the standard-of-care treatment for metastatic ALK-rearranged non-small cell lung cancer (NSCLC) in the first- and second-line setting. We conducted a real-world multi-institutional analysis, aiming to compare the efficacy of third-line ALKi versus chemotherapy in these patients. METHODS: Consecutive ALK-positive metastatic NSCLC patients treated with at least one ALKi were identified in the working databases of 7 Israeli oncology centers (the full cohort). Demographic and clinical data were collected. Patients receiving any systemic treatment beyond 2 ALKi comprised the third-line cohort, whether a third ALKi (group A) or chemotherapy (group B). Groups A and B were compared in terms of overall survival (OS) and time-to-next-treatment line (TNT). RESULTS: At a median follow-up of 41 months (95% confidence interval [CI]: 32-55), 80 (47.1%) have died. Median OS (mOS) in the full cohort (n = 170) was 52 months (95% CI: 32-65). Number of ALKi (hazard ratio [HR] 0.765; 95% CI: 0.61-0.95; P = .024) and age (HR 1.02, 95% CI: 1.01-1.04, P = .009) significantly associated with OS in the full cohort. The third-line cohort included 40 patients, of which 27 were treated with third ALKi (group A) and 13 treated with chemotherapy (group B). mOS from third-line initiation was 27 months in group A (95% CI: 13-NR) and 13 months for group B (95% CI: 3-NR); the difference was not significant (NS; P = .12). Chemotherapy as first line (HR 0.17, 95% CI: 0.05-0.52, P = .002) and a higher number of ALKi (HR 0.38, 95% CI: 0.20-0.86, P = .011) associated significantly with longer OS of the third-line cohort. TNT was 10 months for group A (95% CI: 5-19) and 3 months for group B (95% CI: 0-NR); the difference was NS (P = .079). CONCLUSION: We report mature real-world data of more than 4-year mOS in ALK-positive patients. The number of ALKi given was associated with a better outcome. OS and TNT demonstrated a statistically nonsignificant trend for a better outcome in patients receiving a third-line ALKi.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Trinitrotolueno , Quinasa de Linfoma Anaplásico/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/uso terapéutico
10.
Anal Biochem ; 638: 114496, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838816

RESUMEN

LC-MS/MS has recently emerged as the best practice for simultaneous analysis of 2, 4, 6 Trinitrotoluene (TNT) and its metabolites. We have developed and validated an LC-MS/MS method for simultaneous quantification of 2, 4, 6 Trinitrotoluene (TNT) and its metabolites 4-ADNT, 2-ADNT, 2,4-DNT, and 2,6-DNT in urine samples. These four metabolites were acid hydrolyzed using 1 mL of urine followed by extraction using n-Hexane and ethyl acetate as an extracting solvent. Separation was achieved by centrifugation, and the supernatant was dried under nitrogen, reconstituted with water and acetonitrile, and then filtered. Chromatographic separation was achieved on Agilent Poroshel 120 EC-C18 column (2.1 mm × 75 mm × 2.7 µm) utilizing two mobile phases 0.1% formic acid in water and 0.1% formic acid in acetonitrile in gradient flow. The validated AMR of TNT and its metabolites was 7.8-1000 ng/mL. The method showed an excellent correlation (>0.99) for TNT and its metabolites. Accuracy and within/between day precision of TNT and its metabolites were within ±15%. The integrity of diluted samples was maintained for each dilution factor. The method was found stable after storage and freeze-thaw cycle. The presented method can be used for TNT screening in occupationally exposed ordnance factory workers.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Trinitrotolueno/orina , Diseño de Equipo , Humanos , Trinitrotolueno/metabolismo
11.
Arch Microbiol ; 204(7): 447, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778571

RESUMEN

2,4,6-trinitrotoluene (TNT), a nitro-aromatic explosive commonly used for defense and several non-violent applications is contributing to serious environmental pollution problems including human health. The current study investigated the remediation potential of a native soil isolate, i.e., Indiicoccus explosivorum (strain S5-TSA-19) isolated from collected samples of an explosive manufacturing site, against TNT. The survivability of I. explosivorum against explosives is indirectly justified through its isolation; thus, it is being chosen for further study. At a TNT concentration of 120 mg/L within an optimized environment (i.e., at 30 °C and 120 rpm), the isolate was continually incubated for 30 days in a minimal salt medium (MSM). The proliferation of the isolate and the concentration of TNT, nitrate, nitrite, and ammonium ion were evaluated at a particular time during the experiment. Within 168 h (i.e., 7 days) of incubation, I. explosivorum co-metabolically degraded 100% TNT. The biodegradation procedure succeeded the first-order kinetics mechanism. Formations of additional metabolites like 2,4-dinitrotoluene (DNT), 2,4-diamino-6-nitrotoluene (2-DANT), and 2-amino-4,6-dinitrotoluene (2-ADNT), were also witnessed. TNT seems to be non-toxic for the isolate, as it reproduced admirably in TNT presence. To date, it is the first report of Indiicoccus explosivorum, efficiently bio-remediating TNT, i.e., a nitro-aromatic compound via different degradation pathways, leading to the production of simpler as well as less harmful end products. Further, at the field-scale application, Indiicoccus explosivorum may be explored for the bioremediation of TNT (i.e., a nitro-aromatic compound)-contaminated effluents.


Asunto(s)
Planococcaceae , Trinitrotolueno , Humanos , Biodegradación Ambiental , Cinética
12.
Rapid Commun Mass Spectrom ; 36(19): e9365, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35894941

RESUMEN

RATIONALE: Six of the isomers of aminonitrotoluene (ANT) are 2-amino-3-nitrotoluene (2A3NT), 2A4NT, 2A5NT, 2A6NT, 4A2NT, and 4A3NT. Some of them can be identified by chromatography and spectroscopy. Biochemical transformation of 2,4,6-trinitrotoluene (TNT) and dinitrotoluenes (DNTs) is very complex and ANTs are decomposition products of TNT and DNTs. METHODS: Each isomer in acetone was ionized using atmospheric pressure chemical ionization in positive and negative ion modes, and kinds and abundances of the product ions were analyzed. Energy-minimized structures of the product ions and their energies were calculated to explain the analysis results. RESULTS: The [M + H]+ , [M + H + Acetone - H2 O]+ , and [M + H + Acetone]+ ions as positive product ions were detected, while [M - H]- , M•- , and [M + O2 ]•- ions as negative ones were observed. The order of the ionization efficiencies for the positive product ions was 4A3NT > 4A2NT > 2A4NT > 2A6NT > 2A5NT > 2A3NT, while that of the negative ones was 2A5NT > 2A3NT > 4A3NT > 2A4NT > 2A6NT > 4A2NT. Ion abundance ratios for 2A3NT and 2A5NT showed very similar trends, while those of 2A6NT and 4A2NT also showed similar trends. Differences in the ionization behaviors were explained using the heats of reaction. CONCLUSIONS: The product ions were produced by ion-molecule reactions with the reactant ions of [2Acetone + H]+ and [Acetone + O2 ]•- . The [M + H + Acetone]+ ion was fragmented to produce [M + H]+ and [M + H + Acetone - H2 O]+ , while the [M + O2 ]•- ion was fragmented to generate the [M - H]- and M•- ions. Differences in the ionization behaviors of the ANTs can be used for their differentiation.


Asunto(s)
Acetona , Trinitrotolueno , Presión Atmosférica , Iones/química , Isomerismo , Trinitrotolueno/análisis
13.
Phys Chem Chem Phys ; 24(19): 11801-11811, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35506927

RESUMEN

CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, also known as HNIW) is one of the most powerful energetic materials. However, its high sensitivity to environmental stimuli greatly reduces its safety and severely limits its application. In this work, ab initio based neural network potential (NNP) energy surfaces for both ß-CL-20 and CL-20/TNT co-crystals were constructed. To accurately simulate the thermal decomposition processes of these two crystal systems, reactive molecular dynamics simulations based on the NNPs were performed. Many important intermediate species and their associated reaction paths during the decomposition had been identified in the simulations and the direct results on detonation temperatures of both systems were provided. The simulations also showed clearly that 2,4,6-trinitrotoluene (TNT) molecules in the co-crystal act as a buffer to slow down the chain reactions triggered by nitrogen dioxide and this effect is more significant at lower temperatures. Specifically, the addition of TNT molecules in the CL-20/TNT co-crystal introduces intermolecular hydrogen bonds between CL-20 and TNT molecules in the system, thereby increasing the thermal stability of the co-crystal. The current reactive molecular dynamics simulation is performed based on the NNP which helps in accelerating the speed of ab initio molecular dynamics (AIMD) simulation by more than 3 orders of magnitude while preserving the accuracy of density functional theory (DFT) calculations. This enabled us to perform longer-time simulations at more realistic temperatures that traditional AIMD methods cannot achieve. With the advantage of the NNP in its powerful fitting ability and transferability, the NNP-based MD simulation can be widely applied to energetic material systems.


Asunto(s)
Trinitrotolueno , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Redes Neurales de la Computación , Fenómenos Físicos , Trinitrotolueno/química
14.
J Phys Chem A ; 126(48): 9059-9075, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36417759

RESUMEN

Hydrolysis is a common transformation reaction that can affect the environmental fate of many organic compounds. In this study, three proposed mechanisms of alkaline hydrolysis of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroaniline (DNAN) were investigated with plane-wave density functional theory (DFT) combined with ab initio and classical molecular dynamics (AIMD/MM) free energy simulations, Gaussian basis set DFT calculations, and correlated molecular orbital theory calculations. Most of the computations in this study were carried out using the Arrows web-based tools. For each mechanism, Meisenheimer complex formation, nucleophilic aromatic substitution, and proton abstraction reaction energies and activation barriers were calculated for the reaction at each relevant site. For TNT, it was found that the most kinetically favorable first hydrolysis steps involve Meisenheimer complex formation by attachment of OH- at the C1 and C3 arene carbons and proton abstraction from the methyl group. The nucleophilic aromatic substitution reactions at the C2 and C4 arene carbons were found to be thermodynamically favorable. However, the calculated activation barriers were slightly lower than in previous studies, but still found to be ΔG‡ ≈ 18 kcal/mol using PBE0 AIMD/MM free energy simulations, suggesting that the reactions are not kinetically significant. For DNAN, the barriers of nucleophilic aromatic substitution were even greater (ΔG‡ > 29 kcal/mol PBE0 AIMD/MM). The most favorable hydrolysis reaction for DNAN was found to be a two-step process in which the hydroxyl first attacks the C1 carbon to form a Meisenheimer complex at the C1 arene carbon C1-(OCH3)OH-, and subsequently, the methoxy anion (-OCH3) at the C1 arene carbon dissociates and the proton shuttles from the C1-OH to the dissociated methoxy group, resulting in methanol and an aryloxy anion.


Asunto(s)
Trinitrotolueno , Teoría Funcional de la Densidad , Protones
15.
Plant Cell Rep ; 41(5): 1273-1284, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35305132

RESUMEN

KEY MESSAGE: Alfalfa has the ability to degrade TNT. TNT exposure caused root disruption of mineral nutrient metabolism. The exposure of TNT imbalanced basal cell energy metabolism. The mechanism of 2,4,6-trinitrotoluene (TNT) toxicity effects was analyzed in alfalfa (Medicago sativa L.) seedlings by examining the mineral nutrition and secondary metabolism of the plant roots. Exposure to 25-100 mg·L-1 TNT in a hydroponic solution for 72 h resulted in a TNT absorption rate of 26.8-63.0%. The contents of S, K, and B in root mineral nutrition metabolism increased significantly by 1.70-5.46 times, 1.38-4.01 times, and 1.40-4.03 times, respectively, after TNT exposure. Non-targeted metabolomics analysis of the roots identified 189 significantly upregulated metabolites and 420 significantly downregulated metabolites. The altered metabolites were primarily lipids and lipid-like molecules, and the most significant enrichment pathways were alanine, aspartate, and glutamate metabolism and glycerophospholipid metabolism. TNT itself was transformed in the root system into several intermediate products, including 4-hydroxylamino-2,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, 2-hydroxylamino-4,6-dinitrotoluene, 2,4',6,6'-tetranitro-2',4-azoxytoluene, 4,4',6,6'-tetranitro-2,2'-azoxytoluene, and 2,4-dinitrotoluene. Overall, TNT exposure disturbed the mineral metabolism balance, and significantly interfered with basic plant metabolism.


Asunto(s)
Trinitrotolueno , Medicago sativa/metabolismo , Minerales , Metabolismo Secundario , Trinitrotolueno/metabolismo , Trinitrotolueno/toxicidad
16.
Biodegradation ; 33(6): 593-607, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35980495

RESUMEN

2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound and is highly resistant to degradation. Most aerobic microorganisms reduce TNT to amino derivatives via formation of nitroso- and hydroxylamine intermediates. Although pathways of TNT degradation are well studied, proteomic analysis of TNT-degrading bacteria was done only for some individual Gram-negative strains. Here, we isolated a Gram-positive strain from TNT-contaminated soil, identified it as Bacillus pumilus using 16S rRNA sequencing, analyzed its growth, the level of TNT transformation, ROS production, and revealed for the first time the bacillary proteome changes at toxic concentration of TNT. The transformation of TNT at all studied concentrations (20-200 mg/L) followed the path of nitro groups reduction with the formation of 4-amino-2,6-dinitrotoluene. Hydrogen peroxide production was detected during TNT transformation. Comparative proteomic analysis of B. pumilus showed that TNT (200 mg/L) inhibited expression of 46 and induced expression of 24 proteins. Among TNT upregulated proteins are those which are responsible for the reductive pathway of xenobiotic transformation, removal of oxidative stress, DNA repair, degradation of RNA and cellular proteins. The production of ribosomal proteins, some important metabolic proteins and proteins involved in cell division are downregulated by this xenobiotic.


Asunto(s)
Bacillus pumilus , Trinitrotolueno , Trinitrotolueno/metabolismo , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Proteoma , ARN Ribosómico 16S , Biodegradación Ambiental , Proteómica , Xenobióticos , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Suelo , Proteínas Ribosómicas , Hidroxilaminas
17.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36613844

RESUMEN

Xenobiotic reductase B (XenB) catalyzes the reduction of the aromatic ring or nitro groups of nitroaromatic compounds with methyl, amino or hydroxyl radicals. This reaction is of biotechnological interest for bioremediation, the reuse of industrial waste or the activation of prodrugs. However, the structural factors that explain the binding of XenB to different substrates are unknown. Molecular dynamics simulations and quantum mechanical calculations were performed to identify the residues involved in the formation and stabilization of the enzyme/substrate complex and to explain the use of different substrates by this enzyme. Our results show that Tyr65 and Tyr335 residues stabilize the ligands through hydrophobic interactions mediated by the aromatic rings of these aminoacids. The higher XenB activity determined with the substrates 1,3,5-trinitrobenzene and 2,4,6-trinitrotoluene is consistent with the lower energy of the highest occupied molecular orbital (LUMO) orbitals and a lower energy of the homo orbital (LUMO), which favors electrophile and nucleophilic activity, respectively. The electrostatic potential maps of these compounds suggest that the bonding requires a large hydrophobic region in the aromatic ring, which is promoted by substituents in ortho and para positions. These results are consistent with experimental data and could be used to propose point mutations that allow this enzyme to process new molecules of biotechnological interest.


Asunto(s)
Pseudomonas putida , Trinitrotolueno , Oxidorreductasas/metabolismo , Pseudomonas putida/metabolismo , Xenobióticos , Trinitrotolueno/química , Trinitrotolueno/metabolismo , Simulación de Dinámica Molecular
18.
Molecules ; 27(7)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35408551

RESUMEN

Inspired by the recent cocrystallization and theory of energetic materials, we theoretically investigated the intermolecular vibrational energy transfer process and the non-covalent intermolecular interactions between explosive compounds. The intermolecular interactions between 2,4,6-trinitrotoluene (TNT) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and between 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and CL-20 were studied using calculated two-dimensional infrared (2D IR) spectra and the independent gradient model based on the Hirshfeld partition (IGMH) method, respectively. Based on the comparison of the theoretical infrared spectra and optimized geometries with experimental results, the theoretical models can effectively reproduce the experimental geometries. By analyzing cross-peaks in the 2D IR spectra of TNT/CL-20, the intermolecular vibrational energy transfer process between TNT and CL-20 was calculated, and the conclusion was made that the vibrational energy transfer process between CL-20 and TNTII (TNTIII) is relatively slower than between CL-20 and TNTI. As the vibration energy transfer is the bridge of the intermolecular interactions, the weak intermolecular interactions were visualized using the IGMH method, and the results demonstrate that the intermolecular non-covalent interactions of TNT/CL-20 include van der Waals (vdW) interactions and hydrogen bonds, while the intermolecular non-covalent interactions of HMX/CL-20 are mainly comprised of vdW interactions. Further, we determined that the intermolecular interaction can stabilize the trigger bond in TNT/CL-20 and HMX/CL-20 based on Mayer bond order density, and stronger intermolecular interactions generally indicate lower impact sensitivity of energetic materials. We believe that the results obtained in this work are important for a better understanding of the cocrystal mechanism and its application in the field of energetic materials.


Asunto(s)
Sustancias Explosivas , Trinitrotolueno , Transferencia de Energía , Sustancias Explosivas/química , Enlace de Hidrógeno , Trinitrotolueno/química , Vibración
19.
Molecules ; 27(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36432093

RESUMEN

The mechanism of photolytic degradation of 2-4-6-trinitrotoluene (TNT) by UVA−visible light (>320 nm) in ethanolic, aqueous-ethanolic, and aqueous solutions was investigated by electrospray and aerodynamic thermal breakup droplet ionization mass-spectrometric analyses. For the photolysis, a DRK-120 mercury-quartz lamp was used. Products of the photolysis reaction were compared with known products of TNT transformation in the environment. Because the photochemistry of some compounds in alcohols (in contrast to aqueous solutions) features a transfer of electrons from the solvent to the light-excited compound, we believe that the efficiency of photolysis (polymerization) of TNT in ethanol and aqueous-ethanolic solutions is based on this mechanism.


Asunto(s)
Trinitrotolueno , Fotólisis , Luz , Espectrometría de Masas , Agua , Etanol
20.
Molecules ; 27(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35566254

RESUMEN

Although it is well-known that nitroaromatic compounds quench the fluorescence of different conjugated polymers and form colored Meisenheimer complexes with proper nucleophiles, the potential of paper as a substrate for those macromolecules can be further developed. This work undertakes this task, impregnating paper strips with a fluorene-phenylene copolymer with quaternary ammonium groups, a bisfluorene-based cationic polyelectrolyte, and poly(2-(dimethylamino)ethyl methacrylate) (polyDMAEMA). Cationic groups make the aforementioned polyfluorenes attachable to paper, whose surface possesses a slightly negative charge and avoid interference from cationic quenchers. While conjugated polymers had their fluorescence quenched with nitroaromatic vapors in a non-selective way, polyDMAEMA-coated papers had a visual response that was selective to 2,4,6-trinitrotoluene (TNT), and that could be easily identified, and even quantified, under natural light. Far from implying that polyfluorenes should be ruled out, it must be taken into account that TNT-filled mines emit vapors from 2,4-dinitrotoluene (DNT) and dinitrobenzene isomers, which are more volatile than TNT itself. Atmospheres with only 790 ppbv TNT or 277 ppbv DNT were enough to trigger a distinguishable response, although the requirement for certain exposure times is an important limitation.


Asunto(s)
Sustancias Explosivas , Trinitrotolueno , Aminas , Dinitrobencenos , Sustancias Explosivas/química , Gases , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA